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Lifshitz theory of van der Waals pressure in dissipative media

Yi Zheng and Arvind Narayanaswamy*

Department of Mechanical Engineering, Columbia University, New York, New York 10027, USA
(Received 27 November 2010; published 11 April 2011)

We derive a first-principles method of determining the van der Waals or Casimir pressure in a dissipative and
dispersive planar multilayered system by calculating the Maxwell stress tensor in a fictitious layer of vacuum,
that is eventually made to vanish, introduced in the structure. This is illustrated by calculating the van der Waals
pressure in a thin film with dissipative properties embedded between two semi-infinite media.
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I. INTRODUCTION

van der Waals (vdW) forces, resulting from alteration of
the quantum and thermal fluctuations of the electrodynamic
field due to the presence of interfaces, play a significant role in
the interactions between macroscopic objects at micrometer-
and nanometer-length scales. Hamaker was the first to extend
the concept of London-vdW forces between two atoms to
forces between macroscopic spheres by pairwise summation
of the interaction energy between the atoms that constitute the
spheres [1]. Lifshitz, in his seminal work [2], outlined a method
based on Rytov’s theory of fluctuational electrodynamics [3]
for computing the vdW forces between two semi-infinite
regions separated by a vacuum gap. It required calculation of
the average value of the Maxwell stress tensor in the vacuum
gap. The generalization of Lifshitz’s method to calculating
vdW forces between semi-infinite regions separated by dissi-
pative media is not straightforward because of the difficulty
in defining an electromagnetic stress tensor in dissipative
media [4]. In this paper we show that it is possible to generalize
Lifshitz’s theory to determine the vdW pressure in arbitrary
planar media with dissipative and dispersive electromagnetic
properties without having to define the electromagnetic stress
tensor or free energy in any material but vacuum.

An approach proposed by Dzyaloshinskii, Lifshitz, and
Pitaevskii (DLP from now on) [5], cast in the language of
quantum field theory, is the most frequently used generaliza-
tion of Lifshitz’s method to calculate forces between objects
separated by absorbing media. Even though it has been noted
that an expression for the Maxwell stress tensor for time-
varying fields in absorbing media cannot be expressed in terms
of the frequency-dependent permittivity and permeability
alone [4], the DLP method effectively reduces to using a
“Minkowski-like” [6] definition of the electromagnetic stress
tensor in dissipative media. Ninham et al. [7] circumvented
the complications of the DLP method but, in doing so, had to
postulate that the free energy of an electromagnetic mode at
frequency ωj is given by kBT ln[sinh(h̄ωj/2kBT )], where kB

is Boltzmann’s constant, 2πh̄ is Planck’s constant, and T is
the absolute temperature, even though the mode frequencies in
dissipative media are, in general, complex. It has been argued
by Barash and Ginzburg [8,9] that ascribing to each mode a
free energy of the above-mentioned form is indeed correct. The
methods of DLP and Barash and Ginzburg are justified on the
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grounds that it is possible to ascribe thermodynamic functions
to electromagnetic fields in equilibrium with matter [6,9].
While many authors have attempted to generalize Lifshitz
theory to determining vdW pressure in dissipative media,
they do so by assuming an expression for the electrodynamic
stress tensor [10] or by defining a Lagrangian density for the
electrodynamic field [11], both of which are debatable for
media with dissipation [4].

The relative transparency of the Lifshitz method is obscured
by the complexity of Dzyaloshinskii’s formalism or by having
to define the free energy of each mode, even though the final
result is a simple generalization of the Lifshitz formula. It
has been generally regarded that Lifshitz’s method, in which
the stress tensor definition is above reproach, is incapable of
handling dissipative media without relying on either of the two
generalizations [6]. Using the fluctuation-dissipation theorem
and properties of the dyadic Green’s function, we express
the components of the Maxwell stress tensor in vacuum in
terms of components of the dyadic Green’s function [12]. After
a description of a general method to deal with multilayered
media, we show, using examples of (1) a thin film bound by
vacuum on both sides, (2) a thin film with vacuum on one side
and a semi-infinite medium with arbitrary permittivity and
permeability on the other, and (3) a thin film bound by semi-
infinite media with arbitrary permittivity and permeability, that
the expression for vdW pressure coincides with that of DLP.

