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Entanglement and symmetry in permutation-symmetric states
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We investigate the relationship between multipartite entanglement and symmetry, focusing on permutation
symmetric states. We give a highly intuitive geometric interpretation to entanglement via the Majorana
representation, where these states correspond to points on a unit sphere. We use this to show how various
entanglement properties are determined by the symmetry properties of the states. The geometric measure
of entanglement is thus phrased entirely as a geometric optimization and a condition for the equivalence of
entanglement measures written in terms of point symmetries. Finally, we see that different symmetries of the
states correspond to different types of entanglement with respect to interconvertibility under stochastic local
operations and classical communication.
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I. INTRODUCTION

Entanglement and symmetry are two main concepts at
the heart of quantum mechanics. For a while now there
have been enticing hints of a general connection between the
two. On an intuitive level, we may understand that changing
global symmetry (or topological properties) should be a global
operation, so one that effects the entanglement of the system at
hand. The relationship is of great interest, particularly because
of the relation between symmetry and phase transitions. There
is by now a vast array of instances where entanglement shows
some relationship to symmetry breaking, for example, in
quantum phase transitions where phase transition coincides
with change in entanglement properties [1–3]. Indeed, it has
been suggested that entanglement may be able to observe phase
transitions where conventional order parameters fail. However,
a concrete relationship remains unclear; for example, it is
known that change in some symmetry properties need not
effect the entanglement, and vice versa. For a recent review of
these issues see [4].

At the same time, symmetry properties of states have been
used to simplify the study of their entanglement, for example,
in the calculation of entanglement [5,6] and questions of sep-
arability [7]. A particular feature of multipartite entanglement
is that it is possible to have different “types” of entanglement,
whereby we mean different classes under stochastic local
operations and classical communication (SLOCC) [8]. This
property has been largely overlooked in the in the study of
phase transitions and the use of symmetries in entanglement
theory. Two states are SLOCC inequivalent (belong to different
classes) if they cannot be converted to one another via local op-
erations and classical communications, even probabilistically,
which signifies them as potentially different resources in the
context of quantum information processing (QIP). Alongside
this comes a plethora of entanglement measures, with a variety
of different operational interpretations, and which may be
suited to quantifying one type of entanglement more than
another. The question naturally arises, can symmetry help us
to explore this vast landscape, and can a relationship between
symmetry and the types of entanglement be made.
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In this work we focus on permutation symmetric states.
These states are useful in a variety of QIP tasks, occur naturally
as ground states, for example, in some Hubbard models,
and certain of these states have recently been implemented
experimentally [9,10]. Various entanglement properties of
these states have also been studied, such as the clarification
of separability conditions [7], calculation of the geometric
measure of entanglement [11,12], and the identification of
SLOCC classes [13]. In all these cases, however, permutation
symmetry is essentially used as a tool for simplification
in calculations. We would like to see if further symmetry
properties can be useful, if a deeper connection between
symmetry and entanglement properties can be found, and if
there may be some insight into the role of entanglement in
many-body physics. To this extent we observe that symmetries
with respect to local operations (rather than permutation)
determine several entanglement properties, with intriguing
mirrors in spinor Bose-Einstein condensates (BECs).

In particular, by using the Majorana representation [14],
we see how symmetry allows us to calculate the geometric
measure of entanglement [15] and identify the most entangled
state.1 We then show that the existence of certain symme-
tries guarantees equivalence of three different entanglement
measures—the geometric measure of entanglement, the log-
arithmic robustness of entanglement [16], and the relative
entropy of entanglement [17]. Finally, we see how the different
symmetries reflect different types of entanglement (in terms of
SLOCC classes), indicating an intriguing relationship between
symmetries and types of entanglement. We close with some
remarks on occasions where these same symmetries coincide
with different phases for spinor BEC and how these states may
be generated experimentally.

