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Atomic electric dipole moment induced by the nuclear electric dipole moment:
The magnetic moment effect
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We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms
through the interaction of a nuclear EDM dN with the hyperfine interaction, the “magnetic moment effect”. We
have derived the operator for this interaction and presented analytical formulas for the matrix elements between
atomic states. Induced EDMs in the diamagnetic atoms 129Xe, 171Yb, 199Hg, 211Rn, and 225Ra have been calculated
numerically. From the experimental limits on the atomic EDMs of 129Xe and 199Hg we have placed the following
constraints on the nuclear EDMs, |dN (129Xe)| < 1.1 × 10−21 |e| cm and |dN (199Hg)| < 2.8 × 10−24 |e| cm.
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I. INTRODUCTION

Since the discovery of CP violation in the decay of long-
lived K0 mesons, there have been many efforts to observe CP
or time-reversal (T) violation in other systems. The latter is
equivalent to CP violation assuming the validity of the CPT
theorem. In particular, the possible existence of a permanent
electric dipole moment (EDM) of a particle would imply the
violation of both parity and time-reversal invariance (see, e.g.,
[1]). The EDMs of the particles predicted by the standard
model are too small to be detected at the present level of
experimental accuracy. However, different extensions of the
standard model (such as supersymmetry) predict much larger
EDMs of the particles that could, in principle, be found using
modern experimental techniques (see, e.g., [2,3]).

Recently, Griffith et al. [4] reported a sevenfold improve-
ment on the limit of the atomic EDM of 199Hg, |d(199Hg)| <

3.1 × 10−29 |e| cm. This is the most stringent limit on an
atomic EDM. In order to interpret the measurement in terms of
fundamental P,T-violating parameters, atomic calculations are
required. In our recent paper [5] (see also [6–8]) we calculated
atomic electric dipole moments induced by the nuclear Schiff
moment, the P,T-odd electron-nucleon interaction, and the
electron electric dipole moment and placed limits on the
coupling constants of the P,T-odd interactions from the new
Hg result.

In this work we consider one more P,T-odd interaction
which gives rise to an atomic EDM in the second order
of perturbation theory. This interaction was first discussed
by Schiff in Ref. [9]. He showed that if a nucleus has a
permanent EDM dN , an atomic EDM may be induced due
to the interaction of dN with the magnetic field created by the
electrons at the nucleus.

It is worth noting that the existence of a nonzero dN alone
is insufficient for producing observable EDM effects in neutral
atoms due to electronic screening of an applied electric field
at the nucleus [9]. This screening is exact for the case of a
point-like nucleus experiencing electrostatic forces. One can
circumvent this screening by accounting for the finite size of
the nucleus or the hyperfine interaction. The former leads to the
appearance of the nuclear Schiff moment; the latter “magnetic
moment effect” is the subject of this work.

In his work [9] Schiff evaluated the EDMs of H and He
induced by the magnetic moment effect. Hinds and Sandars
later calculated the effect in TlF [10]. In the current work we
present a general analysis of the effect for atoms and perform
calculations for diamagnetic atoms of experimental interest.

The volume effect (nuclear Schiff moment) is generally
considered to be the dominant mechanism inducing EDMs in
heavy diamagnetic atoms with nuclear spin I = 1/2. However,
it has been discovered recently that the nuclear Schiff moment
is very sensitive to many-body corrections (see, e.g., [11] and
references therein). These corrections suppress the bare values
for the Schiff moments for all considered nuclei. Other than
a general suppression, there is yet no agreement between the
many-body approaches. The nuclear EDM contribution to the
atomic EDM (through the magnetic moment effect) should
therefore not be disregarded before the nuclear many-body
problem is well understood and specific CP-violating models
considered.

