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Hydrogen-deuterium isotope shift: From the 1S-2S-transition frequency to the proton-deuteron
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We analyze and review the theory of the hydrogen-deuterium isotope shift for the 1S-2S transition, which
is one of the most accurately measured isotope shifts in any atomic system, in view of a recently improved
experiment. A tabulation of all physical effects that contribute to the isotope shift is given. These include
the Dirac binding energy, quantum electrodynamic effects, including recoil corrections, and the nuclear-size
effect, including the pertaining relativistic and radiative corrections. From a comparison of the theoretical
result �fth = 670 999 566.90(66)(60) kHz (exclusive of the nonrelativistic nuclear-finite-size correction) and
the experimental result �fexpt = 670 994 334 605(15) Hz, we infer the deuteron-proton charge-radius difference
〈r2〉d − 〈r2〉p = 3.820 07(65) fm2 and the deuteron structure radius rstr = 1.975 07(78) fm.
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I. INTRODUCTION

The 1S-2S hydrogen-deuterium isotope shift is one of
the most accurately measured isotope shifts in physics.
Compilations of the contributing effects in the literature have
been somewhat sketchy. Since the isotope shift is a primary
source of information for the determination of the isotopic
difference of the nuclear charge radii, such a compilation
appears to be useful, not the least because of recently improved
experiments. Our 2009 experiment [1] has recently confirmed
the experimental value for the 1S-2S isotope shift reported
in Ref. [2] and improved its accuracy by about an order of
magnitude.

From a comparison of theory and experiment, it is pos-
sible to determine the mean-square charge-radius difference.
Denoting the mean-square nuclear charge radius as 〈r2〉, we
remember that the leading-order energy shift �ENS (for S

states) due to the nuclear-size effect is given by the expression
(in SI units)

ENS = hfNS = 2

3

(
mr

me

)3 (Zα)4mec
2

n3

〈r2〉
-λ2
C

δ�0 , (1)

where n is the principal quantum number of the atomic
state. The physical quantities are denoted as usual: h

is the Planck constant, α is the fine-structure constant,
Z is the nuclear charge number (Z = 1 for proton and
deuteron), mr is the reduced mass of the system, me is
the electron mass, mN is the nuclear mass, c is the speed
of light, and -λC = h̄/(me c) is the Compton wavelength of
the electron divided by a factor 2π . Equation (1) relates the
electron “size” (its Compton wavelength) to the proton “size”
(its charge radius). The Kronecker delta is nonvanishing only
for S states with orbital angular momentum � = 0. The energy
shift is ENS and the corresponding frequency is fNS. Taking
into account the fact that -λC ∝ m−1

e , we note that ENS is
proportional to m3

e , which provides the basis for an accurate
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determination of the nuclear charge radius using muonic atoms
[3], where me is replaced by mµ.

For reference purposes, we note that the proton radius is
defined as follows:

〈r2〉p = 6h̄2 ∂GE

∂q2

∣∣∣∣
q2=0

, (2)

where GE is the electric Sachs form factor of the proton, with
radiative corrections [4–9] being subtracted.

For the isotope shift exclusive of the main nuclear-size ef-
fect, the following theoretical result has been given in Eq. (8) of
Ref. [2], which reads as �fth = 670 999 568.6(1.5)(1.5) kHz.
Here, the first uncertainty comes from the electron-proton
mass ratio and the second is the theoretical uncertainty.
In general, we here denote all physical quantities related
to the hydrogen-deuterium isotope shift with a �, whereas
contributions to the energy shifts of individual atomic energy
levels are denoted without this prefix. In Eq. (399) of the
extensive review article [10], we find the result �fth =
670 999 568.9(1.5)(0.8) kHz, where the first uncertainty is
from the electron-proton mass ratio and the second is from a
theoretical uncertainty due to uncalculated higher-order terms.
It is stated in Sec. 16.1.6 of Ref. [10] that the theoretical
uncertainty of the isotope shift is mainly determined by the
unknown single logarithmic and nonlogarithmic contributions
of order (Zα)7 (m/M) and α(Zα)6 (m/M), and also by the
uncertainties of the deuteron size and structure contributions.
The overall theoretical uncertainty of all contributions to the
isotope shift, exclusive of the leading proton and deuteron size
corrections, is quoted as 0.8 kHz in Ref. [10].

Here, we reanalyze the effect in light of the most recent
theoretical developments, and we also present a compilation
of all contributing physical effects. Including a rather conserva-
tive estimate for the multiphoton exchange contribution to the
nuclear polarization effect for the isotope shift, our theoretical
result reads as

�fth = 670 999 566.90(66)(60) kHz . (3)

The first uncertainty is due to (recently improved) values of the
electron-to-proton and electron-to-neutron mass ratios [11].
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The new values for these mass ratios are also the primary
reason why the theoretical value given in Eq. (3) is slightly
different from that used in Ref. [2] and in Sec. 16.1.6 of
Ref. [10].