II. ENTANGLEMENT IN THE MAJORANA
REPRESENTATION

We first present the Majorana representation [14]. This
way of seeing states has been used recently to simplify the

1Preliminary versions of these results were presented in the QIT
16 workshop in Japan, D. Markham, Proceedings of QIT 16, Japan
(2007).
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FIG. 1. (Color online) The Majorana representation of the n-party
GHZ state |GHZn〉 := (|0〉⊗n + |1〉⊗n)/

√
2), having n MPs equally

spaced around the equator, here for n = 6 in solid points. The hollow
point at the north pole is the point of one of the closest product states,
maximizing

∏
i |〈φ|ηi〉|2 = ∏

i[cos(θi/2)]2.

classification of symmetric states into SLOCC classes [13,18].
For n qubits, all permutation symmetric states can be written
in the form [14]

|ψ〉 = eiα

√
K

∑
PERM

|η1〉|η2〉...|ηn〉, (1)

where the sum is over all permutations and K is a normalization
constant. The Majorana representation consists of n points
corresponding to the n states from this decomposition |ηi〉 =
cos(θi/2)|0〉 + eiφi sin(θi/2)|1〉 via the standard Bloch sphere,
i.e., a point on the unit sphere at position θi,φi . We call these the
Majorana points (MPs), and they define the state up to global
phase eiα (see Fig. 1). For more details see Appendix A.

To see how entanglement can be visualized in the Majorana
representation, we first notice that the product of local unitaries
on a symmetric state U ⊗ U ⊗ ...U |ψ〉 is just a rotation of the
Majorana sphere, since each point gets rotated by the same U .
In fact, it can be shown that if two symmetric states |ψ〉,|φ〉
are related by local unitaries U1 ⊗ U2 ⊗ ...Un|ψ〉 = |φ〉, there
is always some U such that they can be connected by the same
unitary U ⊗ U ⊗ ...U |ψ〉 = |φ〉. This fact is shown for the
more general case of local invertible operations in [13,18], and
the same proof works for unitaries. Furthermore, this shows
that the symmetry of the state under local unitaries U⊗n is
reflected by the symmetry of the MPs (see also Appendix A).
This will be a main tool throughout the paper.

We can make the connection to entanglement more explicit
using the geometric measure of entanglement [15],

Eg(|ψ〉) = min
|�〉∈PROD

− log2(|〈�|ψ〉|2), (2)

where PROD is the set of product states. It has recently
been shown that for permutation symmetric states, we can
always take a symmetric product state |�〉 = |φ〉|φ〉...|φ〉 in
this optimization [11], for which the Majorana representation

consists of n points at the position of |φ〉. For the general n

partite symmetric state (1) we then have

Eg(|ψ〉) = − log2[�(ψ)], �(ψ) = max
|φ〉

|〈φ|⊗n|ψ〉|2

= 1

K
n!2 max

|φ〉
|〈φ|η1〉|2|〈φ|η2〉|2...|〈φ|ηn〉|2.

Hence the optimization problem of finding the closest product
state has the geometric interpretation of maximizing the
product of angles |〈φ|ηi〉|2. The example of |GHZ6〉 is
illustrated in Fig. 1.

This geometric phrasing of the problem allows us to
use geometric properties, for example, symmetry of the MP
distribution to calculate entanglement, and to search for the
most entangled states in this class. In a sense we can say that
the most entangled states will be those which spread the points
out the most (though this does not necessarily coincide with
other definitions of “spread” such as Tammes’ problem). This
direction is pursued in detail in follow-up work [19] and has
been independently studied in [20].

We now proceed to see how the Majorana representation
can allow us to identify symmetries indicating states for
which several distancelike entanglement measures coincide,
and show that these states represent different SLOCC classes
of entangled states.

