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Spin-forbidden radiative decay rates from the 3 3 P1,2 and 3 1 P1 states of helium
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We have calculated atomic helium spontaneous decay rates and absorption oscillator strengths for the spin-
forbidden transitions from 3 3P1,2 and 3 1P1 to all lower 1S0 and 3S1 states. In particular we found A10 =
44.33(4) s−1 for the E1 transition 3 3P1–1 1S0 and 0.1147(1) s−1 for the M2 transition 3 3P2–1 1S0.
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I. INTRODUCTION

The study of spin-forbidden transitions in helium and the
heliumlike ions has a long history as a fundamental testing
ground for the interactions between radiation and matter. In the
limit of LS coupling, electric dipole (E1) transitions between
singlet and triplet states are strictly forbidden in the lowest
order due to spin orthogonality because the leading terms in the
electric dipole transition operator are just −e(r1 + r2), which
is not spin dependent. However, relativistic spin-dependent
corrections to the wave functions and retardation corrections
to the transition operator both contribute nonvanishing terms
of relative order (αZ)2, where Ze is the nuclear charge and α

is the fine-structure constant.
The best-studied example is the astrophysically important

1s2p 3P1–1s2 1S0 transition of helium and the heliumlike ions,
where the subscript is the eigenvalue of the total angular mo-
mentum operator J = L + S. For this case, the intermixing of
the 1s2p 3P1 and 1s2p 1P1 states is the dominant effect, but the
contribution from all the higher-lying 1snp 3P1 states and final
1s2 1S0 state perturbations due to mixing with doubly-excited
P states of the form npn′p 3P e

1 are also significant. Following
the earlier work by Elton [1] and Drake and Dalgarno [2],
Drake [3] performed a complete calculation, which included
spin-dependent perturbations to both the initial and final states.
This work also demonstrated the equivalence of the length
and velocity forms of the transition operator, provided that an
extra spin-dependent term is added to the velocity form of the
transition operator, as further discussed in the present work.
Also, the spin-dependent part of the magnetic quadrupole (M2)
operator directly enables 1s2p 3P2–1s2 1S0 [4].

A general derivation of relativistic corrections to allowed
and spin-forbidden electric dipole transitions was carried out
from basic QED by Drake [5], including the effects of the
electron-electron interaction and negative energy states. It was
proven there that the nonrelativistic Pauli form of the Breit
interaction remains valid for off-diagonal matrix elements in
the presence of radiation emission, and that a semiclassical
representation of the radiation field remains valid up to terms
of relative order α2Z2. The former point is important because
the Breit interaction is normally taken to be correct only as a
first-order perturbation correction to the nonrelativistic energy
[6]. These theoretical results were recently confirmed by Łach
and Pachucki [7], and much more accurate numerical values
for matrix elements were obtained by them, as well as by
Morton, Moffatt, and Drake [8].

The purpose of the present work is to extend the results
of Ref. [8] on the calculation of He I spin-forbidden A and
f values for the electric dipole (E1) decays 3 3P1–n 1S0 and
3 1P1–n 3S1, as well as the magnetic quadrupole (M2) decays
3 3P2–n 1S0 and 3 1P1–n 3S1. Since Baldwin and his colleagues
[9,10] are considering measuring 3 3P1–1 1S0 and 3 3P2–1 1S0,
this theoretical study is timely. In emission, the spin-forbidden
transitions are dominated by ordinary allowed E1 transitions
to lower states, but in absorption, the spin-forbidden transitions
can readily be observed.

II. CALCULATIONS

As outlined in the Introduction, if spin-orbit coupling is
weak, spin-forbidden transitions can be calculated to order
(αZ)2 relative to allowed E1 transitions from the perturbation
of the nonrelativistic wave function |nPSLJ 〉 by the Breit
spin-orbit (SO) and spin-other-orbit (SOO) operators. The
spin-spin operator does not contribute to S = 1 to S = 0
transitions because it is a scalar formed by coupling irreducible
tensors of rank 2. The perturbed wave function can be ex-
panded in terms of a complete set of virtual intermediate states.
The spin-changing transitions come from the virtual states with
opposite spin but the same parity P and angular momentum J .
As described in [8], we approximate these intermediate states,
including the continuum, by the complete set of N nonrela-
tivistic pseudostates derived from the variational solution of
the energy eigenvalue equations for a basis set with N terms.

