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Suppression of decoherence and disentanglement by the exchange interaction
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Entangled qubit pairs can serve as a quantum memory or as a resource for quantum communication. The
utility of such pairs is measured by how long they take to disentangle or decohere. To answer the question
of whether qubit-qubit interactions can prolong entanglement, we calculate the dissipative dynamics of a pair
of qubits coupled via the exchange interaction in the presence of random telegraph noise and 1/f noise. We
show that for maximally entangled (Bell) states, the exchange interaction generally suppresses decoherence and
disentanglement. This suppression is more apparent for random telegraph noise if the noise is non-Markovian,
whereas for 1/f noise the exchange interaction should be comparable in magnitude to the strongest noise source.
The entangled singlet-triplet superposition state of two qubits (ψ± Bell state) can be protected by the interaction,
while for the triplet-triplet state (φ± Bell state), it is less effective. Thus the former is more suitable for encoding
quantum information.
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I. INTRODUCTION

Much theoretical and experimental effort has been directed
toward studying the viability of quantum information process-
ing (QIP) in recent years due to a series of remarkable QIP
algorithms [1–3]. Initial concerns about quantum coherence
being too fragile to be useful have been partially dispelled
with the discovery of quantum error-correcting codes [4–7],
quantum threshold theorems [7–10], decoherence-free sub-
spaces [11–13], and dynamical decoupling by using optimized
pulsed sequences [14–17].

Qubit decoherence can be attributed to various sources
and has been investigated using models such as spin-
bath models [18–20], hyperfine interaction models [21–23],
and phonon-induced decoherence [24–26]. Another common
source of decoherence in solid-state devices is two-level
systems (TLSs) that generate random telegraph noise (RTN),
which with a wide distribution of switching rates can give rise
to 1/f noise [27,28]. In a number of recent semiconductor
quantum dot (QD) experiments, RTN is observed when the
potential in the dot lines up with the electrochemical potential
in the reservoir, causing electrons to randomly tunnel back
and forth between the dot and the reservoir [29–31]. This
puts limitations on the performance of a QD qubit, as such
a random telegraphic current can modulate the QDs orbital
wavefunction, which can create magnetic noise via spin-orbit
coupling mechanisms. This type of noise is also known to be
important in superconducting qubits [32] and could affect the
performance of other types of qubits as well [33–36].

This suggests that ways be invented to prolong quantum
coherence and entanglement in qubit pairs in the presence of
such noise sources. In this paper we present an extremely
encouraging set of results: that the exchange interaction
between the qubits can be used to suppress decoherence
as well as disentanglement due to RTN. This is a natural
choice as the Heisenberg exchange interaction between the
qubits is often used in any case to implement various gate
operations such as controlled-NOT and SWAP gates [37–40].
Thus new circuit elements are not required. Typical proposals
to suppress decoherence from TLSs that rely on spin echo
techniques [27,28,41,42] require additional resources and

system monitoring. Our proposal can be used either as an
alternative or even in addition to pulsing.

Our aim in this paper is to show that for the maximally
entangled Bell states, the interaction between the qubits can be
used to suppress decoherence and disentanglement. Without
any loss of generality, we first analytically and numerically
show this effect using a model where a single RTN source is
coupled to only one of the two qubits. We then consider a model
with two uncorrelated RTN sources, with each of them coupled
to a qubit, and show that the interaction suppresses quantum
dissipation in this case as well. Our analytical results suggests
that a straightforward generalization can be made to the case
of multiple uncorrelated RTN sources. We subsequently show
that the qubit interaction suppresses decoherence even if the
qubits are coupled to a large number of uncorrelated fluctuators
with a 1/f noise power spectrum. These results are extremely
important for QIP as much of its vaunted capabilities are due
to the fact that unlike the classical bit, multiple qubits exhibit
quantum entanglement, which allows multiple states to be ad-
dressed simultaneously [43]. Alternatively, an effective single
qubit can be created from the exchange-coupled singlet-triplet
states, which will be less susceptible to RTN and 1/f noise.

The exchange interaction in our work is taken to be an exter-
nally controllable parameter. Testolin et al. [44] have proposed
a model to show how the two-level fluctuators themselves
affect the exchange interaction as a function of time, while
Das and Agarwal [45] have shown that the interactions can
lead to periodic disentanglement and entanglement between
the qubits in contact with different environments.

In general, non-Hermitian Hamiltonians are often used to
describe decay processes in open quantum systems [46–50].
Our calculations are done using a recently developed quasi-
Hamiltonian formalism that is suitable for describing the
nonunitary temporal evolution of a quantum system acted
on by a classical stochastic process [36,51,52]. Similar
approaches have been used in Refs. [53,54]. In many instances,
quantum and classical noise models can yield the same
solution for decoherence if the noise power spectrums have
the same line shape. For example, in Refs. [55,56] the
analytical expression obtained for a qubit’s decoherence in
the presence of a thermal bosonic reservior in a lossy cavity
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with Lorentzian broadening is exactly the same as what we
obtain for classical pure dephasing noise. More recently, Saira
et al. [53] have shown that within the Born approximation,
many fully quantum mechanical noise models can be exactly
mapped onto classical stochastic noise models, including those
for RTN.