III. EQUIVALENCE OF ENTANGLEMENT MEASURES

In Ref. [12] the relationship between the geometric measure
of entanglement and two other distancelike entanglement
measures, the relative entropy of entanglement ER [17] and
the logarithmic robustness of entanglement [16], are studied.
In particular, it was shown that if there exists a local unitary
group for which the state in question ψ = |ψ〉〈ψ | is itself
an invariant subspace of the group, then we have EG(|ψ〉) =
ER(|ψ〉) = ERob(|ψ〉).

Equivalence of measures is desirable for several reasons,
primarily because the different measures have different in-
terpretations. For example, ERob signifies the ability of the
state to withstand noise [16], and the relative entropy being
an entropic quantity, ER naturally has several information
theoretic interpretations [17]. Since EG is easier to calculate,
it is easier to verify these operational properties. Further
significance of the equivalence is discussed in [12], in
particular, its significance for local accessibility of information
and the construction of optimal entanglement witnesses.

Using the equivalence between symmetry of points and of
states, we are able to phrase the problem solely in terms of the
Majorana representation (see Appendix B for more details).

Lemma 1. If a permutation symmetric state |ψ〉 has MPs
such that they are invariant under some subgroup X ⊂ SO(3),
and for any small change of the points this invariance
disappears, it satisfies

EG(|ψ〉) = ER(|ψ〉) = ERob(|ψ〉).
We call such subgroups X ⊂ SO(3) the symmetry groups

and say such states are totally invariant. Intriguingly, this is
exactly the condition for finding inert states in the context
of spinor condensates [21], which is discussed more in the
concluding remarks.
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The Majorana representation then allows us to identify
symmetries to show equality of the entanglement measures for
many new sets of states. The complete set of all the possible
subgroups of SO(3) are the continuous groups, orthogonal
O(2), and special orthogonal SO(2), and discrete groups cyclic
Cm, dihedral Dm, tetrahedral T , octehedral O, and isocahedral
Y . One can then systematically go through all of these groups
to find these special states, as done in [21] in the context of
inert states. For the subgroup of arbitrary rotations about a
fixed axis SO(2), we see that states with MPs only at either
pole of the rotation axis satisfy our condition. If the rotations
are around the Z axis, these are the states,

|S(n,k)〉 := 1√(
n

k

)
( ∑

PERM

| 00...0︸ ︷︷ ︸
n−k

11..1︸︷︷︸
k

〉
)

,

also known as Dicke states, and we can see here pictorially the
proof of equivalence for these states reported in [12]. Note that
for even n and k = n/2, these states also satisfy our condition
for the group O(2) (arbitrary rotations around the Z axis, and
a flip on some axis in the X − Y plane). In such cases we
associate the state with the smallest subgroup. The cyclic group
Cn has no truly invariant states, since if all points are moved
together up and down the axis of rotation the symmetry is not
lost. The dihedral group Dm (consisting of rotations through
2π/m and a flip on the axis of rotation) has m totally invariant
states for each value m (see Fig. 2). T , O, and Y only have
truly invariant states for certain n. For the tetrahedral group
T , truly invariant states are made up of tetrahedrons, their
antipode tetrahedrons, and octagons with at most two MPs
on any tetrahedron point and three MPs at any octahedron
point, so that there are only truly invariant states for n � 34.
For the octahedral group O truly invariant states have MPs at
the points of the cube and the octahedron with at most three

p<m

p<m

m

FIG. 2. (Color online) States of n = m + 2p qubits which are
totally invariant for the dihedral symmetry groups Dm, |Dm(n,p)〉 =
1/

√
2[|S(n,p)〉 + |S(n,n − p)〉]. The state has p MPs at each pole

and m = n − 2p MPs distributed evenly around the equator. For all
n,p, these states satisfy E = ERob = ER = EG.

and two MPs at each, respectively, so that they only exist for
n � 34. All truly invariant states of the isocahedral group Y are
made up of combinations of isocahedrons (with 12 vertices)
and dodecahedrons (with 20 vertices), with at most three and
two MPs at each, respectively; hence they exist only for n �
88. For four qubits there are four entangled states, satisfying
the condition, |T 〉 = 1/

√
3|S(4,0)〉 + √

2/3|S(4,3)〉, |GHZ4〉,
|S(4,2)〉 and |W4〉 = |S(4,1)〉, as shown in Fig. 3.