II. GENERAL FORMULATION OF VAN DER WAALS
ENERGY AND PRESSURE IN MULTILAYERED MEDIA

Let us analyze a general multilayer system, as shown in
Fig. 1(a), and express the vdW free energy of the system in
terms of combinations of vdW free energy of smaller units.
The vdW free energy per unit area of a planar configuration
of N layers [Fig. 1(a)] sandwiched between two semi-infinite
media, medium L to the left and medium R to the right, is
represented by ULR(z1, . . . ,zN ). Each layer is characterized
by not only the thickness zk but also the permittivity εk and
permeability µk (both relative to that of vacuum). We use the
aforementioned notation for free energy for its efficiency. If
one of the semi-infinite media is vacuum, the subscript V is
used instead of L or R. ULR(z1, . . . ,zN ) can be written as a
combination of three terms: (1) the free energy of the first k

layers sandwiched by semi-infinite medium L to the left and
vacuum to the right of the kth layer, ULV (z1, . . . ,zk), and (2)
the free energy of the remaining N − k layers sandwiched by
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FIG. 1. (Color online) (a) A multilayer system with N layers
between two semi-infinite regions L and R. (b) Method of splitting
the N layer multilayer system into components. The z axis is
perpendicular to the interfaces.

semi-infinite medium R to the right and vacuum to the left
of the (k + 1)th layer, UV R(zk+1, . . . ,zN ), and (3) the work
done in bringing the two systems from infinite separation to a
separation δ → 0. This statement can be written as

ULR(z1, . . . ,zN ) = ULV (z1, . . . ,zk) + UV R(zk+1, . . . ,zN )

+ lim
δ→0

∫ δ

∞
T avg

zz (zv) dzv, (1)

where T
avg
zz (zv) ≡ T

avg
zz (z1, . . . ,zk,zv,zk+1, . . . ,zN ) is the vdW

pressure in the vacuum region in Fig. 1(b) against
which work needs to be done to create the N layer
system from the two subsystems. The partial derivative
∂ULR(z1, . . . ,zN )/∂zr=p

(r)
LR(z1, . . . ,zN ) gives the vdW pres-

sure in the r th layer of the N layer system bounded by L

and R. For a thin film bounded by two semi-infinite regions,
we drop the superscript (r) and denote the pressure simply as
pLR . By differentiating Eq. (1) with respect to zr , we obtain
the following equation for p

(r)
LR:

p
(r)
LR(z1, . . . ,zN ) = ∂ULV

∂zr

(z1, . . . ,zk) + ∂UV R

∂zr

(zk+1, . . . ,zN )

+
∫ 0

∞

∂T
avg
zz

∂zr

(zv) dzv. (2)

One of the first two terms on the right-hand side of Eq. (2)
is zero, depending on whether 1 � r � k or k + 1 � r � N .
Though T

avg
zz (zv) diverges as z−3

v for zv → 0, the quantity
∂T

avg
zz /∂zr is finite as zv → 0 ∀ 1 � r � N , allowing us to

define the partial derivative of the last term in Eq. (1) as the
integral

∫ 0
∞ ∂T

avg
zz /∂zrdzv (see Appendix A for justification).

T
avg
zz (zv) is obtained simply by determining the zz component

of the Maxwell stress tensor in the vacuum region. Using the
procedure described above, we can write the vdW free energy
of any N layer medium in terms of UV V (z1), UV V (z2), . . .,
and UV V (zN ), and contributions from terms of the form

∫ δ

∞ T
avg
zz (zv)dzv , all of which involve calculation of the

Maxwell stress tensor in vacuum alone. UV V (z) is nothing
but the vdW free energy to create a thin film of thickness z in
free space.