This paper is organized as follows. First, we describe our
single-fluctuator model and the quasi-Hamiltonian method in
Sec. II. Then in Sec. III, we give results and the exact Bloch
vector solutions for some important cases. Since for QIP
applications the entanglement dynamics at immediate times
is often the most important, in Sec. IV we obtain analytical
results for the short time behavior for the Bell states for any
arbitrary set of noise parameters. Our results are then extended
to the case of two uncorrelated fluctuators in Sec. V. This
treatment of two fluctuators is then subsequently extended to
treat an arbitrary number of uncorrelated fluctuators in Sec. VI,
where we calculate the temporal dynamics of two interacting
qubits in the presence of eight random telegraphic signals
with a 1/f distribution. Finally we present our conclusions
and implications for qubit design in Sec. VII.

II. MODEL AND METHOD

It is well known that in various materials and systems
sudden steplike transitions occur at random intervals of time
between two or more discrete voltage levels [57]. In the case
of semiconductors, these random telegraphic signals (RTSs)
are often attributed to trapping and release of charge carriers
by defect sites. If the fuctuators are statistically independent,
then the RTS can be expressed as a sum of the contributions
from individual fluctuations

g′(t) =
∑

i

gi si(t), (1)

where si(t) is a RTN sequence that switches between ±1 at
random intervals of time, gi is the noise vector for the ith fluc-
tuator, and |g| = g is the noise strength. Their autocorrelation
function is 〈si(t1)sj (t2)〉 ∝ exp(−2γi |t1 − t2|)δij , and γi is the
switching rate of the ith fluctuator. Each individual fluctuator
has a Lorentzian power spectrum and a broad distribution
of γ results in a 1/f noise power spectrum [57]. Analytical
solutions are, however, more tractable for a few RTN sources;
hence in this paper we first primarily focus on the dissipative
effects of a single fluctuator. We then discuss the two-fluctuator
case, the results of which are then extended to treat a larger
number of uncorrelated fluctuators with a 1/f noise power
spectrum.

We use the following Hamiltonian to describe the two-qubit
quantum system:

H = Ho + Hnoise + Hint (2)

= B · [S1 + S2] + s(t)g · S1 + JS1 · S2, (3)

where S1 = I ⊗ σ 1 and S2 = σ 2 ⊗ I, respectively, represent
qubits one and two, σ is the triad of Pauli matrices, B is the
steady magnetic field chosen to be in the z direction for all
our calculations, and J is the Heisenberg interaction strength.
Note that in this model the RTN is coupled only to one qubit.
Earlier calculations on noninteracting qubits suggest that this is
sufficient to describe all the qualitative effects [58]. The angle

θ , between the noise vector g and magnetic field B, is called
the working point of the qubit. The Hamiltonian H is written
for a given realization s(t) of the noise. Physical quantities are
calculated by averaging over all sequences.

Since we are primarily interested in disentanglement of the
qubits, it is convenient to rewrite the two-qubit Hamiltonian
using the maximally entangled Bell states ψ± = (|10〉 ±
|01〉)/√2 and φ± = (|00〉 ± |11〉)/√2 as our basis states.
Equation (3) in the [φ−,φ+,ψ−,ψ+] basis is

H ′ =
[

Hφ H
†
xy

Hxy Hψ

]
, (4)

where Hφ = J I − [Bz + gzs(t)]σx , Hxy = gxs(t)I −
igys(t)σx , and Hψ = −[J I + 2Jσz + gzs(t)σx].

In general, density matrices are suitable for treating open
quantum systems where one has a statistical mixture of pure
states. For two qubits, the time-dependent density matrix can
be expressed as

ρ(t) = 1

4

⎡
⎣I +

∑
(i,j )�=(0,0)

nij (t)σi ⊗ σj

⎤
⎦ , (5)

the coherent time evolution of which is governed by the von
Neumann equation. Here I is the 4 × 4 identity matrix, and
n(t) is the 15-component generalized Bloch vector. We have
used a notation where two indices i and j [where i,j = 0,x,y,z

and (i,j ) �= (0,0)] are used to denote each component of
the generalized Bloch vector. Here σi ⊗ σj = λk are the
generators of SU(4), and σ0 = I is the 2 × 2 identity matrix.
|n| can be thought of as a measure of purity. For instance,
|n| = 0 is the completely mixed state.

In the recently developed quasi-Hamiltonian formalism,
the dissipative temporal dynamics of an open quantum
system under the influence of classical noise is calculated
by transforming a random time-dependent Hamiltonian into
a time-independent non-Hermitian Hamiltonian [36,51,52].
This is done as follows. For a given noise realization the density
matrix is unitarily time evolved as ρ(	t) = U · ρ(0)·U †,
where U = exp[−iH (t)	t/h̄]. Substituting these in Eq. (5)
and using the identity Tr(λiλj ) = 4δij [58], one obtains the
following temporal transfer matrix equation:

n(t) =
N∏

m=1

Tm · n(0), (6)

where N = t/	t and the transfer matrix elements are given by
Tij = Tr[UλiU

†λj ]/2. As the RTN is modeled as a classical
stochastic process, its dynamics is governed by the master
equation, Ẇ(t) = VW(t) [59], where V is a matrix of transition
rates (such that the sum of each of its columns is zero)
and W is the flipping probability matrix for the TLS. If the
average occupation of the two states is the same (for unbiased
fluctuators), then