IV. SYMMETRY AND SLOCC ENTANGLEMENT CLASSES

We now look at how these different symmetries also
correspond to different SLOCC entanglement classes. First
of all, it is shown in [13,18] that if two states have different
degeneracies of MPs (that is, the number of MPs which are on
top of each other is different), they are SLOCC inequivalent.
From this it is clear that

Lemma 2. For any number of qubits greater than two the
totally invariant states with respect to the groups O(2), SO(2),
and Dm are of different entanglement types.

This is true since they have different degeneracies. This fact
also means that in addition, the totally invariant states for the
dihedral group |Dm(n,p)〉 are SLOCC inequivalent for all p〉0
(see Fig. 2).

For the remaining symmetry groups T , O, and Y there
are only a finite number of possible totally invariant states.
We can then use a combination of the degeneracy and other
methods to attempt to show the same for these all subgroups.
Consider the four-qubit case in Fig. 3. From the above we
can see that |S(4,2)〉 (with two sets of two degenerate MPs)
is in a different class to |W4〉 (with a three-degenerate point),
and they are both in different classes to |T 〉,|GHZ4〉 (which
have all four MPs separate). To see that the |T 〉,|GHZ4〉 are
different, we use the fact [8] that under SLOCC the minimal
number of terms r for any expansion of the state in terms
of only product states (the log of which is the Schmidt
measure [22]) remains unchanged. It is straightforward to see
that taking some minimum decomposition, from definition
(2) we have EG � log2(r). We know that r(|GHZ4〉) = 2
[8], and in [19] it is shown that EG(|T 〉) = log2(3); hence,
r(|T 〉) � 3 > r(|GHZ4〉) and so they are in different SLOCC
classes also. For larger n one can in principle go through
all cases individually (since their number is finite) and check
using similar methods. Such an exhaustive search was beyond
the scope of this manuscript; however, the same techniques as
above can be used to show the SLOCC inequivalence for all the
totally invariant states up to seven qubits, and it seems plausible

FIG. 3. (Color online) Different symmetries for four qubits giving
states such thatE = ERob = ER = EG. The symmetry group and the
entanglement are written below the sphere. Each state is in a different
SLOCC class.
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that indeed all different symmetries do imply different classes
of entanglement.

V. DISCUSSIONS

In this work we have presented a geometrical representation
of the entanglement of permutation symmetric states in the
form of the Majorana representation. This has allowed us to
phrase the geometric measure of entanglement in a simple way
and to look at how the further symmetry properties of states
effect their entanglement properties, in particular, showing
the equivalence of three different distancelike measures.
This equivalence simplifies calculation and allows for wider
operational understanding as the operational interpretations
coincide. Finally, we show that for these states the different
symmetries correspond to different types of entanglement.
This presents a very interesting relationship between sym-
metries and types of entanglement. Though we are not able to
confirm that this is a general connection, it is very interesting,
seems possible, and is worth deeper investigation.

Intriguingly, within the context of spinor condensates,
similar symmetry arguments have been used to identify and
characterize different phases of matter [23–25]. In this case the
Majorana representation is used not to describe n symmetric
qubits but rather a single-spin S = n/2 system (through the
well-known isometry between the two) [14]. Because of this
caution is required when talking about entanglement in this
context, but it is not impossible for the two pictures to coincide,
for example, the total spin can be a result of combined spin half-
systems in exactly the permutation symmetric space we look
at, which really would be entangled as we discuss here. In this
sense we would see that phase transitions through symmetry
are incidental with phase transitions through entanglement,
raising the prospect of entanglement type as an indicator of
different phases. Indeed, in [23] a phase diagram is presented
for a spin two-spinor condensate where each phase is identified
exactly with different symmetry types presented in Fig. 3.
Where these connections are most explicit and general is in
the case of inert states—often good candidates for ground
states in spinor BECs—where the conditions of equivalence
of EG, ERob, and ER coincide exactly in terms of the MPs [21],
pointing to deeper possible connections.