We rely on Rytov’s theory of fluctuational electrodynamics
to determine the value of T

avg
zz . The cross-spectral corre-

lations of the electric field components can be written as
〈Ep(r,ω)E∗

q (r,ω)〉 = (2ωµo�/π )ImGe
pq(r,r), where p, q =

x, y, z, � = (h̄ω/2) coth(h̄ω/2kBT ), and Ge
pq is the pq

component of the electric dyadic Green’s function [12,13]. The
spectral correlation is defined such that 〈Ep(r,t)Eq(r,t)〉 =∫ ∞

0 dω〈Ep(r,ω)E∗
q (r,ω)〉. Similarly, the cross-spectral cor-

relations of the magnetic field components are given by
〈Hp(r,ω)H ∗

q (r,ω)〉 = (2ωεo�/π )ImGm
pq(r,r). The dyadic

Green’s functions Ge and Gm are electromagnetic duals
of each other and are solutions of ∇ × ∇ × G(r,r ′) −
k2G(r,r ′) = Iδ(r − r ′), where I is the identity dyad, r
and r ′ are the position vectors for observation and source,
respectively. Ge and Gm are obtained by enforcing the
continuity of (1) µ(r)[n̂ × Ge(r,r ′)], (2) n̂ × ∇ × Ge(r,r ′),
(3) ε(r)[n̂ × Gm(r,r ′)], and (4) n̂ × ∇ × Gm(r,r ′) on either
side of an interface defined by the unit normal vector n̂ at the
point r .

The zz component of the Maxwell stress tensor in vacuum
can be expressed in terms of Ge and Gm as Tzz(r,ω) =
(2ω�/πc2)ImG(r,ω) [12,13], where G(r,ω) = Ge

zz(r,r) −
1
2 TrGe(r,r) + Gm

zz(r,r) − 1
2 TrGm(r,r). The average value of

the zz component of the Maxwell stress tensor, T
avg
zz , at any

instant of time at position r in a vacuum layer is given by:

T avg
zz =

∫ ∞

0

h̄ω2

πc2
coth

(
h̄ω

2kBT

)
ImG(r,ω)dω (3)

Ge and Gm are analytic in the upper half plane (UHP) by
virtue of being response functions. Since G(r,ω) is a linear
combination of different components of Ge and Gm, it is
also analytic in the UHP. We can therefore use Lifshitz’s
technique to replace the integral over ω along the real positive
frequency axis by a summation over Matsubara frequencies
on the imaginary frequency axis in the UHP as

T avg
zz = −2kBT

c2

∞∑
n=0

′ξ 2
nG(r,iξn) = kBT

∞∑
n=0

′Kn (4)

where, ξn = 2πnkBT /h̄, Kn = −2ξ 2
nG(r,iξn)/c2, K0 =

− limξ→0 2ξ 2G(r,iξ )/c2, and n = 0,1,2, . . .. The prime (′)
next to

∑
indicates that the n = 0 term is given weight 0.5.

G(r,iξn) can be written in terms of the reflection coefficients
of plane waves that comprise Ge and Gm [14]. We now apply
this method to calculating the vdW pressure in a thin film
(indicated by m) bounded by two semi-infinite objects, L and
R. To do so, we introduce a vacuum layer, shown in Fig. 2, in
which the Maxwell stress tensor will be determined.

III. APPLICATION TO THIN FILMS

We start with the assertion that the vdW pressure in any
infinite or semi-infinite planar medium is zero. We show, using
the following three examples, that the proposed method is in
agreement with the predictions of DLP theory for the case of
a thin film between two semi-infinite objects. Kn, from which
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T
avg
zz can be calculated using Eq. (4), for the configuration

shown in Fig. 2 is given by

Kn = 1

π

∫ ∞

0

∑
p=e,h

R
(p)
vL R̃

(p)
vR e−2kzvzv

1 − R
(p)
vL R̃

(p)
vR e−2kzvzv

kzvkρdkρ, (5)

where p = e,h refer to the transverse electric and transverse
magnetic polarizations, respectively, and

R̃
(p)
vR = R

(p)
vm + R

(p)
mRe−2kzmzm

1 + R
(p)
vmR

(p)
mRe−2kzmzm

, (6a)