The difference �fexpt − �fth is due to the nuclear-size
effect given in Eq. (1) and allows for a determination of
the nuclear charge-radius difference 〈r2〉d − 〈r2〉p based on
atomic-physics experiments, as detailed below. From scat-
tering experiments, on the other hand, one may determine
nuclear-physics values for the charge radii. Based on a
careful analysis of the world scattering data, the deuteron
root-mean-square (rms) charge radius rd =

√
〈r2〉d has been

obtained in Ref. [12] as rd = 2.130(9) fm, where we have
added the statistical and systematic uncertainties given in
Ref. [12] quadratically. This value is in good agreement with
the recommended value derived from the 2006 CODATA
adjustment of the fundamental constants

rd = 2.1402(28) fm (Refs. [11,13]) . (4)

As explained in Ref. [13], this value of the deuteron charge
radius is mostly based on a theoretical analysis of the most
accurately measured transition frequencies in hydrogen and
deuterium.

An analysis of the world scattering data for the proton leads
to a value of rp = 0.895(18) fm (Refs. [14–16]), which is in
good agreement with the recommended value derived from the
2006 CODATA adjustment of the fundamental constants

rp = 0.8768(69) fm (Refs. [11,13]) . (5)

The most recent value from electron scattering [17] reads as
rp = 0.879(8) fm, where we quadratically add the statistical
and systematic uncertainties given in Ref. [17]. The recent
Lamb shift measurement in muonic hydrogen, however, leads
to a value of

rp = 0.841 84(67) fm (Ref. [3]) , (6)

which is in disagreement with the two above-mentioned values
from electron scattering values and with the 2006 CODATA
value. The difference of the CODATA mean-square radii of
deuteron and proton reads as

〈r2〉d − 〈r2〉p = 3.812(17) fm2 [Eqs. (4) and (5)]. (7)

By contrast, the difference of the CODATA deuteron radius (4)
and the muonic hydrogen proton radius (6) is 〈r2〉d − 〈r2〉p =
3.872(12) fm2. One of the motivations for this paper is to verify
if the difference of the CODATA charge radii of deuteron and
proton is compatible with the measurement of the isotope shift.
Another motivation is to fill a gap in the literature: the theory
of the isotope shift has never been discussed in great detail,
and a dedicated compilation of all effects that contribute to the
shift is missing up to now.

A particular remark should be made. The 1997 isotope-shift
measurement [2] is used as an input datum for the CODATA
analysis [11], and one may thus wonder to which extent the
measurement of the isotope shift and the concomitant determi-
nation of the deuteron-proton mean-square-radius difference
is independent from the CODATA values of the mean-square
radii of the individual nuclei. In the last two rows of Table
XLV of Ref. [11], it is clarified that a separate comparison

of transition frequencies in both hydrogen and deuterium to
theory (without using the isotope shift as an input datum) leads
to the values rp = 0.8802(80) fm and rd = 2.1286(93) fm,
which are both in excellent agreement with the CODATA
values given in Eqs. (4) and (5).

To address the current situation, we here discuss the theory
of the isotope shift in detail. Calculations will be presented
together with some information that is not readily accessible
from the original literature references. Following our general
outline, we first describe the advances in the experiment that
have led to the recent improvements in the measurement
of the isotope shift, before summarizing the current status
of the theory of the isotope shift in Sec. III, describing all
contributions. The nuclear charge-radius difference of proton
and deuteron is evaluated in Sec. IV, based on the isotope shift.
Finally, conclusions are drawn in Sec. V.

II. MEASUREMENT OF THE ISOTOPE SHIFT

The 1S-2S hydrogen-deuterium isotope shift was remea-
sured in the period from March 2009 to January 2010 by means
of Doppler-free two-photon spectroscopy on a thermal atomic
beam [1]. Here, we briefly discuss the main improvements of
the measurement relative to the previous experiment conducted
in 1997 (Ref. [2]).

The tenfold reduction of the uncertainty of the frequency
difference f D

1S-2S − f H
1S-2S in the 2010 measurement compared

to the measurement in 1997 results from three factors:
(i) implementation of a new all-solid-state ultrastable laser
system, (ii) implementation of an optical frequency measure-
ment based on an Er-doped fiber frequency comb, which
allows higher data rates, and (iii) availability of more accurate
input data for the determination of the hyperfine centroid
frequency from the measured transition frequency, which
involves specific hyperfine components.

These improvements will now be discussed. To this end,
let us first review a few basic principles of the isotope-shift
measurement by optical frequency comparison. Namely, in
order to measure the difference of the 1S-2S transition fre-
quencies in deuterium and hydrogen, we excite the hyperfine
transitions F = 3

2 → 3
2 , mF = ± 3

2 → ± 3
2 in deuterium (D)

and F = 1 → 1, mF = ±1 → ±1 in hydrogen (H) and denote
the isotope shift of the measured hyperfine structure (HFS)
components as �fDH. The choice is determined by their low
sensitivity to magnetic fields because of their nearly equal
Landé g factors (the 1S and the 2S Landé g factors differ only
by relativistic corrections of order α2). The isotope shift �fexpt

of the 1S-2S hyperfine centroid is given by the difference of
the transition frequencies

�fexpt = f D
1S-2S − f H

1S-2S − �fHFS ≡ �fDH − �fHFS,
(8a)

where �fDH = f D
1S-2S − f H

1S-2S , and the hyperfine subcompo-
nents are

f D
1S-2S ≡ f D

1S-2S

(
F = 3

2 → 3
2 ,mF = ± 3

2 → ± 3
2

)
, (8b)

f H
1S-2S ≡ f H

1S-2S (F = 1 → 1 ,mF = ±1 → ±1) . (8c)