W(t) = 1

2

[
1 + e−2γ t 1 − e−2γ t

1 − e−2γ t 1 + e−2γ t

]
. (7)
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Here γ is the switching rate for the TLF. The combined
temporal dynamics of the quantum and classical TLSs,
averaged over all noise sequences, can be described by

n(t) = 〈f |�N |i〉n(0) = 〈f | exp(−iHqt)|i〉n(0), (8)

where |i〉 and |f 〉 are the initial and final state vectors
for the TLS that satisfy W|i(f )〉 = |i(f )〉. For an unbiased
TLS (i.e., with equal occupation probabilities), |i〉 = |f 〉 =
[1,1]/

√
2. Here �N = �N�N−1 · · · �1 and in the small time

approximation, any of the matrices


j = W � T =
[

(1 − γ	t)Ts=+1 γ	tTs=+1

γ	tTs=−1 (1 − γ	t)Ts=−1

]
,

(9)

where � denotes a Hadamard product and T is a square
matrix, each of whose columns consists of the transfer
matrices [Ts=+1,Ts=−1]. 
 is now a 30 × 30 matrix in the
combined generalized Bloch vector and TLS spaces. Hq =
lim

	t→0
i(
 − I)/	t is a time-independent non-Hermitian quasi-

Hamiltonian [52]. As Hq is not Hermitian, the time-evolution
operator exp(−iHqt) is not unitary, which makes it suitable
for treating dissipative processes in open quantum systems.

There are thus two relevant timescales that determine the
noise characteristics of the system. The correlation time of
the environment (which is proportional to γ −1) and the time
period for the noise-induced Rabi-like oscillations of the qubit
(which is proportional to g−1). If the noise correlation time of
the environment is much less than the time period of the noise-
induced Rabi-like oscillation (g 
 γ,), we say that the noise
is Markovian, whereas if g � γ , we say that the noise is
non-Markovian. In the former case Redfield theory can be
applied to describe dissipation, while in the latter case methods
such as the quasi-Hamiltonian method are required.

III. RESULTS AND DISCUSSION

At the pure dephasing point (i.e., θ = 0), Hxy = 0 in Eq. (4)
and the two-qubit dynamics can be effectively decoupled into
two single-qubit problems, whose dynamics is governed by Hψ

and Hφ. The effective one-particle quasi-Hamiltonian for ψ±
can be extracted using the procedure outlined in the previous
section:

Hψ
q = H

ψ

q0 + H
ψ

qJ

= i [γ (σx − σ0) ⊗ L0 + gzσz ⊗ Lx] − i [2Jσ0 ⊗ Lz]

(10)

where Lx,y,z ∈ SO(3) and L0 is the three-dimensional identity
matrix. In the absence of J , the exact solution for the nonzero
component of the Bloch vector using Eq. (8) is

nz(t) =
[

cos(�t) + γ

�
sin(�t)

]
e−γ t , (11)

where � = √
g2

z − γ 2. Note that as one crosses over from the
non-Markovian to the Markovian noise regime (γ > gz), the
trigonometric functions in nz(t) become hyperbolic functions,
and the Bloch vector’s oscillations between ψ+ and ψ− would
then not be seen. When gz 
 γ this reduces to the usual
Redfield form nz(t) ≈ exp(−t/T2) where T2 = γ /g2.

For the effect of J on the Bloch vector, we approximate
the matrix exponential in Eq. (8) using the Zassenhaus
expansion [60] as follows:

e−iH
ψ
q t ≈ e−iH

ψ

q0t e−iH
ψ

qJ t e[Hψ

q0,H
ψ

qJ ]t2/2. (12)

This gives the following expression for the Bloch vector
component, valid for either small J,gz or at short times:

n′
z(t)≈

[
ζ cos(Jgzt

2) + gz

�
sin(�t) sin(2J t) sin(Jgzt

2)

]
e−γ t ,

(13)

where ζ = cos(�t) + γ

�
sin(�t). Now, in case of the two-qubit

Bloch vector for ψ±, the nonzero components are nxx = nyy =
nz and nzz = −1. If in addition the initial state lies entirely in
the ψ± subspace, then the entire history of the qubit pair can be
visualized in the corresponding effective Bloch sphere, with
ψ± at the poles (see Fig. 1).

Let us first consider the dynamics on the ψ± subspace,
taking ψ+ as the initial state. In the absence of J in the strong
coupling limit, the effective Bloch vector oscillates between
ψ+ and ψ− with the quantum coherence and entanglement
dissipating in time [see Figs. 1(a) and 2(a)]. This oscillation
between ψ+ and ψ− is due to the gzs(t)σx component of Hψ .
In a given noise realization, s(t) causes rotations about the
x axis that switch randomly between the two orientations.
However, the ensemble-averaged Bloch vector always travels
in a straight line from pole to pole for ψ± [as shown in
Fig. 1(a)] and eventually diminishes to the center, since the
averaging restores the chiral symmetry. In Fig. 2 we show
|n|, the magnitude of the Bloch vector, and the concurrence
as a function of time and J for the ψ+ Bell state. For
bipartite systems, the concurrence provides a measure of the
entanglement between two qubits and is defined as [61]