R
(e)
vL = kzvµL − kzLµv

kzvµL + kzLµv

, R
(h)
vL = kzvεL − kzLεv

kzvεL + kzLεv

, (6b)

kzv =
√

k2
ρ + εvµvξ 2

n

/
c2, kzm =

√
k2
ρ + εmµmξ 2

n

/
c2, (6c)

and similarly for reflection coefficients at other interfaces
and wave vectors in other layers. All permittivities and
permeabilities are evaluated at iξn, n = 0,1,2,. . . For reflection
coefficients, the subscript v is used to denote an interface with
vacuum. Since it is ∂

∂zm

∫ 0
∞ T

avg
zz (zm,zv)dzv that will eventually

be used in calculating vdW pressure, below we give the
expression for

∫ 0
∞

∂Kn

∂zm
dzv ,

∫ 0

∞

∂Kn

∂zm

dzv = 1

π

∫ ∞

0

∑
p=e,h

R
(p)
vL R

(p)
mR

(
1 − R

(p)2
vm

)
e−2kzmzm[(

1 − R
(p)
vL R

(p)
vm

) − (
R

(p)
vL R

(p)
mR + R

(p)
mvR

(p)
mR

)
e−2kzmzm

](
1 + R

(p)
vmR

(p)
mRe−2kzmzm

)kzmkρdkρ (7)

Example 1: Vacuum–Thin Film–Vacuum. To find the vdW
pressure in a thin film of material of thickness zm, we consider
a four-layer configuration, as shown in Fig. 2, with L being
replaced with material m, and R being vacuum. If the vdW
energy for creating a film of thickness zm is UV V (zm), the
following equation can be written for conservation of energy
for moving the thin film from zv = ∞ to zv = δ → 0:

UV V (zm) + lim
δ→0

∫ δ

∞
T avg

zz dzv = Uo, (8)

where Uo is an arbitrary constant that is the energy per unit
area of a semi-infinite medium M adjacent to a semi-infinite
region of vacuum. Differentiation of Eq. (8) with respect to zm

gives the following equation for vdW pressure:

pV V (zm) +
∫ 0

∞

∂T
avg
zz

∂zm

dzv = 0. (9)

Using Eqs. (4), (7), and (9), the vdW pressure in a thin film of
medium m bounded by vacuum is given by [see Eq. (B1) in
Appendix B for further details]

pV V (zm) = kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)2
mv e−2kzmzm

1 − R
(p)2
mv e−2kzmzm

kzmkρdkρ,

(10)

FIG. 2. (Color online) A four-layer system.

where each integral is evaluated at the Matsubara frequency
ξn = 2πnkBT /h̄.

Example 2: Material–Thin Film–Vacuum. To find pLV (zm),
we consider a four-layer configuration, as shown in Fig. 2,
with R being vacuum. Equation (1) can be modified for the
four-layer system to give the following equation for ULV (zm):

ULV (zm) = UV V (zm) + lim
δ→0

∫ δ

∞
T avg

zz dzv. (11)

Differentiating Eq. (11) with respect to zm, we obtain the
following equation for pLV (zm) in terms of pV V (zm), which
has been calculated earlier, and T

avg
zz :

pLV (zm) = pV V (zm) +
∫ 0

∞

∂T
avg
zz

∂zm

dzv. (12)

Using the expressions for pV V [Eq. (10)] and Eq. (7), we
obtain the following equation for pLV (zm) [see Eq. (B2) in
Appendix B for further details]:

pLV (zm) = kBT

π

×
∞∑

n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
mLR

(p)
mve

−2kzmzm

1 − R
(p)
mLR

(p)
mve−2kzmzm

kzmkρdkρ.

(13)

We can obtain the vdW pressure pV R(zm) by replacing L with
R in Eq. (13).