We thus have to determine the hyperfine correction �fHFS to
high accuracy. The optical measurements of the 2S hyperfine
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FIG. 1. Schematic of the excitation region. For the characteriza-
tion of the dc Stark shift, the Faraday cage is replaced by a plane
capacitor with the electric field oriented along one of the three axes
(see also Fig. 3). PMT denotes a photomultiplier tube.

intervals in H and D [18,19] together with the radio-frequency
measurements of the ground-state splitting [20,21] give a result
of �fHFS = 215 225 596.5(2.9) Hz. This is a factor of 4.5 more
accurate than the value used in [2] due to the improved 2S

interval frequencies as reported in Refs. [18,19].
The general experimental setup is given in Fig. 1 and fol-

lows the principle of time-resolved two-photon spectroscopy
laid out in Ref. [22]: A 160-Hz light chopper with a 50%
duty cycle is installed before the 243-nm enhancement cavity
used for the time-of-flight measurements. After blocking the
light, well-defined delay times τ = 10, 210, . . . ,2210 µs are
implemented before the start of the detection of 2S atoms along
the atomic beam line. The fastest 2S atoms escape, and the
slowest atoms are selected from the initial distribution. Lines
recorded at higher delays τ exhibit a smaller second-order
Doppler effect as well as reduced time-of-flight broadening
at the expense of lesser count rates since there are fewer
atoms. To introduce the delay, we use a multichannel scaler
that simultaneously records 12 delayed lines [23].

Each measurement day started from one of the two
randomly chosen isotopes, for which we recorded up to 100
1S-2S spectra during less than four hours. Then we readjusted
the system for the other isotope and measured it in a similar
way. The overall measurement time was restricted by the
saturation of the cryogenic pump (see Fig. 1). Compared to
the 1997 measurement, we replaced the one-directional scan
over the 1S-2S transition by changing the laser frequency
in a random order around the transition center. This reduces
conceivable systematic effects (e.g., due to a slow change in
the atomic flow as a function of time). At each laser frequency,
we alternate between two power levels differing by typically
a factor of 2. Thus, we simultaneously record two 1S-2S lines
taken at different intensities, but otherwise similar conditions.
This allows for a more accurate correction of the ac Stark shift
as compared to the 1997 measurement.

The diode laser setup mainly used in the experiment [1] is
schematically depicted in Fig. 2. We use an extended cavity
diode laser (ECDL) at 972 nm with a 24-cm-long resonator
in Littrow configuration with an intracavity electro-optical
modulator (EOM). The laser is locked to a high-finesse
ultralow expansion glass (ULE) cavity in vertical configuration
maintained at the critical temperature at which the sensitivity
of the cavity length to temperature fluctuations is minimal
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FIG. 2. Schematic of the long cavity laser system used for both
isotopes. ECDL: extended cavity diode laser, LD: laser diode, EOM:
electro-optical modulator, TA: tapered amplifier, and AOM: acousto-
optic modulator.

[24]. Locking to the cavity provides a spectrally narrow
laser carrier (0.5 Hz) with a nearly linear frequency drift of
only +50 mHz s−1. This feature significantly simplifies the
measurement of the instant laser frequency by a frequency
comb.

To measure the frequency of the spectroscopy light, we
use a 250-MHz repetition rate Er-doped fiber frequency
comb. By beating part of the light sent to the reference
cavity with the comb we disentangle the spectroscopic routine
(scanning of the AOM and recording 1S-2S spectra) from the
frequency measurement of the laser. In this case, the frequency
measurement can be done with continuous counters (we use
Klische+Kramer FX-80), and their frequency readings are
separately saved together with time marks. Due to the very low
drift of the ULE cavity, the time synchronization of counters
and the laser-frequency scanning only has to be accurate on
the order of a second. Such an approach typically allows
us to accumulate twice as much frequency data compared
to previous measurements, e.g., Ref. [25], and to define the
instant laser frequency with less uncertainty.

As a frequency reference for the frequency comb, we
use an active, GPS referenced hydrogen maser. The required
fractional inaccuracy of the frequency reference is of the order
of 10−11, but should be very stable during the comparison of
the isotopes (with a fractional instability of 10−15). Indeed,
the isotope shift is the difference of two big numbers f D

1S-2S

and f H
1S-2S , each of the order of 1015Hz. According to its

specification, the maser has a frequency instability lower than
2 × 10−15 within one day. The measurements of both isotopes
should thus be done within one day. The GPS calibration, in
turn, provides a frequency inaccuracy of 5 × 10−15, which is
not limiting.