C = max[
√

κ1 − √
κ2 − √

κ3 − √
κ4,0], (14)

where κ1, κ2, κ3, and κ4 are the eigenvalues of ρ(σy ⊗
σy)ρ∗(σy ⊗ σy) in decreasing order. |n|, as stated above,
provides a measure of the purity. The two quantities tend to
track each other but are not in one-to-one correspondence. The
dissipative dynamics of the entangled qubits is shown in three
different noise-coupling regimes: in the strong coupling limit

φ-

φ+ψ+

ψ-

(a) (b)

J

FIG. 1. (Color online) Effective Bloch spheres and the ensemble-
averaged Bloch vector trajectory at the pure dephasing point shown
for (a) ψ± and for (b) φ± with Bz = 1. The free precession of Jσz

about ψ+ is also shown in (a).
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FIG. 2. (Color online) Bloch vector magnitude and concurrence
as a function of time and J s for ψ+ shown for (a) non-Markovian,
(b) intermediate, and (c) Markovian noise-coupling regimes at θ = 0
and Bz = 1. Note that the Bloch vector amplitudes are offset by +1
for clarity. γ , g, and J are in units of B.

(non-Markovian noise, g > γ ), in the intermediate regime
(g ≈ γ ), and in the weak coupling limit (Markovian noise
g < γ ). Note that the purity of the state as measured by |�n|
is zero only at the center of the Bloch sphere, whereas the
concurrence is zero everywhere on the straight line that passes
through the center and connects |01〉 to |10〉 (i.e., the x axis).

As the exchange interaction is turned on, the Jσz com-
ponent of Hψ causes the Bloch vector to precess about ψ+
[see Fig. 1(a)]. This effect competes with the effect of the
noise, which is to drive the system toward the origin of
the effective Bloch sphere. Therefore the effective ensemble-
averaged Bloch vector tends to remain closer to ψ+ with
increasing J ; this delays decoherence and the disentanglement.
This behavior holds true even in the intermediate noise and
weak noise-coupling regimes as shown in Figs. 2(b) and
2(c). However, in the Markovian limit this suppression of
decoherence occurs only at larger J values, namely, when
J ∼ γ [see Fig. 2(c)]. The overall dissipation is also much
slower for Markovian noise.

We next consider an equal mixture of dephasing and
relaxational noise, a working point of θ = π/4. The results
are shown in Fig. 3. Here no analytic solution is possible even
for J = 0, and we must diagonalize the quasi-Hamiltonian Hq

numerically. Qualitatively, the temporal behavior of dissipative
process is the same as that of the pure dephasing case for
all three noise-coupling regimes, but with overall longer
decoherence times.
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FIG. 3. (Color online) Same as Fig. 2 but at θ = π/4.

FIG. 4. (Color online) Time period for the (a) envelope function
decay and (b) oscillations as a function of J and θ .

Clearly, the presence of the interaction J suppresses
disentanglement and decoherence for the ψ+ initial state. In
the non-Markovian case, however, there are several timescales,
one for the envelope function decay, which fits well to a form
∼ exp(−t/Tenv), and one for the oscillation period Tosc. In
Fig. 4 we show Tenv and Tosc as a function of θ and J .

In Fig. 4(a) it is seen that Tenv increases monotonically
as a function of θ . On the other hand, Tenv initially de-
creases as a function of J , reaches a minimum, and then
increases monotonically. This nonmonotonic behavior is easily
understood physically. Slow dephasing noise (small θ ) tends
to mix ψ− in with the initial state ψ+, moving the Bloch
vector’s trajectory “south” through the effective Bloch sphere.
Since the noise is non-Markovian, this can actually cause
oscillations between ψ+ and ψ−. On the other hand, J tends
to move the trajectory “east” or “west” for a fixed realization
of the noise, causing the oscillation to just miss the south
pole. This results in the speeding up of the oscillations on
averaging. For sufficiently large J, however, the trajectory
tends to stay entirely in the northern hemisphere, which slows
down the oscillations. Here we have the basic mechanism for
exchange-interaction-induced suppression of decoherence. If
the initial state is an eigenstate of the interaction and the noise
connects this state to a state belonging to a different eigenstate
with a different eigenvalue, then the interaction term causes
the trajectory to undergo tight oscillations near the initial state.

To show this, we look at how the the action of J depends on
the initial state. Take φ+ as the initial state. Then the question
is how this mixes with φ−. The crucial difference is that φ+
and φ− both belong to the triplet manifold; i.e., the exchange
interaction has the same eigenvalue for the two states.

When θ = 0, (pure dephasing), the qubit’s dissipative
dynamics is independent of J , as seen in Hφ [Eq. (4)]. The
effective one particle quasi-Hamiltonian is therefore

Hφ
q = i [γ (σx − σ0) ⊗ L0 + (2Bzσ0 + gσz) ⊗ Lx] , (15)

the exact solution of which gives

ny(t) =
[

cos(�t) + γ

�
sin(�t)

]
cos(2Bzt)e

−γ t , (16)

nz(t) = −
[

cos(�t) + γ

�
sin(�t)

]
sin(2Bzt)e

−γ t . (17)

The ensemble-averaged temporal trajectory of the Bloch
vector at a large magnetic field is shown in Fig. 1(b). In the
absence of a magnetic field, the Bloch vector travels only in
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FIG. 5. (Color online) Bloch vector magnitude and concurence
for φ+ as a function of time and J shown for (a) non-Markovian, (b)
intermediate, and (c) Markovian noise-coupling regimes at θ = π/6
and at Bz = 10−3. The Bloch vector amplitudes are offset by +1 for
clarity. γ , g, and J are in units of B.

a straight line from pole to pole. However, as in the case of
ψ±, the overall magnitude of the Bloch vector (hence the
decoherence) for φ± is independent of the magnetic field
at θ = 0 as seen from Eq. (17). The corresponding nonzero
two-qubit Bloch vector components are nxy = nyx = ny and
nxx = −nyy = nz.