Example 3: Material–Thin Film–Material. The vdW free
energy of the system L − m − R is obtained by adding to the
free energy UV R(zm) the work done in moving this system
from infinite separation to the surface of a semi-infinite region
of material L. Written as an equation, we get

ULR(zm) = UV R(zm) + lim
δ→0

∫ δ

∞
T avg

zz dzv, (14)
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and pLR(zm) is given by [see Eq. (B4) in Appendix B for
further details]

pLR(zm) = pV R(zm) +
∫ 0

∞

∂T
avg
zz

∂zm

dzv = kBT

π

×
∞∑

n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
mLR

(p)
mRe−2kzmzm

1 − R
(p)
mLR

(p)
mRe−2kzmzm

kzmkρdkρ

(15)

In writing Eqs. (11) and (14), we have omitted a term similar to
Uo in Eq. (8) because it is contained in ULV (zm) and ULR(zm),
respectively. It can be seen that Eq. (15) for pLR(zm) is a
generalization of Eqs. (10) and (13). Further simplification of
Eq. (15), as shown in Appendix C, results in the following
expression for pLR:

pLR(zm) = kBT

πc3

∞∑
n=0

′(εmµm)3/2ξ 3
n

∫ ∞

1
dqq2

×
∑

p=e,h

(R(p)−1
mL R

(p)−1
mR e2qξn

√
εmµmzm/c − 1)−1,

(16)

where q = kzm/(ξn

√
εm(iξn)µm(iξn)/c). Equation (16) agrees

with the expression for vdW pressure in a thin film according
to DLP [5,15]. We stress that the method outlined here for
calculating vdW pressure is valid irrespective of computation
of the electromagnetic stress tensor by a summation along the
imaginary frequency axis or along the real frequency axis.
The extension to a multilayered medium is simply an exercise
in determining the appropriate reflection and transmission
coefficients [14,16].

We have provided here a transparent formalism for calcu-
lating vdW or Casimir pressure in dissipative and dispersive
media that are constituents of planar multilayer structures
without having to define or calculate the stress tensor in such
layers. We provide evidence backing the generalization of
Lifshitz theory of vdW forces without relying on quantum field
theoretic techniques employed by Dzyaloshinskii, Lifshitz,
and Pitaevskii. These results offer further proof of the validity
of the Minkowski-like stress tensor for calculating vdW forces,
at least in planar multilayered media.
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APPENDIX A: JUSTIFICATION FOR EXISTENCE OF∫ 0

∞
∂T avg

zz /∂ zr d zv

Using Eq. (4) in the manuscript, we can see that the zz

component of the Maxwell stress tensor in the vacuum layer

in Fig. 1(b) (in manuscript) is given by

T avg
zz (zv) = kBT

π

∞∑
n=0

′
∫ ∞

0
dkρkzvkρ

×
∑

p=e,h

R̃
(p)
vL R̃

(p)
vR e−2kzvzv

1 − R̃
(p)
vL R̃

(p)
vR e−2kzvzv

, (A1)

where R̃vL and R̃vR are generalized reflection coefficients that
can be determined from the boundary conditions at each in-
terface, R̃vL ≡ R̃vL(z1, . . . ,zk) and R̃vR ≡ R̃vR(zk+1, . . . ,zN ).
The work done in displacing the multilayer stack adjoining R

from zv = ∞ to zv = δ is given by

∫ δ

∞
T avg

zz (zv)dzv = kBT

2π

∞∑
n=0

′
∫ ∞

0
dkρkρ

×
∑

p=e,h

ln
(
1 − R̃

(p)
vL R̃

(p)
vR e−2kzvδ

)
(A2)

⇒ ∂

∂zr

lim
δ→0

∫ δ

∞
T avg

zz (zv)dzv

= −kBT

2π

∞∑
n=0

′ lim
δ→0

∫ ∞

0
dkρkρ

×
∑

p=e,h

∂

∂zr

(
R̃

(p)
vL R̃

(p)
vR

)
e−2kzvδ

1 − R̃
(p)
vL R̃

(p)
vR e−2kzvδ

(A3)

where
∂

∂zr

(R̃(p)
vL R̃

(p)
vR ) = R̃

(p)
vR

∂R̃
(p)
vL

∂zr

or R̃
(p)
vL

∂R̃
(p)
vR

∂zr

, depending

on whether 1 � r � k or k + 1 � r � N . The product

R̃
(p)
vL R̃

(p)
vR can be written in the form

A1 + A2e
−2kzr zr

A3 + A4e−2kzr zr
,

where A1,A2,A3, and A4 are not functions of zr . So the

partial differentiation
∂

∂zr

yields a function of the form

−2kzr

(A3A2 − A1A4)