Systematic effects have been discussed in Ref. [1]. Of
particular importance is the estimate of the dc Stark effect
due to conceivable stray fields. For fields along the x axis,
the procedure for estimating the stray fields is illustrated
in Fig. 3. Based on this estimate, we set an upper limit of
|Estray| < 6mV/cm for stray fields along the axis. Repeating
the measurement for all three axes and converting the stray
field to a dc Stark frequency shift, we can finally set a limit of
�fstray < 1 Hz for the excitation volume restricted by the two
diaphragms (Fig. 1). However, we can not probe the region
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FIG. 3. (Color online) Characterization of the stray fields in the
excitation region with the help of an auxiliary electric field ±Eaux

applied by a plane capacitor field along one of the axes x, y, and z.
Measuring the transition frequency for an auxiliary field ±Eaux and
zero auxiliary field, we can fit a three-parameter parabola to the data.
The deviation of the center of the parabola from the point recorded
at zero auxiliary field then is a measure of the dc Stark shift due to
stray fields. The probing of the stray fields along the x axis in our
experimental setup is illustrated at the right part of the figure.

between the nozzle and the front diaphragm. Therefore, we
conservatively assume the strength of a possible stray electric
field there to be smaller than 100 mV/cm. For a delay of
1410µs, this corresponds to a line shift of 5 Hz, which we take
as an uncertainty contributed by stray electric fields.

Due to irradiation with the 243-nm light, there is an ac
Stark shift of the 1S-2S transition, the theoretical evaluation
of which has been discussed in Refs. [22,26]. A difference
between the isotopes can be caused only by errors in the power
calibration, since the differential ac Stark shift for the 1S-2S

transitions in H and D is negligible at our level of accuracy (it
is caused mainly by the difference in the reduced masses of
the two isotopes). We thus fit transition frequencies recorded
at different powers by two lines with the same slope and add
a 1 Hz uncertainty caused by the nonlinearity of our power
calibration. Estimating the second-order Doppler shift at a
typical delay of 1410 µs as described in Ref. [1] and adding an
11 Hz uncertainty due to a possible isotope-dependent pressure
shift (the basis for this estimate has also been discussed in [1]),
we finally obtain our uncertainty budget as given in Table I and
the 1S-2S isotope shift as

�fexpt = 670 994 334 605(15) Hz , (9)

which is a tenfold improvement over the 1997 result [2].

III. THEORY OF THE ISOTOPE SHIFT

A. Classification of corrections

The hydrogen-deuterium isotope shift of the hyperfine cen-
troid of the 1S-2S transition, either measured experimentally
or calculated theoretically, is denoted as

�Eiso = E(2S − 1S)|D − E(2S − 1S)|H = h �fiso. (10)

This is a positive quantity in the chosen convention (“deu-
terium minus hydrogen”) because deuterium has a larger mass,
and the reduced mass of the atomic deuterium system is
slightly larger. Consequently, the 1S-2S transition frequency
is slightly larger in deuterium than in hydrogen. The exper-
imental result �fexpt for the isotope-shift frequency �fiso is
given in Eq. (9). The theoretical expression for �fiso is the

TABLE I. Results of the 1S-2S hydrogen-deuterium frequency
measurements (f 1997

expt , f 2010
expt ) and uncertainty budgets (σ 1997

expt , σ 2010
expt ) for

the 1997 (Ref. [2]) and 2010 (Ref. [1]) measurements, respectively.
Contributions neglected in the 1997 measurement are denoted by
dashes. The frequency �fDH is the HFS subcomponent defined in
Eq. (8).

f 1997
expt σ 1997

expt f 2010
expt σ 2010

expt

Contribution (Hz) (Hz) (Hz) (Hz)

�fDH − 671 209 560 kHz 225 � 150 203.1 5.1
�fHFS − 215 225 000 Hz 585 14 596.5 2.9
ac Stark shift – – 0 1
dc Stark shift – – 0 5
Second-order Doppler 0 20 0 6
Density effects – – 0 11
�fexpt − 670 994 334 000 Hz 640 150 606 15

sum of �fth given in Eq. (3) and of the main nuclear-size
effect �fNS, which corresponds to Eq. (1), evaluated for the
isotope difference. As detailed below, the evaluation of �fth

can be broken down as follows:

�fth = �fi + �fii + �fiii , (11)

where the three frequencies �fi, �fii, and �fiii correspond to
different sets of physical effects.

For an individual atomic level, the frequency fNS corre-
sponding to the finite-size effect given in Eq. (1) is positive.
However, when evaluated for the isotope shift, the quantity
�fNS given by

�fNS = fNS(2S − 1S)|D − fNS(2S − 1S)|H (12)

is negative. Indeed, the finite-size effect shifts energy levels
upward by a shift proportional to 1/n3. This upward shift of the
lower level (ground state) involved in the transition decreases
the 1S-2S frequency in deuterium and therefore leads to a
negative contribution to the finite-size term in the isotope shift
defined in Eq. (12).