Further motivation for this work comes from the growing
interest in measuring nuclear EDMs in ion storage rings
[12–15]. In ions the nuclear EDM is not screened and can be
measured directly. The relations obtained in this work between
the nuclear and atomic EDMs enable one to place limits on
nuclear EDMs from neutral atom measurements. These limits
may be considered as an accuracy benchmark for proposed
nuclear EDM measurements with ions.

The paper is organized as follows. In Secs. II and III we
derive analytical expressions for the P,T-odd operator and the
matrix elements of this operator between atomic states. In
Sec. IV we present the equation for the atomic EDM dN

at and
discuss different contributions to dN

at . In Sec. V we obtain
simple analytical formulas that can be used for an estimate
of the atomic EDM (and this is compared to the atomic
EDM induced by the nuclear Schiff moment), we describe
our numerical method for EDM calculations of diamagnetic
atoms, and we present results for 129Xe, 171Yb, 199Hg, 211Rn,
and 225Ra. Section VI contains concluding remarks.

II. GENERAL FORMALISM

Let us assume that the nucleus has a P,T-odd EDM, dN ≡
〈dN 〉 = dN I/I . Here 〈dN 〉 denotes the expectation value of the
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nuclear electric dipole moment with the exact nuclear ground
state wave function [16].

The P,T-odd operator corresponding to the magnetic mo-
ment effect can be written as [9]

U = −i[Q,HM ], (1)

where square brackets in Eq. (1) denote a commutator. The
operator Q is determined as (if not stated otherwise we use
atomic units h̄ = m = |e| = 1)

Q = dN · pN

Z
= − 1

Z

Z∑
k=1

dN · p(k)
e , (2)

where Z is the nuclear charge and pN and p(k)
e are momentum

operators for the nucleus and electrons, respectively. HM is
the operator for the hyperfine interaction (HFI) which may
be interpreted as the interaction of the nuclear magnetic
moment µN with the magnetic field of the electrons. It can
be represented by the sum of the single-electron operators

HM =
Z∑

i=1

ri × αi

r3
i>

µN, (3)

where ri> ≡ max(ri,R) with R the nuclear radius and

α = ( 0 σ
σ 0 ) are the Dirac matrices. µN = µN I/I and µN =

µ/(2 mp c), where µ is the nuclear magnetic moment, mp is
the nucleon mass, and the speed of light c = 1/α ≈ 137.

A note on the origin of the P,T -odd operator Eq. (1). Schiff
showed (we limit the explanation to the case of an atom with
nuclear EDM) that when an atom is acted upon by electrostatic
forces only and the nuclear EDM and charge distributions are
the same, the full Hamiltonian may be expressed as H = H0 +
i[Q,H0], where the full Hamiltonian H includes the nuclear
EDM and H0 does not. The eigenvalues of H are therefore
the same as those of H0 to first order (the expectation value
of the commutator containing H0 is zero) and do not contain
the nuclear EDM, that is, there is no linear Stark shift and no
observable EDM of the atom. When the hyperfine interaction
is taken into account, the full Hamiltonian may be written
as H ′ = H ′

0 + i[Q,H ′
0] − i[Q,HM ], where the prime denotes

that the magnetic interaction is included. Only the commutator
containing HM may lead to observable EDM effects. We refer
the reader to Schiff’s landmark work Ref. [9] for details.

In Eq. (2) we assumed that the center of mass is at rest.
As a result, the momentum operator of the nucleus pN can be
replaced by the sum of the electronic momenta p(k)

e with the
opposite sign. In the following we will deal with the electronic
momenta only and omit the subscript e, that is, we denote
p ≡ pe. Then we obtain for the operator U :

U = −i
dNµN

ZI 2

Z∑
k=1

[
rk × αk

r3
k>

I,Ipk

]
≡

Z∑
k=1

Uk . (4)

We will consider the single-electron operator Uk (omitting
for brevity the index k) since, as seen from Eq. (4), a general-
ization to the case of a many-electron atom is straightforward.
In addition, we restrict ourselves to consideration of the most

interesting case of nuclear spin I = 1/2. Then for the Cartesian
components m and i of the nuclear spin I we have