(A3 + A4e−2kzr zr )2
e−2kzr zr . In general, we can write

∂

∂zr

(
R̃

(p)
vL R̃

(p)
vR

) = −2kzr

N

D
e−2kzr zr , (A4)

where N ≡ A3A2 − A1A4 and D ≡ (A3 + A4e
−2kzr zr )2. Sub-

stituting the above relation in Eq. (A3), we get

∂

∂zr

lim
δ→0

∫ δ

∞
T avg

zz (zv)dzv

= kBT

π

∞∑
n=0

′ lim
δ→0

∫ ∞

0
dkρkρkzr

∑
p=e,h

N

D
e−2kzr zr e−2kzvδ

1 − R̃
(p)
vL R̃

(p)
vR e−2kzvδ

.

(A5)
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Because of the presence of the e−2kzr zr , we are justified in
putting δ = 0 to give

∂

∂zr

lim
δ→0

∫ δ

∞
T avg

zz (zv)dzv

= kBT

π

∞∑
n=0

′
∫ ∞

0
dkρkρkzr

∑
p=e,h

N

D
e−2kzr zr

1 − R̃
(p)
vL R̃

(p)
vR

=
∫ 0

∞

∂T
avg
zz

∂zr

dzv. (A6)

For the examples in our manuscripts, R̃
(p)
vL = R

(p)
vL , R̃

(p)
vR =

R
(p)
vm + R

(p)
mRe−2kzmzm

1 + R
(p)
vmR

(p)
mRe−2kzmzm

, N = R
(p)
vL R

(p)
mR(1 − R

(p)2
vm ), and D =

(1 + R
(p)
vmR

(p)
mRe−2kzmzm )2.

APPENDIX B: DERIVATION FOR EQS. (10), (13), and (15)

pV V (zm) = −
∫ 0

∞

∂T
avg
zz

∂zm

dzv = −kBT

∞∑
n=0

′
∫ 0

∞

∂Kn

∂zm

dzv

= −kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
vmR

(p)
mv

(
1 − R

(p)2
vm

)
e−2kzmzm[(

1 − R
(p)
vmR

(p)
vm

) − (
R

(p)
vmR

(p)
mv + R

(p)
mvR

(p)
mv

)
e−2kzmzm

](
1 + R

(p)
vmR

(p)
mve−2kzmzm

)kzmkρdkρ

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)2
mv e−2kzmzm

1 − R
(p)2
mv e−2kzmzm

kzmkρdkρ, (B1)

pLV (zm) = pV V (zm) +
∫ 0

∞

∂T
avg
zz

∂zm

dzv = pV V (zm) + kBT

∞∑
n=0

′
∫ 0

∞

∂Kn

∂zm

dzv

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

(
R

(p)
vL + R

(p)
mv

)(
1 − R

(p)2
vm e−2kzmzm

)
R

(p)
mve

−2kzmzm[(
1 − R

(p)
vL R

(p)
vm

) − (
R

(p)
vL R

(p)
mv + R

(p)
mvR

(p)
mv

)
e−2kzmzm

](
1 − R

(p)2
mv e−2kzmzm

)kzmkρdkρ

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

(
R

(p)
mv + R

(p)
vL

)
R

(p)
mve

−2kzmzm(
1 + R

(p)
Lv R

(p)
vm

) − (
R

(p)
vL R

(p)
mv + R

(p)
mvR

(p)
mv

)
e−2kzmzm

kzmkρdkρ

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
mv + R

(p)
vL

1 + R
(p)
mvR

(p)
vL

R(p)
mve

−2kzmzm

1 − R
(p)
mv + R

(p)
vL

1 + R
(p)
mvR

(p)
vL

R(p)
mve

−2kzmzm

kzmkρdkρ

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
mLR

(p)
mve

−2kzmzm

1 − R
(p)
mLR

(p)
mve−2kzmzm

kzmkρdkρ, (B2)

where we have used the following property of reflection coefficients:

R(e)
mv + R

(e)
vL

1 + R
(e)
mvR

(e)
vL

=

⎛
⎝kzm

µm

− kzv

µv

⎞
⎠

⎛
⎝kzv

µv

+ kzL

µL

⎞
⎠+

⎛
⎝kzm

µm

+ kzv

µv

⎞
⎠

⎛
⎝kzv

µv

− kzL

µL

⎞
⎠

⎛
⎝kzm

µm

+ kzv

µv

⎞
⎠

⎛
⎝kzv

µv

+ kzL

µL

⎞
⎠+

⎛
⎝kzm

µm

− kzv

µv

⎞
⎠

⎛
⎝kzv

µv

− kzL

µL

⎞
⎠

=
kzv

µv

(
kzm

µm

− kzL

µL

)
kzv

µv

(
kzm

µm

+ kzL

µL

) =
kzm

µm

− kzL

µL

kzm

µm

+ kzL

µL

= R
(e)
mL, (B3)

Similarly,
R(h)

mv + R
(h)
vL

1 + R
(h)
mvR

(h)
vL

= R
(h)
mL.

pLR(zm) = pV R(zm) +
∫ 0

∞

∂T
avg
zz

∂zm

dzv = pV R(zm) + kBT

∞∑
n=0

′ lim
δ→0

∫ δ

∞

∂Kn

∂zm

dzv

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

(
R

(p)
vL + R

(p)
mv

)(
1 + R

(p)
vmR

(p)
mRe−2kzmzm

)
R

(p)
mRe−2kzmzm[(

1 − R
(p)
vL R

(p)
vm

) − (
R

(p)
vL R

(p)
mR + R

(p)
mvR

(p)
mR

)
e−2kzmzm

](
1 + R

(p)
vmR

(p)
mRe−2kzmzm

)kzmkρdkρ

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

(
R

(p)
vL + R

(p)
mv

)
R

(p)
mRe−2kzmzm(

1 − R
(p)
vL R

(p)
vm

) − (
R

(p)
vL R

(p)
mR + R

(p)
mvR

(p)
mR

)
e−2kzmzm

kzmkρdkρ
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= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
vL + R

(p)
mv

1 + R
(p)
vL R

(p)
mv

R
(p)
mRe−2kzmzm

1 + R
(p)
vL R

(p)
mv

1 + R
(p)
vL R

(p)
mv

− R
(p)
vL + R

(p)
mv

1 + R
(p)
vL R

(p)
mv

R
(p)
mRe−2kzmzm

kzmkρdkρ

= kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
mLR

(p)
mRe−2kzmzm

1 − R
(p)
mLR

(p)
mRe−2kzmzm

kzmkρdkρ. (B4)

APPENDIX C: DERIVATION FOR EQ. (16)

pLR(zm) = kBT

π

∞∑
n=0

′
∫ ∞

0

∑
p=e,h

R
(p)
mLR

(p)
mRe−2kzmzm

1 − R
(p)
mLR

(p)
mRe−2kzmzm

kzmkρdkρ

= kBT

π

∞∑
n=0

′
∫ ∞

ξn
c

√
εmµm

∑
p=e,h

R
(p)
mLR

(p)
mRe−2kzmzm

1 − R
(p)
mLR

(p)
mRe−2kzmzm

k2
zmdkzm

= kBT

π

∞∑
n=0

′ ξ
3
n

c3
(εmµm)3/2

∫ ∞

1

∑
p=e,h

R
(p)
mLR

(p)
mRe−2kzmzm

1 − R
(p)
mLR

(p)
mRe−2kzmzm

k2
zm

ξ 2
n

c2 εmµm

dkzm

ξn

c

√
εmµm

= kBT

π

∞∑
n=0

′ ξ
3
n

c3
(εmµm)3/2

∫ ∞

1

∑
p=e,h

R
(p)
mLR

(p)
mRe−2qξn

√
εmµmzm/c

1 − R
(p)
mLR

(p)
mRe−2qξn

√
εmµmzm/c

q2dq

= kBT

πc3

∞∑
n=0

′(εmµm)3/2ξ 3
n

∫ ∞

1

∑
p=e,h

(
R

(p)−1
mL R

(p)−1
mR e2qξn

√
εmµmzm/c − 1

)−1
q2dq (C1)

where q = kzm/(ξn

√
εm(iξn)µm(iξn)/c).
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