The following physical effects contribute to the isotope
shift:Set (i). Difference in the Dirac energy and Barker-Glover
[27] corrections. This difference depends on the electron-
to-proton and electron-to-deuteron mass ratios. Set (ii). Dif-
ference in the Lamb shifts, and difference in the radiative-
recoil corrections, which directly depend on the electron-to-
nuclear-mass ratio. Approximately, this ratio is 1/2000 for
hydrogen, but 1/4000 for deuterium. Set (iii). Higher-order
corrections to the nuclear-size effect (third Zemach moment
of the nuclear charge distribution, relativistic corrections,
and self-energy and vacuum-polarization corrections to the
finite-size effect). These effects depend on the mean-square
charge-radii difference, but their absolute magnitude is small
enough so that they can be evaluated to sufficient accuracy
based on existing data for the charge radii.Set (iv). Difference
in the main, leading, nonrelativistic nuclear-size effect as given
in Eq. (12). Currrently, the most powerful way of analyzing
the experiment lies in first evaluating corrections (i), (ii), and
(iii), and then using the results to obtain the difference in the
mean-square charge radii.
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B. Fundamental constants

Let us briefly discuss the physical constants, mass ratios,
and the corresponding uncertainties that are useful for the
analysis of the isotope shift. According to Ref. [11], the
electron-proton mass ratio is

me

mp

= 5.446 170 217 7(24) × 10−4 (13)

with a relative uncertainty of 4.3 × 10−10. The electron-
deuteron mass ratio is

me

md

= 2.724 437 109 3(12) × 10−4 (14)

with a relative uncertainty of 4.2 × 10−10. We also record the
deuteron-proton mass ratio

md

mp

= 1.999 007 501 08(22) . (15)

Its relative uncertainty is 2.0 × 10−10. For the fine-structure
constant, we use the value from Ref. [28], which reads as

α−1 = 137.035 999 084(51) (16)

with a relative uncertainty of 6.9 × 10−10. This value is
consistent with the latest photon recoil measurement reported
in Ref. [29]. The Rydberg constant, expressed in frequency
units, is

R∞ c = 3.289 841 960 361(22) × 1015 Hz . (17)

Of these input data, only the Rydberg constant has sufficient
relative accuracy (6.6 × 10−12) to match the experimental
result given in Eq. (9). Fortunately, the Rydberg constant can
be factored out in the theoretical calculations [see Eq. (19)
below]. The value of the 1S-2S transition is roughly given as

f1S-2S ≈ 3

4
R∞

mr

me

. (18)

Here, mr/me = 1/(1 + rN ) is the ratio of the reduced mass of
the system to the electron mass (rN = me/mN is the electron-
nucleus mass ratio). A simple Taylor expansion in powers
of rN reveals that the shift �f1S-2S,N of the f1S-2S transition
frequency due to reduced-mass effect can be expressed
roughly as

�f1S-2S,N ≈ −3

4
R∞ rN . (19)

Consequently, the uncertainty δf1S-2S due to the mass ratios is

δfiso,N = 3

4
R∞

⎧⎨
⎩

√[
δ

(
me

md

)]2

+
[
δ

(
me

mp

)]2
⎫⎬
⎭ ,

(20)
= 662.0 Hz

for the isotope shift defined in Eq. (10). One may express
the reduced-mass correction in terms of other mass ratios
involved in the experiment (such as the proton-to-deuteron
mass ratio), but the final uncertainty is invariant. While Eq. (19)
is not sufficiently precise in order to predict the reduced-mass
correction to the full isotope shift, it can nevertheless be used to
estimate the uncertainty of the final result due to the uncertainty
in the mass ratios. In general, the theoretical uncertainty in the

isotope shift due to the mass ratios exceeds the experimental
uncertainty recorded in Eq. (10) by a factor of 60.

One might question whether it is permissible to use a value
of the Rydberg constant that is derived using the experimental
value of the hydrogen 1S-2S frequency, as input for the
theoretical analysis of the 1S-2S hydrogen-deuterium isotope
shift. However, this question may easily be addressed. Namely,
for our theoretical analysis, we need the Rydberg constant only
up to an accuracy of about 10−10 to match the accuracy given
for our theoretical value in Eq. (3). At this level of accuracy,
we may refer to a completely independent determination of
the Rydberg constant [30] via high-precision spectroscopy
of Rydberg states of hydrogen, in agreement with Eq. (17),
where a value of the Rydberg constant of relative accuracy
2.0 × 10−11 is obtained without any recourse to the 1S-2S

frequency.

C. Evaluation of the corrections

Set (i). We first investigate the Dirac theory contribution
to the isotope shift. (For the classification of the corrections,
see Sec. III A.) According to Dirac theory, the energy level
of a two-particle system consisting of an infinitely heavy
nucleus and an orbiting electron of mass me, with the rest
mass subtracted, is given as

E = mec
2[f (n,j ) − 1] = mec

2

[
1√

1 + ε(n,j )
− 1

]
,

(21)

ε(n,j ) = (Zα)2[
n − j − 1

2 +
√(

j + 1
2

)2 − (Zα)2

]2 .

Let us now define

g(ε) ≡ 1√
1 + ε

− 1 = − ε√
1 + ε (1 + √

1 + ε)
. (22)

Excluding Lamb shift and hyperfine effects, but including
reduced-mass corrections, the bound-state energy of the two-
body Coulomb system is given by [31]

Enj = mr [f (n,j ) − 1] − m2
r

2(me + mN )
[f (n,j ) − 1]2,

= mec
2

{
1

1 + rN

g(ε(n,j ))

− rN

2(1 + rN )3
[g(ε(n,j ))]2

}
, (23)

where rN again denotes the electron-to-nucleus mass ratio.
This formula leaves the (n,j ) degeneracy of the levels intact.
The representation on the right-hand side of Eq. (23) has the
additional advantage that the Rydberg constant can easily be
factored out. Indeed, the frequency corresponding to Enj is

fnj = 2 Enj

α2mec2
R∞c . (24)