ImIi = 1

4
δmi + i

2
εmilIl . (5)

Substituting Eq. (5) into Eq. (4) and taking into account that the
terms ∼δmi will be canceled out, after simple transformations
we obtain

U = dNµN

Z

[
ασN

{
p,

r
r3
>

}
+

−
{

σNr
r3
>

,αp
}

+

]
. (6)

Here σN = 2I and {· · ·}+ is an anticommutator. Now we take
into account that

p = −i∇ = −in
∂

∂r
− n × L

r
,

with L = r × p the orbital momentum operator.
Hence {

p,
r
r3
>

}
+

= −i

{
∂

∂r
,

r

r3
>

}
+

and finally we obtain

U = −dNµN

Z

[
i α · σN

{
∂

∂r
,

r

r3
>

}
+

+
{

σN · r
r3
>

,αp
}

+

]
. (7)

If the typical distances of interest are small one can neglect
the eigenvalue and the mass of the electron in comparison
with the electrostatic potential. Hinds and Sandars showed in
Ref. [10] that in this approximation the operator U can be
written in a more simple form:

U = 2 dNµN

Z
σN

α × L
r3

. (8)

In the following sections we will discuss the difference
between the two forms of the operator U given by Eqs. (7)
and (8).

III. ELECTRONIC MATRIX ELEMENTS

We use the following form for the electronic wave func-
tions:

|nκm〉 =
(

f (r)�jlm

ig(r)�jl̃m

)
=

(
f (r)�κm

ig(r)�−κm

)
,

where l̃ ≡ 2j − l. Using the expression for the operator U

given by Eq. (7) we can derive the electronic matrix elements
(MEs). Finally we find (see the Appendix for details of the
derivation)

〈n′
κ

′m′|U |nκm〉 = −dNµN

Z
σN 〈κ′m′|n|κm〉

∫ ∞

0

[
κ + κ

′

r

×{f ′g(κ − κ
′ + 1) + fg′(κ′ − κ + 1)}

+ (ε′ − ε)(κ − κ
′)(f ′f − g′g)

]
r3

r3
>

dr.

(9)

If we factorize (ε′ − ε) in the second term of Eq. (9), we
can rewrite it as

(ε − ε′)
dNµN

Z
σN 〈n′

κ
′m′| i r × σ

r3
>

|nκm〉. (10)
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Then Eq. (9) can be represented by

〈n′
κ

′m′|U |nκm〉 = −dNµN

Z
σN

[
〈κ′m′|n|κm〉(κ + κ

′)

×
∫ ∞

0
{f ′g(κ − κ

′ + 1)

+ fg′(κ′ − κ + 1)} r
2dr

r3
>

+ (ε′ − ε)

×〈n′
κ

′m′| i r × σ

r3
>

|nκm〉
]
. (11)

As seen from Eqs. (9) and (11), the first term in these equa-
tions disappears if κ

′ + κ = 0. It happens for the states with
l′ = l ± 1 and j ′ = j . As a result, the MEs 〈−κm′|U |κm〉
turn out to be proportional to (ε′ − ε). For heavy atoms these
MEs are small. In particular, it means that the MEs 〈s|U |p1/2〉
contribute less to the atomic EDM than the MEs 〈s|U |p3/2〉.
If we neglect the term ∼(ε′ − ε) in Eqs. (9) and (11), then
Eqs. (7) and (8) lead to the same formula for the MEs.

IV. ATOMIC EDM

In this section we present our calculations of EDMs
induced by the operator U for several diamagnetic atoms of
experimental interest having I = 1/2. The EDM dN

at = dN
at σN

of an atom in the state |0〉 in the second order of perturbation
theory is given by

dN
at = 2

∑
K

〈0|D|K〉〈K|U |0〉
E0 − EK

, (12)

where D = −r is the electric dipole operator and the sum-
mation goes over all intermediate states |K〉 allowed by the
selection rules.