If θ �= 0, then Bz suppresses the decoherence. However,
the effects of J are not visible if Bz �J , and hence we set
Bz = 10−3 for the next set of calculations. In Figs. 5 and
6 the decoherence and disentanglement dynamics is shown
for φ+ as a function of time and J , at various noise-coupling
regimes for θ = π/6 and θ = π/3, respectively. In the absence
of J , the decoherence has the same qualitative behavior as
that of Eq. (17). With the onset of J the decoherence is
suppressed initially; however, at longer times it exhibits a
crossover behavior in the non-Markovian and intermediate
noise-coupling regimes. This crossover occurs later in time
with increasing θ . Thus the picture is more complicated than
in the case of ψ±, and the beneficial effect of the exchange
interaction is weaker.

The results presented in this paper using the quasi-
Hamiltonian method have also been confirmed through numer-
ical simulations. A single numerical run consists of generating
a sequence of random flips such that the number of flips within
a given time interval t follows a Poisson distribution, Pn(t) =
(γ t)ne−γ t /n!. The time-dependent density matrix is then
exactly solved by numerically integrating the von Neumann
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FIG. 6. (Color online) Same as Fig. 5 but at θ = π/3.

equation in small steps of 	t using the time evolution operators
U and U †. The final numerical result is then obtained after
producing thousands of runs (5000 per dissipative curve in
this paper), each with a different RTN sequence, and then
averaging the density matrix over all sequences. This allows us
to numerically simulate the quasi-Hamiltonian results, which
are inherently averaged over all RTN sequences. The results
from the numerical simulation, and quasi-Hamiltonian method
are in exact agreement to within round-off error.

IV. ANALYTICAL RESULTS FOR SHORT TIME
EXPANSION AT ANY WORKING POINT

Often tolerance levels for decoherence levels are quite
stringent: A fidelity loss of more than one part in 104 can
destroy the result of a computation [62,63]. Hence e-folding
times such as T1 and also the above Tenv are not necessarily the
most relevant: It is important to look at short time behavior. We
now analytically show that at short times, J always suppress
decoherence for the Bell states (φ±, ψ±) for an arbitrary
working point θ , and for any set of noise parameters.

The von Neumann equation can be expanded as follows:

ρ(t) = ρ(0) − i

∫ t

0
[H (t ′),ρ(t ′)] dt ′

= ρ(0) − i

∫ t

0
[H (t1),ρ(0)] dt1

+
∫ t

0

∫ t1

0
[H (t2)[H (t1),ρ(0)]] dt1 dt2 + · · · . (18)

The ensemble average of ρ(t) has to be then calculated over
all noise sequences:

〈ρ(t)〉 =
∑
N

(−i)N
∫ t

0

∫ t1

0
...

∫ tN

0
〈CN 〉 dt1 dt2 . . . dtN , (19)

where CN is the N th-order nested commutator, CN =
[H (tN ), . . . ,[H (t2),[H (t1),ρ(0)]]]. The ensemble average of
〈CN 〉 has to be then calculated over all noise sequences. This
is done using the noise autocorrelation functions, which are
given by

〈s(t1)s(t2) · · · s(tN )〉 = 〈f |
N∏

j=1

s(tj ) ⊗ Wj |i〉

= 1 + (−1)N

2

N/2∏
k=1

e−2γ |t2k−t2k−1|, (20)

where s(tj ) = 1 for the first row of W and is −1 for the
second row. Wj is as in Eq. (7) with t → tj+1 − tj . Including
a factor of (g/2)N in the above expression accounts for the
noise amplitude.

A. Short time decoherence, for ψ± at any θ

The ensemble-averaged nonzero Bloch vector components
for the ψ± Bell states, obtained using ρ(0) = |ψ±〉〈ψ±| in the
short time expansion of Eq. (19), are listed in the Appendix
along with further details. As seen in these equations, the
Bloch vector components nox,nxo,noy , and nyo depend on J

and do not contribute to the suppression of decoherence at
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pure relaxation (θ = π/2) or pure dephasing (θ = 0) points.
Whereas nxx and nyy depend on J 2. They are equal for pure
dephasing and contribute to the suppression of decoherence
at all working points except at pure relaxation. The Bloch
vector components nzx,nxz,nzy , and nyz disappear at either
pure relaxation or dephasing points. These cross-terms along
with nxy and nyx do not contribute to the suppression of
decoherence.