The analytic cancellation of the α2mec
2 factor in the first ratio

(in curly brackets) is immediate if we consider the definition

042505-5



U. D. JENTSCHURA et al. PHYSICAL REVIEW A 83, 042505 (2011)

of g(ε) given in Eq. (22). The Barker-Glover corrections [27]
follow from the two-body Breit Hamiltonian

EBG = (Zα)4m3
r

2n3m2
N

(
1

j + 1/2
− 1

� + 1/2

)
(1 − δ�0), (25)

but they vanish for S states. The term proportional to δ�0 in
Eq. (25) is the Darwin-Foldy (DF) term

EDF = − (Zα)4m3
r c

2

2n3m2
N

(
1

j + 1/2
− 1

� + 1/2

)
δ�0,

= (Zα)4m3
r c

2

2n3m2
N

δ�0, (26)

= 2

3

(
mr

me

)3 (Zα)4mec
2

n3 -λ2
C

(
3h̄2

4m2
Nc2

)
δ�0,

which is due to the Zitterbewegung term of the nucleus [32].
A comparison of Eqs. (26) and (1) reveals that the Darwin-
Foldy correction can be compensated by an addition to the
mean-square nuclear charge radius according to

〈r2〉 → 〈r2〉 + 3h̄2

4m2
Nc2

. (27)

In Ref. [33], the authors advocate to change the conventions for
the proton charge radius such as to include the Darwin-Foldy
term into 〈r2〉p. This convention is not followed here, and it
also is not used in Refs. [2,11].

For non-S states, the Barker-Glover corrections lead to
a numerically small violation of the (n,j ) degeneracy. For
hydrogen and deuterium S states, using the input data for the
mass ratios given in Sec. III B, we obtain

�fi = 671 004 071.29(66) kHz (28)

for the Dirac contributions to the isotope shift, where the
subscript i is inspired by the identification of the corrections
in Sec. III A. The uncertainty of 0.66 kHz is due to the mass
ratios given in Eqs. (13) and (14); the uncertainty induced
by the fine-structure constant is negligible because we are
expressing all quantities in terms of the Rydberg constant.

Set (ii). We now turn to set (ii) of the correction according
to the classification presented in Sec. III A. These are Lamb
shift contributions to the isotope shift. The relevant results are
as follows. For the isotope shift due to the one-loop self-energy
and vacuum polarization [see Eqs. (19)–(26) of Ref. [11]], we
obtain

�ν1 = −5558.99 kHz . (29)

The isotope shift due to two-loop self-energy and vacuum
polarization and combined effects reads as, according to
Eqs. (29)–(46) of Ref. [11],

�ν2 = −0.51 kHz . (30)

Due to three-loop self-energy and vacuum polarization and
combined effects, we calculate, according to Eqs. (47)–(49) of
Ref. [11],

�ν3 = −0.001 kHz . (31)

Isotope-shift effects due to the Salpeter recoil correction [34]
given in Eqs. (11) and (12) of Ref. [11] sum up to

�ν4 = 1032.65 kHz . (32)

The isotope shift due to the higher-order pure recoil terms
[Eq. (13) of Ref. [11]] is given as

�ν5 = −3.41(32) kHz . (33)

The uncertainty estimate is due to an unknown higher-order
pure recoil term of order (Zα)7 ln(Zα) (me/mN ):

δE5 = (Zα)7 ln[(Zα)−2]
m3

r

m2
e mN

mec
2

n3
, (34)

for which we assume a unit prefactor. This estimate of the
prefactor seems reasonable on the basis of the trend of the
coefficients of lower order for the recoil effect.

Radiative-recoil terms [see Eqs. (11)–(16) of Ref. [11]]
contribute

�ν6 = −5.38(11) kHz . (35)

Here, the uncertainty estimate is due to an unknown radiative-
recoil term of order

δE6 = α

π
(Zα)6 ln[(Zα)−2]

m3
r

m2
e mN

mec
2

n3
, (36)

for which we again assume a unit prefactor.
Note that the theoretical result for �ν6 is valid provided the

following result for the radiative-recoil correction E6 to the
energy levels is used:

E6 = m3
r

m2
emN

α(Zα)5

π2 n3
mec

2δ�0

[
6 ζ (3) − 2 π2 ln 2

+ 35 π2

36
− 448

27
+ 2

3
π (Zα) ln2 (Zα)−2 + . . .

]
. (37)

The nonlogarithmic contribution is the sum of two results; the
first is obtained in Refs. [35,36] for the electron-line contribu-
tion, and the second is obtained in Ref. [37] for the vacuum-
polarization term. The result listed here in Eq. (37) agrees with
the numerical value given first in Ref. [38] for the entire set
of radiative-recoil corrections of order α(Zα)5(me/mN ) (sum
of electron line and vacuum polarization). The logarithmic
contribution in Eq. (37) is obtained in Refs. [39,40]. The
radiative-recoil correction of order α(Zα)5(me/mN ) has been
the subject of rather intensive investigations [41–43] before
agreement was reached with respect to the numerical value of
the correction.