The states discussed here can also be experimentally pre-
pared in a variety of ways and media. For example, in optics the
six-party |S(6,3)〉 (Dicke) state and several five- and four-party
states have recently been generated and their entanglement
properties verified [9,10]. Furthermore, a general scheme has
been developed recently which can generate any symmetric
state [26] (including all those here) which works for any
�-system photon emitters, such as trapped ions or neutral
atoms or quantum dots, and so may be long lived and within
reach of current experimentation.

Note added: Recently several related works have emerged
[20,27–30].
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APPENDIX A: MAJORANA REPRESENTATION

The permutation symmetric subspace of n qubits is spanned
by the Dicke states

|S(n,k)〉 := 1√(
n

k

)
( ∑

PERM

| 00...0︸ ︷︷ ︸
n−k

11..1︸︷︷︸
k

〉
)

, (A1)

which can be understood as the symmetric states with k

excitations. Thus any permutation symmetric state can be
written as

|ψ〉 =
∑

ak|S(n,k)〉. (A2)

Alternatively, all symmetric states can be written in the
Majorana representation [14],

|ψ〉 = eiα

√
K

∑
PERM

|η1〉|η2〉...|ηn〉, (A3)

where the sum is over all permutations and K is a normalization
constant.

To find the Majorana representation (A3), we con-
sider the overlap with product state |φ〉⊗n,|φ〉 = cos( θ

2 )|0〉 +
eiϕ sin( θ

2 )|1〉. It is clear by comparison to Eq. (A3) that |φ〉
orthoganol to the MP |ηi〉 will give zero overlap. This is exactly
how we find the MPs. For simplicity we take a multiple of
the overlap, sometimes called the characteristic polynomial,
Majorana polynomial, amplitude function, or coherent state
decomposition,

f (ψ) := cos−n

(
θ

2

)
〈φ|⊗n|ψ〉 =

n∑
k=0

√(
n

k

)
akα

k, (A4)

which is a complex polynomial in α := e−iϕ tan( θ
2 ). By

the fundamental theorem of algebra, this has unique zeros
up to multiplication by some complex. Hence the zeros
αj = e−iϕj tan( θj

2 ) define the state |ψ〉 up to a global phase.
The corresponding MPs are at position θ ′

j = θj + π , ϕ′
j =

ϕj + π .
Note that we can understand the state |φ〉⊗n as a kind of

generalized coherent state [31,32], defined by the action of a
group on some chosen fiducial state (so that certain properties
apply such as overcompleteness). For our case the group is
SU(2) as represented by U⊗n, with U a rotation through θ,ϕ

and the fiducial state |0〉⊗n, that is

|φ〉⊗n = U⊗n|0〉⊗n. (A5)

When viewing the symmetric subspace as one spin S = n/2
system, these are equivalent to spin coherent states [33,34].
In this sense the Majorana representation is a kind of con-
densed coherent state representation of states [since it is only
concerned with the zeros of the coherent state decomposition
(A4)].

APPENDIX B: EQUIVALENCE OF ENTANGLEMENT
MEASURES

We now come to the proof of the equivalence be-
tween entanglement measures and the symmetry of the MP
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distributions. The entanglement measures in question are the
geometric measure of entanglement [15], the relative entropy
of entanglement ER [17], and the logarithmic robustness of
entanglement [16] is studied. Equality between the measures
is guaranteed for a state |ψ〉, if it is possible to find a separable
state of the form [12]

ωsep = �(ψ)|ψ〉〈ψ | + [1 − �(ψ)]�, (B1)

where � can be any density matrix and �(ψ) is the maximum
overlap with a product state as defined in (3). The state
(B1) can be understood as the “closest” separable state
with respect to the robustness of entanglement, which is
deemed equal to the geometric measure of entanglement by its
form [12].