Specifically, for the spin-changing transition 3 3P1–1 1S0,
we computed the sums

〈1 1S0 | H1 | 3 3P1〉

=
N∑

m

〈1 1S0 | H1 | m 1P1〉 〈m 1P1 | B | 3 3P1〉
ε(3 3P1) − ε(m 1P1)

+
N∑

n

〈
1 1S0

∣∣B
∣∣n 3P e

0

〉

ε(1 1S0) − ε
(
n 3P e

0

)
〈
n 3P e

0

∣∣H1

∣∣3 3P1
〉
, (1)

where H1 = z1 + z2 is the interaction operator, B is the sum
of the SO and SOO operators, and all the wave functions on
the right are nonrelativistic. In the atomic units used here,
lengths r and energies ε are related to laboratory values
by R = a0r and E = α2mec

2ε, where a0, α, me, and c are
the usual atomic constants. The only states affecting 1 1S0

are the doubly-excited ones beginning with 2p2 3P e
0 above the

first ionization of helium. Similarly for 2 3S1, the intermediate
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TABLE I. Matrix Elements M and f- and A-values for 3 3P1,2–1 1S0, 2 1S0, and 3 1S0. The error on each entry indicates the numerical
uncertainty in the convergence as the size of the basis sets is increased and does not include any estimate for the theoretical approximations.

E1 Transition 3 3P1–1 1S0 3 3P1–2 1S0 3 3P1–3 1S0

�ε∞ (a.u.) theory 0.845 643 292 8 0.087 892 961 78 3.190 905 466 × 10−3

�ε (a.u.) actual 0.845 494 46 0.087 878 693 0 3.188 316 × 10−3

λ (nm) actual 53.889 594 518.489 09 14 290.72
Length calculationa

1〈n 1S0|z1 + z2|3 3P1〉0 −0.008 24(1) × 10−4 −0.000 523(3) × 10−4 −0.000 043 9(2) × 10−3

0〈n 1S0|z1 + z2|3 3P1〉1 1.021 445(3) × 10−4 5.487 346(3) × 10−4 3.100 340(1) × 10−3

Total ML 1.013 20(1) × 10−4 5.486 823(4) × 10−4 3.100 296(1) × 10−3

Velocity calculationa

1〈n 1S0|∂/∂z1+ ∂/∂z2|3 3P1〉0/�ε∞ 0.021 72(1) × 10−4 0.018 80(4) × 10−4 0.021 93(9) × 10−3

0〈n 1S0|∂/∂z1+ ∂/∂z2|3 3P1〉1/�ε∞ 1.140 782 9(1) × 10−4 5.501 376 4(3) × 10−4 3.272445(1) × 10−3

Correction C/�ε∞ −0.149 283 75(1) × 10−4 −0.033 312 00(5) × 10−4 −0.194 178 64(3) × 10−3

Total MV /�ε∞ 1.013 22(1) × 10−4 5.486 86(4) × 10−4 3.100 20(9) × 10−3

E1 f01 5.787 6(2) × 10−9 1.764025(3) × 10−8 2.044 697(1) × 10−8

E1 A10 (s−1) 44.326(1) 1.459 495(2) 2.229 700(1) × 10−3

M2 Transition 3 3P2–1 1S0 3 3P2–2 1S0 3 3P2–3 1S0

�ε∞ (a.u.) theory 0.845 643 292 8 0.087 892 961 78 3.190 905 466 × 10−3

�ε (a.u.) actual 0.845 494 36 0.087 878 592 9 3.188 216 × 10−3

λ (nm) actual 53.889 600 518.480 07 14 291.17

〈n 1S0 | z1 − z2 | 3 3P2〉 0.417 847 2(2) 2.142 383(1) 12.013 381 85(1)
M2 f02 2.495035(3) × 10−11 7.364 387(7) × 10−13 1.108 032 35(1) × 10−15

M2 A20 (s−1)b 0.114 654 7(1) 3.655 827(4) × 10−5 7.249 719 30(6) × 10−11

aThe superscripts 1 and 0 outside the angle brackets denote the perturbation order of the adjacent wave functions.
bJacobs et al. [13] had calculated 0.115 s−1 and Kundu et al. [14] 0.120 63(1) s−1 for 3 3P2–1 1S0.

states begin with 2p3p 1P e
1 , while for 1s2p 1P1, they are the

odd states 1s2p 3P1 and higher. For these calculations we
have accurate nonrelativistic energies and wave functions for

infinite nuclear mass with successively larger basis sets up to
1000 terms to assess convergence. As a test of this perturbation
procedure in Ref. [8], we obtained A10 = 177.578 s−1 for

TABLE II. Matrix Elements M and f - and A-values for 3 1P1–2 3S1 and 3 3S1. The error on each entry indicates the numerical uncertainty
in the convergence as the size of the basis sets is increased and does not include any estimate for the theoretical approximations.