The following approximate expression (for short times) can
be obtained for the magnitude of the ψ± Bloch vector by taking
the sum of the squares of the above Bloch vector components:

n2
ψ ≈ 3 − 8g2

z

(
1 − γ

3
t

)
t2

−2

3

[
12g4

x + 20g2
z g

2
x + g2

z

(
8g2

z + γ 2 − J 2
)]

t4, (21)

where n2
ψ = ∑

j n2
j was truncated after after the t4 term. Note

that the lowest-order contribution from J is obtained only
when Eq. (19) is expanded up to fourth order in time. From
the functional form of Eq. (A10), it is clearly seen that the
decoherence will be suppressed with the onset of the exchange
interaction.

B. Short time decoherence, for φ± at any θ

Similarly, in case of the φ± Bell state, ρ(0) = |φ±〉〈φ±| is
used in the short time expansion of Eq. (19). As in the previous
case, the lowest-order contribution from J is obtained only
when Eq. (19) is expanded up to fourth order in time. The
nonzero Bloch vector components are listed in the Appendix.
As seen in these equations, the Bloch vector components
nox,nxo,noz, and nzo depend on J ; however, at zero mag-
netic field none of these components will contribute to the
suppression of decoherence in the short time expansion. Here
noz and nzo, respectively, contribute only at pure dephasing
and relaxation points. whereas nox and nxo contribute only at
intermediate working points. Note that even though all of these
components depend on the sign of J , the overall magnitude of
the Bloch vector (and hence the decoherence) is independent
of the sign of J [just as in for nψ (t)].

In the case of the φ± Bell state, the following expression is
given for the square magnitude of the Bloch vector in the short
time expansion of Eq. (19):

n2
φ ≈ 3 − 8g2

x

(
1 − γ

3
t

)
t2

−2

3

[
12g4

z + 20g2
xg

2
z + g2

x

(
8g2

x + γ 2 − B2
z

)]
t4, (22)

where n2
φ = ∑

j n2
j was also truncated after the t4 term. It is

seen in Eq. (23) that unlike the case of nψ (t), J does not
contribute in suppressing the decoherence at immediate times.
Instead Bz aids in maintaining the quantum coherence in its
place. Even though it appears that the J -dependent terms will
not suppress the initial decoherence due to their higher-order
time dependencies, our calculations show that the initial t2

decoherence can be compensated for with a sufficiently strong
J at slightly longer times.

V. QUASI-HAMILTONIAN RESULTS FOR TWO
FLUCTUATORS

In this section we will demonstrate that even in the presence
of two uncorrelated fluctuators coupled to the qubits, the
exchange interaction still suppresses the decoherence.

The Hamiltonian for two qubits coupled to two uncorrelated
RTSs is

H = [B + s1(t)g1] · S1 + [B + s2(t)g2] · S2 + JS1 · S2,

(23)

where gk and sk(t) are the respective noise strength and RTN
sequence for the kth fluctuator. θk , is angle between gk and B
and is the working point of the kth qubit. The magnetic field
is taken to be in the z direction.

Here we will obtain analytical results only for the case of
pure dephasing for ψ±. The two-qubit dynamics is then once
again reduced to an effective single-qubit problem governed
by Hψ = 2Jσz + [gz1s1(t) − gz2s2(t)]σx . The flipping proba-
bility matrix for two uncorrelated and unbiased fluctuators is
W = W1 ⊗ W2, where W1(2) has the same functional form as
Eq. (7) but with γ replaced by γ1(2). Analogous to Eq. (9),
the combined transfer matrix for the two fluctuators and the
effective qubit at the j th instance of time is


j = W � T , (24)

where T is a square matrix in which each column con-
sists of the transfer matrices [T++,T+−,T−+,T−−]. Here it
is implied that T±,± = Ts1=±1,s2=±1 = L0 + [JLz ± gz1Lx ±
gz2Lx]	t . Following the procedure outlined at the end of
Sec. II we obtain the following quasi-Hamiltonian:

H
′ψ
q = Hψ

qa + H
ψ

qb + H
ψ

qi , (25)

where

Hψ
qa = iγ1(σx − σ0) ⊗ σ0 ⊗ L0 + igz1σz ⊗ σ0 ⊗ Lx, (26)

H
ψ

qb = iγ2σ0 ⊗ (σx − σ0) ⊗ L0 + igz2σ0 ⊗ σz ⊗ Lx, (27)

H
ψ

qi = i2Jσ0 ⊗ σ0 ⊗ Lz. (28)

H
ψ
qa,H

ψ

qb, and H
ψ

qd commute with each other. Hence in the
absence of J , the time-dependent Bloch vector can be solved
for exactly. Analogous to Eq. (8), for two unbiased and
uncorrelated fluctuators, the time-dependent Bloch vector is

n(t) = (〈f2| ⊗ 〈f1|) exp(−iHqt)(|i1〉 ⊗ |i2〉)n(0), (29)

where |i1(2)〉 = |f1(2)〉 = [1,1]/
√

2 are the initial and final state
vectors of the two unbiased fluctuators. This results in the
following nonzero component of the Bloch vector:

nz(t) =
2∏

k=1

[
cos(�kt) + γk

�k

sin(�kt)

]
e−γkt , (30)

where �k =
√

g2
zk − γ 2

k .
Next, for understanding the the effect of J on the Bloch

vector, the matrix exponential in Eq. (29) is calculated with
the inclusion of H

ψ

qi using the Zassenhaus expansion [see
Eq. (12)]. We derive the following approximate expression
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for the dephasing of the nonzero component of the effective
Bloch vector, valid only at short times or for small J or for
small gzk:

n′
z(t) ≈

2∏
k=1

[
ζk cos(Jgzkt

2)

+ gz,k

�k

sin(�t) sin(2J t) sin(Jgzkt
2)

]
e−γkt , (31)

where ζk = cos(�kt) + γk

�k
sin(�kt). As clearly seen from Eqs.