As follows from the consideration given in the preceding
section, it is convenient to present the operator U as a product
of two operators, one relating to the electronic part and the
other relating to the nuclear part, that is,

U = Uel · σN, (13)

where Uel describes the electronic part of the operator U .
Applying the Wigner-Eckart theorem, and summing over

magnetic quantum numbers m of the initial and final states in
Eq. (12), we obtain for dN

at :

dN
at = 2

3

∑
K

〈0||r||K〉〈0||Uel||K〉
EK − E0

. (14)

To carry out calculations of atomic EDMs for atoms
with closed shells, it is convenient to rewrite Eqs. (12)
and (14) in terms of single-electron wave functions. Then the
corresponding expressions for dN

at and dN
at are given by

dN
at = 2

∑
c,n

〈c|r|n〉〈n|U |c〉
εn − εc

(15)

and

dN
at = 2

3

∑
c,n

〈n||r||c〉〈n||Uel||c〉
εn − εc

, (16)

where the indices c and n relate to the single-electron core and
virtual orbitals and εc(n) are the single-electron core (virtual)
energies, correspondingly.

Note that if we substitute the second term of Eq. (11) into
Eq. (15), then after cancellation of (εn − εc) in the numerator
and denominator and applying closure

∑
n |n〉〈n| = 1, we

obtain a term which is proportional to∑
c

〈c| r [(r × σ ) σN ]

r3
>

|c〉.

It can be readily shown that if we apply again the Wigner-
Eckart theorem and sum up over the projections mc of the total
angular momenta jc, this term goes to zero and therefore does
not contribute to dN

at . In particular, it means that the second
term in Eq. (11) does not contribute to the atomic EDM for
closed-shell atoms.

Keeping in mind that we intend to carry out calculations of
EDMs for atoms with closed shells, we can neglect the term
∼(ε′ − ε) in Eq. (11). Accounting for Eq. (13), we obtain the
following expression for the reduced ME of the operator Uel:

〈n′
κ

′||Uel||nκ〉 ≈ −dNµN

Z
〈κ′||n||κ〉(κ + κ

′)

×
∫ ∞

0
{f ′g(κ − κ

′ + 1)

+fg′(κ′ − κ + 1)}dr

r
, (17)

where the reduced ME 〈κ′||n||κ〉 is given by

〈κ′||n||κ〉 = (−1)j
′+1/2

√
(2j ′ + 1)(2j + 1)

×
(

j ′ j 1

−1/2 1/2 0

)
ξ (l′ + l + 1) (18)

with

ξ (x) =
{

1, if x is even

0, if x is odd.

In Eq. (17) we also took into account that the integral
inside the nucleus is very small and replaced r> by r . As
we mentioned above, the MEs of the operator Uel turn to
zero if κ + κ

′ = 0. It means that MEs between states with
the same total angular momentum though different parity like
〈s||Uel||p1/2〉, 〈p3/2||Uel||d3/2〉, etc. are equal to zero.

V. METHOD OF CALCULATION AND RESULTS

A. Analytical estimates

In this section we derive the analytical expression for
the matrix element Eq. (17). Outside the nucleus the wave
functions fnκ and gnκ can be represented by [17]

fnκ = κ

|κ|
1√

Zν3r

[
(γ + κ)J2γ (x) − x

2
J2γ−1(x)

]
,

(19)

gnκ = κ

|κ|
1√

Zν3r
Zα J2γ (x),

where x ≡ √
8Zr , γ = √

κ
2 − Z2α2, and Jν(x) are Bessel

functions.
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Using these expressions for the radial wave functions we
obtain for the radial integral∫ ∞

0
fn′

κ
′gnκ

dr

r
= Z2α

(ν ′ν)3/2
λRM. (20)

Here

λ ≡ κ
′
κ

|κ′
κ|96

[
κ

′ − 1 + 1

4
(κ2 − κ

′2)

]
Aj ′j , (21)

the relativistic enhancement factor RM is given by [18]

RM ≡ 1

Aj ′j


(γ ′ + γ − 2)


(γ ′ − γ + 3)
(γ − γ ′ + 3)
(γ ′ + γ + 3)
,


(β) are the γ functions and the factor Aj ′j is determined as
follows:

Aj ′j ≡ (j ′ + j − 2)!