The nuclear self-energy given in Eq. (57) of Ref. [11] leads
to a contribution of

�ν7 = 2.98(10) kHz . (38)

Due to muonic and hadronic vacuum polarization [Eqs. (27)
and (28) of Ref. [11]], a tiny contribution of

�ν8 = 0.006 kHz (39)

is obtained. According to Eqs. (17) and (18) of Ref. [11], the
isotope shift due to nuclear polarizability reads as

�ν9 = 18.64(2) kHz . (40)
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This value is based on the theoretical calculations of
Refs. [44–47]. In view of the absence of the Zitterbewegung
term for spin-1 nuclei (e.g., the deuteron, see Ref. [48]), we
have an additional contribution to the bound-state energy for
deuterium energy levels, which, for S states, reads as

�E = −1

2

(
mr

mN

)2 (Zα)4mrc
2

n3
δ�0 . (41)

This term is the negative of the Darwin-Foldy correction given
in Eq. (26), as it is absent for deuterium energy levels. The
corresponding contribution to the isotope shift

�ν10 = 11.37 kHz (42)

is not listed explicitly in Ref. [11] as a nuclear-spin-dependent
contribution to the Lamb shift.

This situation necessitates a few remarks. In Ref. [11], the
full Barker-Glover correction, as given in Eq. (25), is included
in the atomic-level energies, irrespective of the nuclear spin
[i.e., even for deuterium, see Eq. (10) of Ref. [11]]. Still, the
absence of the Darwin-Foldy term for deuterium is consistently
taken into account in Ref. [11]. Namely, in an earlier paper
on CODATA adjustments [see Appendix A8 of Ref. [49], in
the text surrounding Eq. (A56)], it is stated that the Darwin-
Foldy correction has to be added to the mean-square deuteron
radius after all Lamb shift effects have been taken into account.
This addition compensates the inclusion of the Darwin-Foldy
correction into the deuterium atomic-energy levels [50]. The
proton and deuteron charge radii given in Ref. [11] correspond
to the conventions used here and in Ref. [2].

To account for a conceivable anomalously large contri-
bution of multiphoton exchange diagrams to the nuclear
polarization effect [51], and to accommodate a conceivable
large nonlogarithmic part due to the Dirac form factor of the
proton, we here add an extra uncertainty of

δν11 = 0.5 kHz , (43)

which replaces the sum of the uncertainty estimates for �ν7

and �ν9 given above in Eqs. (38) and (40). Nevertheless, we
cite the uncertainties given in Ref. [11] for the given effects in
order to directly relate the discussion to that given in Ref. [11]
in a directly reproducible way. The complete result then is

�fii =
10∑
i=1

�νi + δν11 = −4502.66(60) kHz , (44)

where we have added the uncertainties quadratically. This
concludes our evaluation of the corrections given by set (ii)
according to the classification in Sec. III A.

Set (iii). We now turn to set (iii), which are higher-order
nuclear-size corrections to the isotope shift. The general
paradigm is as follows. One separates the nuclear-size correc-
tion to the hydrogen and deuterium energy levels into a main
effect, which is given in Eq. (1) and is directly proportional
to the mean-square charge-radius difference. Higher-order
corrections to this effect involve higher powers of Zα than four
and depend on other details of the nuclear charge distribution
such as the third Zemach moment [52–54], in addition to
the mean-square charge radius. Numerically, the higher-order
corrections are sufficiently small so that they can be evaluated

separately, and their uncertainty does not affect the final result
for the mean-square charge-radius difference at the current
level of accuracy.

The nuclear-finite-size effect is the sum of the following
terms: (a) main nonrelativistic effect, (b) third Zemach mo-
ment, (c) relativistic corrections, (d) self-energy corrections to
the finite-size effect, and (e) vacuum-polarization corrections
to the finite-size effect. As already explained, the first of
the indicated effects (the main nonrelativistic nuclear-size
correction) is already given in Eq. (1) and forms the single
entry of set (iv). A very concise discussion of these corrections,
together with a list of helpful literature references, is given in
Secs. IV A h and IV A i of Ref. [11].

The third Zemach moment correction can be expressed as

ENS,(b) = ENS

(
−1

2
(Zα)

mr

me

〈r3〉(2)

-λC

〈r2〉
)

,

(45)

= ENS

(
−Cη (Zα)

mr

me

√
〈r2〉
-λC

)
,

where the third Zemach moment 〈r3〉(2) is defined in
Refs. [52,53], and -λC is the Compton wavelength of the
electron divided by 2π . The parameter

Cη ≡ 1

2

〈r3〉(2)

〈r2〉3/2
(46)

has been introduced in Eq. (52) of Ref. [11] to express the
third Zemach moment as a multiplicative correction to the
mean-square charge radius. The value of Cη depends on
the shape of the nuclear charge distribution. The deuterium
value Cη = 2.0(1) for the parameter Cη is taken from Ref. [11].
For hydrogen, we also use the value Cη = 2.0(1). This value
is consistent with the model-independent determination of
the third Zemach moment based on world scattering data, as
described in Ref. [52], and also with the reanalysis of the third
Zemach moment recently performed in Ref. [54].