E1 Transition 3 1P1–2 3S1 3 1P1–3 3S1

�ε∞ (a.u.) theory 0.120 083 016 14 1.354 270 538 × 10−2

�ε (a.u.) actual 0.120 074 88 1.354 404 0 × 10−2

λ (nm) actual 379.457 81 3364.088 7
Length calculationa

1〈n 3S1|z1 + z2|3 1P1〉0 –0.001 649 3(5) × 10−4 0.000 130 64(4) × 10−3

0〈n 3S1|z1 + z2|3 1P1〉1 1.213 415 8(1) × 10−4 2.898 049 27(4) × 10−3

Total ML 1.211 766 5(5) × 10−4 2.898 179 91(6) × 10−3

Velocity calculationa

1〈n 3S1|∂/∂z1+ ∂/∂z2|3 1P1〉0/�ε∞ 0.037 517(5) × 10−4 –0.024 429(4) × 10−3

0〈n 3S1|∂/∂z1+ ∂/∂z2|3 1P1〉1/�ε∞ 1.368 098 3(1) × 10−4 2.803 014(4) × 10−3

Correction C/�ε∞ –0.193 852 94(1) × 10−4 0.119 599 95(1) × 10−3

Total MV /�ε∞ 1.211 762(5) × 10−4 2.898 185(6) × 10−3

E1 f01 3.918 384(4) × 10−10 2.527 805 2(1) × 10−8

E1 A10 (s−1) 0.181 543 6(2) 0.148 958 52(1)

M2 Transition 3 1P1–2 3S1 3 1P1–3 3S1

�ε∞ (a.u.) theory 0.120 083 016 14 1.354 270 538 × 10−2

�ε (a.u.) actual 0.120 074 88 1.354 404 0 × 10−2

λ (nm) actual 379.457 81 3364.088 7

〈n 3S1 | z1 − z2 | 3 1P1〉 0.443 407 2(1) 11.258 337 6(1)
M2 f01 2.681 693(1) × 10−14 2.479 839 86(4) × 10−14

M2 A10 (s−1) 1.242 462(1) × 10−5 1.461 320 16(2) × 10−7

aThe superscripts 1 and 0 outside the angle brackets denote the perturbation order of the adjacent wave functions.
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2 3P1–1 1S0 compared with 177.5771 s−1 calculated by Łach
and Pachucki [7] and 177 ± 8 s−1 measured by Dall et al. [11].
We also found A11 = 1.548 935 s−1 for 2 1P1–2 3S1, very close
to 1.548 926 s−1 in [7].

This calculation uses the dipole length operator z1 + z2.
Within our (αZ)2 approximation, Drake [3] has shown that a
similar one with the dipole velocity operator ∂/∂z1+ ∂/∂z2 in
Eq. (1), plus the correction

C =
√

2α2

4
〈1 1S0| Z

r3
1

z1 − Z

r3
2

z2 + 2

r3
12

(z1 − z2)|3 3P1〉, (2)

should be equivalent to the length result multiplied by the
energy difference. Note that the correction depends on only
the initial and final nonrelativistic states and also applies to
3 1P1–2 3S1.

The M2 calculation also uses these states. The analysis of
Drake [4] with the energy difference �ε and the reduced matrix
element in atomic units gives the statistical weight times the
transition rate in s−1 as

g2A20 = α8c

6a0
�ε5 | 〈1 1S0 || z1 − z2 || 3 3P2〉 |2, (3)

and similarly with the same factors for g1A11 for the M2 part
of 1P1–3S1. For 2 3P2–1 1S0, we found A20 = 0.327 031 5 s−1

compared with 0.327 032 6 s−1 in Ref. [7] and 0.324 ±
0.016 s−1 measured by Hodgman et al. [9].

III. RESULTS AND DISCUSSION

Tables I and II summarize our results. We calculated the
oscillator strengths and transition rates using the theoretical
energy �ε∞ for infinite nuclear mass without singlet-triplet
mixing. The actual energies and wavelengths are from the
combination of laboratory measurements and theoretical cal-
culations presented by Morton, Wu, and Drake [12]. Use of
these energies would give f and A values slightly closer to the
true ones.