(j ′ − j + 2)!(j − j ′ + 2)!(j ′ + j + 3)!
. (22)

Let us consider an important particular case of the ME
〈s||Uel||p3/2〉. In this case κ

′ = −1 and κ = −2. Then the
first term under the integral in Eq. (17) turns to zero while
for the second term in the integral we find, using Eqs. (20)
and (21), ∫ ∞

0
fnp3/2gn′s

dr

r
= −1

2

Z2α

(ν ′
sνp3/2 )3/2

RM. (23)

For the matrix element we therefore have

〈n′s||Uel||np3/2〉 ≈ dNµN

2
√

3 Zα

(ν ′
sνp3/2 )3/2

RM. (24)

This analytical expression demonstrates how the atomic EDM
depends on Z and nuclear parameters. The enhancement
factors RM for the medium atoms are close to unity. They
grow with increasing Z approaching the value 2.2 for Ra. The
values of the enhancement factors for the diamagnetic atoms
considered in this work are listed in Table I.

A simple analytical estimate gives the following result for
the atomic EDM:

dN
at ≈ ± 10−7µZRMdN, (25)

where the upper sign (+) relates to the divalent atoms and the
lower sign (−) relates to the noble gases. This formula gives
values in reasonable agreement (within a factor of ∼2) with
the many-body Dirac-Hartree-Fock (DHF) results presented
in the following section.

It is instructive to compare this estimate with a similar one
for the atomic EDM induced by the nuclear Schiff moment S,

dS
at ≈ ∓ 10−22Z2(R1/2 + 2R3/2)[S/(|e|fm3)]|e|cm, (26)

where R1/2 and R3/2 are relativistic enhancement factors
corresponding to s − p1/2 and s − p3/2 weak matrix elements,

TABLE I. The nuclear charges Z and the relativistic enhancement
factors RM .

129Xe 171Yb 199Hg 211Rn 225Ra

Z 54 70 80 86 88
RM 1.28 1.56 1.83 2.06 2.15

respectively (see Ref. [18] for these factors). Again the upper
sign is for the divalent atoms and the lower sign is for noble
gases. The values obtained from this simple formula also
reasonably agree (within a factor of 2) with the many-body
DHF results obtained in Refs. [5,7,8].

The atomic EDM induced by the Schiff moment benefits
from an extra Z dependence which becomes very important in
heavy atoms [17]. In Sec.V C we consider a specific mecha-
nism for inducing the Schiff and nuclear dipole moments and
compare the sizes of the induced atomic EDMs.

B. Numerical method of calculation and results

Here we describe the simple numerical methods we use for
calculations of atomic EDMs for closed-shell atoms. At the
first stage we solve DHF equations in the V N approximation.
This means that we include all electrons forming the ground
state of the atom in a self-consistency procedure

H0 ψc = εc ψc. (27)

Here H0 is the relativistic Hartree-Fock Hamiltonian and ψc

are single-electron wave functions of the core.
To take into account polarization of the atomic core by

external fields (the electric dipole field or the P,T-odd field),
we solve the random phase approximation (RPA) equations

(H0 − εc)δψc = −(F + δV N )ψc, (28)

where F is the operator of the external field and δV N is the
correction to the self-consistent potential due to the effect of
the external field. The RPA equations (28) are solved self-
consistently for all states in the core.