The trick used in [12] is to take techniques from group
averaging to find such a state (see also [5]). For a group
G, any particular representation U (g), g ∈ G can always be
expanded as a product sum over irreducible representations
(irreps, which we enumerate by k), and the irreps give a
decomposition of the total Hilbert space,

U (g) =
K⊕

k=1

I1Ak
⊗ UBk

(g) (B2)

H =
K⊕

k=1

HAk
⊗ HBk

, (B3)

where UBk
(g) is the representation of g ∈ G for irrep k acting

on Hilbert space HBk
. The role of HAk

is just to give a compact
form to express multiplicity—the multiplicity of irrep k is
given by dim(HAk

) = Tr(I1Ak
). Note that the tensor product

in the above has nothing to do with the separation of parties
defining entanglement. By direct application of Shur’s lemma,
averaging over the group gives [12]

ω =
∫

U (g)ρU (g)†dg

=
∑
k=1

1

dim(HBk
)
T rBk

{PAk⊗Bk
ρPAk⊗Bk

} ⊗ I1Bk
. (B4)

If we now average over a local unitary group on a
product state |�〉, which achieves the maximum overlap �(ψ),
we will get a separable state, which is our candidate for
(B1). If, furthermore, the state ψ = |ψ〉〈ψ | is an invariant

subspace associated to a one-dimensional irrep (say k = 1)
with multiplicity equal to one we have

ωsep =
∫

U (g)�U (g)†dg = �(ψ)|ψ〉〈ψ |

+
∑
k=2

T rBk
{PAk⊗Bk

|�〉〈�|PAk⊗Bk
}

dim(HBk
)

⊗ I1Bk
, (B5)

which is indeed of form (B1), implying equality of the
entanglement measures.

In terms of states, ψ = |ψ〉〈ψ | corresponds to a one-
dimensional irrep if it is invariant under group action. A one
dimensional irrep is a phase which acts over a space of di-
mension equal to the multiplicity. Any state [one-dimensional
(1D) matrix] in this space is unchanged and so can itself be
considered a 1D irrep. Since it is possible to continuously
change states through this space, it means that a state which
is a 1D irrep, and therefore invariant, can be continuously
changed to another state which is also a 1D irrep, and hence
also invariant. If, on the other hand, a small shift breaks the
invariance, the state has multiplicity of only one, as we desire.

The groups we consider in this work are naturally enough
subgroups of SU(2), as represented by the local unitaries U⊗n.
Again, we see from definition (1), such operations are simply
rotations [in SO(3)] of the Majorana sphere itself. Since we
are only interested in the state matrix ψ (where global phases
do not matter), the invariance the MPs implies a state is a
1D irrep. If no small change in the positions of the points is
also invariant, this implies there is no multiplicity within the
symmetric subspace. Although this is not immediate enough
to show the group-averaged state is of the form (B1), it
can be proven as follows. The only remaining possibility for
multiplicity is if it has part outside the symmetric subspace.
In fact, a projection onto it (say for irrep k) must be of
the form PAk⊗Bk

= |ψ〉〈ψ | + |ψ⊥〉〈ψ⊥|, where |ψ⊥〉 has no
components in the symmetric subspace. This is true since its
representation is U⊗n and so any 1D irrep cannot stretch over
the symmetric subspace and another subspace but must be
distinctly in one or the other. If we put this into (B4) (with
again ρ = �), we indeed get the form (B5).

Thus the condition for equality of measures stated in
the main text is correct and complete. For example, for the
subgroup of arbitrary rotations about a fixed axis SO(2), we
see that states with MPs only at either pole of the rotation axis
satisfy our condition. If the rotations are around the Z axis,
these are the Dicke states, and we can see here pictorially the
proof of equivalence for these states reported in [12].
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