The subscripts on the E1 matrix elements M label the
length (L) and velocity (V ) forms from Eq. (1), and C is

the correction of Eq. (2) with division by �ε∞ to match
the length forms. In all cases, the dominant contribution
for the spin-forbidden E1 transitions comes from the perturbed
3 3P1 or 3 1P1 state because of the small ε(3 3P1) − ε(3 1P1)
term in the denominator of Eq. (1). In fact, this one term
dominates the sum over intermediate states. This dominance
of the m = 3 term in the summation becomes even more
pronounced with increasing Z because the singlet-triplet
energy difference increases only in proportion to Z.

The comparison of the L and V forms of the transition
operator is particularly interesting. Even though the individual
contributions are very different, they sum to the same final
matrix element to within 3 parts in 105 or better, and they agree
to within the estimated convergence accuracy. This provides a
very useful check on the accuracy of the results, analogous to
the corresponding comparison of L and V for ordinary allowed
transitions.

Even though both the spin-forbidden E1 and M2 decay
rates are of the same nominal order α8c/a0, in every case the
M2 decay rate is very much smaller.

The final uncertainties must also include the finite nuclear
mass and other higher-order relativistic corrections. These
could be as large as 0.1%, so realistic estimates are A10 =
44.33(4) s−1 and A20 = 0.1147(1) s−1 for E1 and M2,
respectively, of 3 3P1,2–1 1S0, and likewise for all the other
results in the tables. Since these final uncertainties are likely
to be much less than the corresponding experimental ones in
the planned experiments [9,10], the comparison will provide
an accurate benchmark to test experimental procedures to
determine atomic lifetimes in this regime of strongly forbidden
transitions.

ACKNOWLEDGMENTS

Research support by the Natural Sciences and Engineering
Research Council of Canada and by SHARCNET are grate-
fully acknowledged.

[1] R. C. Elton, Astrophys. J. 148, 573 (1967).
[2] G. W. F. Drake and A. Dalgarno, Astrophys. J. 157, 459 (1969).
[3] G. W. F. Drake, J. Phys. B 9, L169 (1976).
[4] G. W. F. Drake, Astrophys. J. 158, 1199 (1969).
[5] G. W. F. Drake, Phys. Rev. A 5, 1979 (1972).
[6] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and

Two-Electron Atoms (Springer-Verlag, Berlin, 1957), p. 173.
[7] G. Łach and K. Pachucki, Phys. Rev. A 64, 042510 (2001).
[8] D. C. Morton, P. Moffat, and G. W. F. Drake, Can. J. Phys. 89,

129 (2011).
[9] S. S. Hodgman, R. G. Dall, K. G. H. Baldwin, and A. G. Truscott,

Phys. Rev. A 80, 044501 (2009).

[10] K. G. H. Baldwin, S. S. Hodgman, R. G. Dall, L. J. Byron,
S. J. Buckman, and A. G. Truscott, in Proceedings of the 19th
ICOLS Conference, Hokkaido, Japan, 2009, edited by H. Katori,
H. Yoneda, K. Nakagawa and F. Shimizu (World Scientific,
Singapore, 2010), p. 95.

[11] R. G. Dall, K. G. H. Baldwin, L. J. Byron, and A. G. Truscott,
Phys. Rev. Lett. 100, 023001 (2008).

[12] D. C. Morton, Q. Wu, and G. W. F. Drake, Can. J. Phys. 84, 83
(2006).

[13] V. L. Jacobs, J. Phys. B 5, 213 (1972).
[14] B. Kundu, P. K. Mukherjee, and H. P. Roy, Phys. Scr. 39, 722

(1989).

042503-3

http://dx.doi.org/10.1086/149178
http://dx.doi.org/10.1086/150080
http://dx.doi.org/10.1088/0022-3700/9/7/001
http://dx.doi.org/10.1086/150279
http://dx.doi.org/10.1103/PhysRevA.5.1979
http://dx.doi.org/10.1103/PhysRevA.64.042510
http://dx.doi.org/10.1139/P10-067
http://dx.doi.org/10.1139/P10-067
http://dx.doi.org/10.1103/PhysRevA.80.044501
http://dx.doi.org/10.1103/PhysRevLett.100.023001
http://dx.doi.org/10.1139/P06-009
http://dx.doi.org/10.1139/P06-009
http://dx.doi.org/10.1088/0022-3700/5/2/017
http://dx.doi.org/10.1088/0031-8949/39/6/007
http://dx.doi.org/10.1088/0031-8949/39/6/007