In implementing the DHF and RPA procedures for calcu-
lations of the atomic EDMs, we have used two equivalent
approaches. The first involves the construction of virtual
orbitals and summation over states. The second involves the
direct solution of the perturbed orbital δψc on the grid.

In the former method the virtual orbitals are constructed by
multiplication of the previous orbital of the same partial wave
to a smooth function of r with subsequent orthogonalization
of this orbital to the rest of the orbitals. This method was
described in detail in Refs. [19] and [20].

In the latter method, implemented in Ref. [7] for calculation
of the Schiff moments, instead of direct summation over virtual
states in Eq. (15), we evaluate dN

at = 2
∑

c〈c| − r|δcU 〉, where
|δcU 〉 = ∑

n
〈n|U |c〉
εc−εn

|n〉 is a solution of Eq. (28) for the P,T-odd
field. In taking into account core polarization by the fields, the
correction goes to one field and not the other to avoid double
counting. See Ref. [7] for details.

The results of numerical calculations carried out using the
DHF and RPA methods for the considered diamagnetic atoms
are presented in Table II. It is seen that inclusion of the RPA

TABLE II. The values of dN
at in units (10−6 dN ) obtained in the

DHF and RPA approximations.

129Xe54
171Yb70

199Hg80
211Rn86

225Ra88

DHF 4.4 2.6 3.2 −9.1 −9.5
RPA 5.8 11 11 −13 −33
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corrections increases the size of the atomic EDM. For the noble
gases (Xe and Rn) the RPA corrections contribute at the level of
30% –40%, while for atomic Hg, Yb, and Ra, which have two
s electrons above closed shells, the RPA corrections are much
larger. In fact, they increase the EDMs of these atoms several
times compared to the DHF values. The reason for this increase
is that the two s electrons are loosely bound and can be easily
excited. As a result, account of higher orders of perturbation
theory (like the RPA corrections) leads to a significant change
in the “bare” results obtained in the DHF approximation. This
result is similar to that obtained for other contributions to the
P,T-odd atomic EDM discussed in Refs. [5,7,8] for the same
atoms.

We note that in our previous works [5,7] a check on the
RPA results for Yb, Hg, and Ra was carried out by performing
more sophisticated calculations in the V N−2 approximation. In
this approach, correlations between the two valence electrons
and the core were taken into account using many-body
perturbation theory (MBPT) while correlations between the
valence electrons were accounted for using the configuration
interaction (CI) method (see Refs. [21,22] regarding the
CI + MBPT method). It was found in [5,7] that the two
approaches (V N and V N−2) yield results for the EDMs that
differ by less than 20% for the various P,T-odd mechanisms.
The good agreement of the results obtained using two very
different approaches is a strong argument in favor of the
stability of the RPA results. Because the operator considered in
this work is of similar form to the other P,T -odd operators, we
expect that our RPA results for the atomic EDMs are accurate
to about 20%.

Using the experimental limits on the P,T-odd atomic electric
dipole moments of 129Xe [23]

d(129Xe) = (0.7 ± 3.3stat ± 0.1syst) × 10−27 e cm

−→ |d(129Xe)| < 6.6 × 10−27 |e| cm (29)

and 199Hg [4]

d(199Hg) = (0.49 ± 1.29stat ± 0.76syst) × 10−29 e cm

−→ |d(199Hg)| < 3.1 × 10−29 |e| cm (30)

we are able to place constraints on the nuclear EDMs
dN (129Xe) and dN (199Hg). Using Eqs. (29) and (30), and the
results presented in Table II we obtain

|dN (129Xe)| < 1.1 × 10−21 |e| cm,
(31)

|dN (199Hg)| < 2.8 × 10−24 |e| cm.

We have not included the atomic theory error in these limits.