(30) and (31), the Bloch vector’s temporal dynamics in the
presence of two uncorrelated fluctuators is simply a product
of the single-fluctuator states shown in Eqs. (11) and (13).
This suggests that the temporal dynamics of interacting qubits
in the presence of multiple uncorrelated fluctuators (which
can result in 1/f noise) can be just as well understood in the
single-fluctuator picture.

So far, in this section, we have analytically shown how J

suppresses pure dephasing for the ψ± Bell state. The most
general quasi-Hamiltonian for two interacting qubits in the
presence of two uncorrelated fluctuators with for any arbitrary
set of working point, noise parameters, field strength, and any
initial state is

Hq = Hqγ + Hqg + HqB + HqJ , (32)

where

Hqγ = i[γ1(σx − σ0) ⊗ σ0 + γ2σ0 ⊗ (σx − σ0)] ⊗ L′
0 ⊗ L′

0,

(33)

Hqg = iσz ⊗ σ0 ⊗ [g1 · L′] ⊗ L′
0

+ iσ0 ⊗ σz ⊗ L′
0 ⊗ [g2 · L′] (34)

HqB = iBzL
′
0 ⊗ [L′

z ⊗ L′
0 + L′

0 ⊗ L′
z], (35)

HqJ = iJL′
0 ⊗ [L′

x ⊗ �zx + �zx ⊗ L′
x

+L′
y ⊗ �xz + �xz ⊗ L′

y + L′
z ⊗ �xy + �xy ⊗ L′

z].

(36)

Here �zx = (σz + σ0) ⊗ σx , �xz = σx ⊗ (σz + σ0), and
�xy = σx ⊗ σx − σy ⊗ σy . L′

i=x,y,z is the 4 × 4 form of the
SO(3) generators Li , whose first row and first column are
padded with zeros. L′

0 is 4 × 4 identity matrix, g = [gx,gy,gz]
and L′ = [L′

x,L
′
y,L

′
z]. It is important to note that the quasi-

Hamiltonian, Hq in Eq. (32), is a 64 × 64 matrix, which when
projected down using Eq. (30) acts on the 16-component Bloch
vector instead of the 15-component generalized Bloch vector.

The decoherence and the disentanglement dynamics for any
initial Bell state can be calculated for any given set of noise
parameters, by exponentiating the above quasi-Hamiltonian
[Eq. (32)] numerically. As an example, in Fig. 7 we have
shown the dissipative dynamics of the ψ+ entangled qubits
in the Markovian, intermediate, and non-Markovian noise
regimes for an equal mixture of dephasing and relaxational
noise for both qubits, i.e., θ1 = θ2 = π/4. Note that if the qubit
working points are held equal, then the qualitative temporal
behavior of dissipative process is the same as that of pure
dephasing in all three noise regimes, but with overall longer
decoherence times. As seen in the figure, the decoherence and
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FIG. 7. (Color online) Bloch vector magnitude and concurrence
as a function of time and J for ψ+ in the presence of two
uncorrelated RTSs shown for (a) non-Markovian, (b) intermediate,
and (c) Markovian noise-coupling regimes at θ1 = π/4 and Bz = 1.
For all calculations shown, g1 = g2, γ1 = γ2, and θ1 = θ2. The the
Bloch vector amplitudes are offset by +1 for clarity. γ , g, and J are
in units of B.

the disentanglement is significantly delayed with increasing
J in the non-Markovian and intermediate noise regimes.
Similar to the single-fluctuator case, in the Markovian limit
the suppression of decoherence occurs when J ∼ γ . For the
sake of simplicity, all noise parameters are held equal for both
fluctuators in Fig. 7. However, J will suppress the decoherence
for any arbitrary choice of θ , g, and γ for both ψ± and φ±
initial Bell states. This can be easily verified numerically by
using Eqs. (32) and (29).

VI. INTERACTING QUBITS IN THE PRESENCE
OF 1/ f NOISE

We now generalize our results for the interacting qubits,
for a full spectrum of uncorrelated fluctuators. The general
quasi-Hamiltonian for two interacting qubits in the presence of
n uncorrelated fluctuators, for any arbitrary set of parameters,
with m (where m < n) fluctuators coupled to one qubit and
n − m fluctuators coupled to the second qubit is

Ĥq = Ĥqγ + Ĥqg + ĤqB + ĤqJ , (37)

where

Ĥqγ = i
∑

j

γi

(
τ (j )
x − In

) ⊗ L′
0 ⊗ L′

0, (38)

Ĥqg = i

m∑
j=1

τ (j )
z ⊗ (gj · L′) ⊗ L′

0

+ i

n∑
j=m+1

τ (j )
z ⊗ L′

0 ⊗ (gj · L′), (39)

ĤqB = iBzIn ⊗ (L′
z ⊗ L′

0 + L′
0 ⊗ L′

z), (40)