According to Ref. [53] and Eq. (52) of Ref. [11], relativistic
corrections can be summarized as

ENS,(c) = −ENS (Zα)2

[
ln

(
mr

me

√
〈r2〉
λ̄C

Zα

n

)
(47)

+ψ(n) + γE − (5n + 9) (n − 1)

4n2
− Cθ

]
.

Here, according to Ref. [11], the hydrogen value reads as
Cθ = 0.47(4) and the deuterium value is Cθ = 0.38(4). The
self-energy contribution to the nuclear-finite-size correction is

ENS,(d) = α(Zα) ENS

(
4 ln(2) − 23

4

)
δ�0 . (48)

Finally, according to Eq. (55) of Ref. [11], the vacuum-
polarization contribution to the nuclear-finite-size correction is
an order-α correction to the main nonrelativistic finite-nuclear-
size energy ENS:

ENS,(e) = 3
4 α(Zα) ENS δ�0. (49)

Adding ENS,(b) + ENS,(c) + ENS,(d) + ENS,(e) and calculating
their contribution to the isotope shift, we find

�fiii = −1.73 kHz (50)
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with an uncertainty below 0.01 kHz. ENS,(a) is the leading-
order nuclear-size effect, which directly leads to the mean-
square charge-radius difference [see Eq. (1)].

IV. NUCLEAR RADIUS DIFFERENCE

Adding the results reported in Eqs. (28), (44), and (50), we
obtain the total theoretical result for the sets of contributions
i+ii+iii:

�fth = �fi + �fii + �fiii = 670 999 566.90(66)(60) kHz ,

(51)

where the first uncertainty is due to the mass ratios and the
second uncertainty is due to nuclear polarization and higher-
order quantum electrodynamic (QED) effects. The combined
uncertainty is 0.89 kHz. Finally, we arrive at the main nuclear-
size correction [Set (iv).], which corresponds to the frequency
given in Eq. (1),

fiv = fNS = 2

3

(
mr

me

)3 (Zα)4mec
2

h n3

〈r2〉
-λC

2 . (52)

The isotope-shift frequency corresponding to fNS is �fNS, as
given in Eq. (12). Now, if we evaluate fNS using the charge
radii given in Ref. [11] and add all contributions to the isotope
shift, we obtain fi+ii+iii+iv = 670 994 346(23) kHz, which is
in agreement with the experimental result (9) but much less
precise. On the other hand, if we subtract the theoretical result
for fth given in Eq. (51) from the experimental result (3), we
obtain

�fNS = −5232.29(89) kHz (53)

for the contribution to the isotope shift due to the main nuclear-
size effect. Solving for the mean-square charge-radii difference
with the help of Eq. (52), we obtain

〈r2〉d − 〈r2〉p = 3.820 07(65) fm2 . (54)

This is more accurate than the corresponding result 〈r2〉d −
〈r2〉p = 3.8212(15) fm2 given in Ref. [2] and also more
accurate than the result 〈r2〉d − 〈r2〉p = 3.8213(12) fm2 given
in Sec. 16.1.6 of Ref. [10] (where, for the latter result, we
have added the individual uncertainties given in Ref. [10]
quadratically).

Our value for the deuteron structure radius defined accord-
ing to Eq. (11) of Ref. [2] is

〈r2〉str = 〈r2〉d − 〈r2〉n − 〈r2〉p − 3h̄2

4 m2
p c2

, (55a)

rstr = 1.975 07(78) fm , (55b)

where 〈r2〉n = −0.114(3) fm2 is the neutron charge radius
[55,56]. The last term on the right-hand side of Eq. (55a)

corresponds to the Darwin-Foldy correction for the proton. The
connection of the Darwin-Foldy correction to atomic-energy
levels, and of the Darwin-Foldy term in the nuclear radius, is
explained in Eqs. (26), (27) and (41).

V. CONCLUSIONS

In this paper, we have discussed the essential improvements
that have led to an increase in the accuracy of the 1S-2S

isotope-shift frequency of the latest measurement [1] as com-
pared to the 1997 measurement [2] (see Sec. II). Contributions
to the theoretical expression for the isotope shift have been
listed in Sec. III. A detailed account of the corrections
that contribute at the current level of accuracy is important
as it enables theorists and experimentalists to compare the
proton-deuteron radius difference derived from high-precision
spectroscopy of hydrogen to scattering data [14–16], based
on a transparent listing of theoretical contributions. Finally, in
Sec. IV, we derive the nuclear-radius difference of proton
and deuteron from the experimental data for the isotope
measurement.

The main results of this paper are the deuteron-proton
rms charge-radius difference [Eq. (54)] 〈r2〉d − 〈r2〉p =
3.820 07(65) fm2 as well as the deuteron structure radius rstr =
1.975 07(78) fm. Moreover, our radius difference (54) is in
agreement with the difference of the individual 2006 CODATA
values for the proton and deuteron radii [11]. Furthermore, the
radius difference derived from our experiment and the 2006
CODATA value of the deuteron radius are in agreement with
the proton radius derived from the latest Mainz microtron
experiment [17].

The agreement of the deuteron-proton charge-radius dif-
ference with the 2006 CODATA values for the individual
radii [11] is important for a number of reasons. The primary
one is a recent measurement in muonic hydrogen, which has
led to a different proton radius or, alternatively, to an interesting
disagreement of theory and experiment [3].
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