C. Contributions to the nuclear EDM

For spherical nuclei with spin determined by a single
unpaired nucleon, there are several main terms that contribute
to the nuclear EDM. One of them is characterized by the
P,T-odd nucleon-nucleon interaction while the other ones
are the contributions from the EDMs of the neutron (dn) and
the proton (dp). Thus, we can write dN as [18]

dN = d
η

N + tI dn + apdp, (32)

where we denote by d
η

N the contribution from the P,T-odd
nucleon-nucleon interaction; tI = 1 for I = lI + 1/2 and
tI = −I/(I + 1) for I = lI − 1/2 (with lI being the orbital
momentum of the unpaired nucleon) and the coefficient ap is
numerically close to 0.1.

In Refs. [18,24] it was shown that the nuclear EDM induced
by the P,T-odd nucleon-nucleon interaction can exceed the
nucleon EDM by more than two orders of magnitude. If
we neglect the terms proportional to dn and dp in Eq. (32)
and express d

η

N through the T-odd nucleon-nucleon coupling
constant η, we obtain [24]

dN ≈ 4 × 10−13

(
q − Z

A

)
tI η , (33)

where q = 0 and 1 for an outer neutron and proton, respec-
tively. Taking into account that for all atoms considered q = 0,
we obtain for dN (in units of |e| cm)

dN ≈ −2 × 10−21 Z

A
tIη |e| cm. (34)

Interactions of the outer neutron with both protons and
neutrons of the core contribute to the nuclear EDM; the
coupling constant η = Z

A
ηnp + N

A
ηnn. Using Eq. (34) and the

results for dN
at given in Table II we can express the values of

the atomic EDMs through η. These results for 129Xe, 171Yb,
199Hg, and 211Rn are presented in Table III.

To get an idea of the relative size of the induced atomic
EDMs compared to those induced by the Schiff moment,
we consider the Schiff moment produced by the nucleon-
nucleon interaction. For all considered atoms, the nuclei
have an outer neutron. This means that there is no direct
contribution to the Schiff moment. The protons need to be
excited to distort the charge density and create a P,T-odd
charge distribution. A simple numerical calculation in the
Woods-Saxon potential with spin-orbit interaction included
gives for 199Hg S(199Hg) = −1.4 × 10−8ηnp|e|fm3 [24]. Using
this result, the calculation for the atomic EDM induced by the
Schiff moment dS

at = −2.8 × 10−17[S/(|e|fm3)]|e|cm [5,7],
and the result for the atomic EDM induced by dN through
η presented in Table III, we obtain∣∣∣∣dN

at (199Hg)

dS
at(199Hg)

∣∣∣∣ ≈ 0.01
(0.4ηnp + 0.6ηnn)

ηnp
. (35)

(The ratio is larger for lighter atoms.) While this indicates
that the contribution to the atomic EDM from the nuclear
EDM is significantly smaller than that from the nuclear Schiff
moment, we remind the reader that we have used a very

TABLE III. Ip is the spin and parity of the nuclear ground state
and µ is the magnetic moment expressed in nuclear magnetons [29].
The values of dN

at in units (10−27 η |e| cm) are obtained in the RPA
approximation.

Ip µ tI dN
at

129Xe 1/2+ −0.7780 1 −5.1
171Yb 1/2− 0.4919 −1/3 3.1
199Hg 1/2− 0.5059 −1/3 3.1
211Rn 1/2− 0.60 −1/3 −3.7
225Ra 1/2+ −0.734 1
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simple model for the nucleus. Indeed, it is only recently
that many-body calculations have been performed for the
nuclear Schiff moment and these have demonstrated that
many-body corrections are large and lead to a suppression
of the bare results for all nuclei considered (see, e.g., the most
recent calculation [11] and references therein). The results
of the different many-body approaches, however, are not in
agreement. For example, in their RPA approach, Dmitriev and
Sen’kov [25] find a suppression of two orders of magnitude
in the isoscalar channel of the P,T-odd pion-nucleon-nucleon
interaction and a suppression of one order of magnitude in
the isotensor channel for the case of 199Hg. In the fully
self-consistent approach of Ban et al. [11] applied to 199Hg,
one order of magnitude suppression is seen in the isoscalar
and isotensor channels, while instabilities are seen in the
isovector channel, with results even varying in sign. Therefore,
until the many-body problem is well understood, and specific
CP-violation models considered, the contribution to the atomic
EDM from the nuclear dipole moment should not be dismissed.

It is worth noting that there are nuclei with octupole
deformation (such as, e.g., 223Rn and 223,225Ra). For these
nuclei the nuclear EDM cannot be approximated by the
simple formula Eq. (34). As shown in [26,27], the P,T-odd
nuclear forces lead to an enhanced collective dipole moment
that can significantly exceed single-particle moments. The
enhancement of the nuclear EDM is also possible in nuclei
with quadrupole deformations due to mixing of close opposite-
parity levels [18,28].

VI. CONCLUSION

We have derived an expression for the P,T-odd operator
produced by the interaction of a P,T-odd electric dipole
moment of the nucleus with the operator of the hyperfine
interaction. We have presented simple analytical formulas that
can be used for an estimate of the EDM for different atoms.
Using numerical methods we have found the contributions
to atomic EDMs caused by this P,T-odd interaction for a
number of diamagnetic atoms. Using the experimental limits
on the atomic electric dipole moments of 129Xe and 199Hg,
we constrain the EDMs of the nuclei of 129Xe and 199Hg to
be |dN (129Xe)| < 1.1 × 10−21 |e| cm and |dN (199Hg)| < 2.8 ×
10−24 |e| cm, correspondingly. These limits give an accuracy
benchmark for proposed measurements of nuclear EDMs in
ion storage rings.
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APPENDIX

For the matrix elements of the two operators entering Eq. (7)
(see the main text) we obtain after certain transformations

〈n′
κ

′m′|iα · σN

{
∂

∂r
,

r

r3
>

}
+

|nκm〉

= σN 〈κ′m′|n|κm〉
∫ ∞

0

[
(κ′ − κ − 1)

(
g

df ′

dr
− f ′ dg

dr

)

+ (κ − κ
′ − 1)

(
g′ df

dr
− f

dg′

dr

)]
r3

r3
>

dr (A1)

and

〈n′
κ

′m′|
{

σN · r
r3
>

,αp
}

+
|nκm〉

= σN 〈κ′m′|n|κm〉
∫ ∞

0

[
g′ df

dr
− f ′ dg

dr
+ g

df ′

dr

−f
dg′

dr
+ κ

′ + κ

r
(f ′g + fg′)

]
r3

r3
>

dr. (A2)

Adding (A1) and (A2) we find for the ME of the operator U :

〈n′
κ

′m′|U |nκm〉 = −dNµN

Z
σN 〈κ′m′|n|κm〉

∫ ∞

0

[
(κ′ − κ)

×
(

g
df ′

dr
− f ′ dg

dr
− g′ df

dr
+ f

dg′

dr

)

+ κ
′ + κ

r
(f ′g + fg′)

]
r3

r3
>

dr. (A3)

Using the Dirac equations for the radial wave functions

df ′

dr
= −1 + κ

′

r
f ′ +

(
ε′ + m + Zα

r

)
g′,

dg

dr
= −1 − κ

r
g −

(
ε − m + Zα

r

)
f,

(A4)
df

dr
= −1 + κ

r
f +

(
ε + m + Zα

r

)
g,

dg′

dr
= −1 − κ

′

r
g′ −

(
ε′ − m + Zα

r

)
f ′,

we can write

g
df ′

dr
− f ′ dg

dr
− g′ df

dr
+ f

dg′

dr

= κ
′ + κ

r
(fg′ − f ′g) − (ε′ − ε)(f ′f − g′g). (A5)

Now substituting (A5) to (A3) we finally arrive at Eq. (9) given
in the main text.
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