ĤqJ = iJ In ⊗ (L′
x ⊗ �zx + �zx ⊗ L′

x + L′
y ⊗ �xz

+�xz ⊗ L′
y + L′

z ⊗ �xy + �xy ⊗ L′
z). (41)
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FIG. 8. (Color online) (a) Power spectrum S(ω) for a 1/f

distribution of eight uncorrelated fluctuators. (b) Inset showing the
noise power spectrum on a logarithmic scale. Magnitude of the Bloch
vector and concurrence for the ψ+ state shown as a function of time
and J in the presence of the same fluctuators with all gi held constant
at (c) gj = 0.01, (d) gj = 0.1, (e) gj = 1, at Bz = 1. θ = π/4 for all
fluctuators. The magnitude of the Bloch vector is offset by +1 for the
sake of clarity, and γ , g, J are in units of B.

In is an identity matrix of dimension 2n, and it is implied that

τ
(j )
x(z) = σ

(1)
0 ⊗ · · · σ (j−1)

0 ⊗ σ
(j )
x(z) ⊗ σ

(j+1)
0 ⊗ · · · σ (n)

0 . (42)

The time-dependent 16-component Bloch vector is now
obtained from the projected temporal dynamics of the quantum
and n classical TLSs as follows:

n(t) = 〈fn| · · · 〈f2| ⊗ 〈f1| exp(−iHqt)|i1〉 ⊗ |i2〉 · · · |in〉n(0).

(43)

As the dimension of the quasi-Hamiltonian scales as 2n,
calculating the coupled qubit dynamics in the presence of
a very large number of fluctuators can quickly become
computationally very intensive. We therefore calculate the
magnitude of the Bloch vector and the concurrence, using the
quasi-Hamiltonian in Eq. (37), for a set of eight fluctuators
with four of them coupled to each qubit. A random 1/f

distribution of γ is taken (ranging from 0.95 to 0.02), which is
sufficient for generating a 1/f noise power spectrum [where
the power spectrum is S(ω) = ∑

γi/(γ 2
i + ω2)] as shown in

Figs. 8(a) and 8(b). For the sake of simplicity and to limit the
parameter space we have held the noise strengths gj and their
respective working point the same for all the fluctuators. The
coupled qubits’ dissipative dynamics is shown in Fig. 8 for
the ψ+ state at θi = π/4, for gj = 0.01, 0.1, 1. In all three

cases it is seen that the exchange interaction J suppresses
decoherence and disentanglement. As expected, the rate of
decoherence itself increases with increasing noise strength gj .
For a full spectrum of fluctuators, if gj is smaller than the
smallest γ , then the noise due to the RTSs falls purely in the
Markovian noise-coupling regime, as shown in Fig. 8(c). If gj

falls somewhere in between the selected range of γ s, then one
has a mixture of Markovian and non-Markovian noise sources
as shown in Fig. 8(d). However, in this case, the Markovian
noise sources tend to dominate, and the oscillatory behavior,
typically seen for non-Markovian noise, tends to get washed
out, whereas for the case of gj = 1 in Fig. 8(e), where one
has a mixture of Markovian and intermediate noise sources,
small oscillations superposed on top of a smoothly decaying
function can be seen. This is similar to the dissipative behavior
seen for a single qubit in the presence of broad spectrum
noise [36].

As in the previous case of one and two fluctuators,
once the exchange interaction is turned on, the decoherence
and disentanglement dynamics is suppressed for multiple
fluctuators as well. This suppression is proportional to the
strength of J . However, for the 1/f noise power spectrum, it
is seen that the effect of J in suppressing the decoherence is
apparent only when it is at least the same order of magnitude
as gj . Finally, if all the uncorrelated fluctuators are at the pure
dephasing point, then the decoherence and disentanglement
dynamics of the coupled qubits are simply products of the
dissipative dynamics due to each individual fluctuator. The
short time behavior can be calculated for any number of
fluctuators with any arbitrary distribution of γ and g by taking
the k sum in Eq. (31) from 1 to n.

VII. SUMMARY

In summary we have suggested a way to prolong quantum
entanglement and coherence via qubit-qubit interaction. We
have analytically and numerically shown that the exchange
interaction suppresses decoherence and disentanglement for
the entangled Bell states. This is shown to be true for a single
RTS, for two RTSs, and for 1/f noise as long as the fluctuators
are uncorrelated. Our calculations are carried out using the
quasi-Hamiltonian method, which is seen to be a particularly
powerful method while dealing with the many degrees of
freedom associated with 1/f noise. For the single-fluctuator
case, the suppression of decoherence is most apparent when
J ∼ γ and hence is more effective for non-Markovian noise.
For 1/f noise, we conclude that J should be about the same
order of magnitude as the strongest noise source g in order
to alleviate decoherence. As the suppression of decoherence
at immediate times is key to performing high-fidelity gate
operations, we have analytically shown that the exchange-
interaction-induced suppression of decoherence at short times
is more effective for the ψ± Bell state then it is for the
φ± state. This is true for any arbitrary qubit working point,
fluctuator switching rate, and noise strength. If however a
large magnetic field is used, then the φ± Bell state is more
suitable for encoding quantum information. These results are
vital for quantum information processing as they can be used to
develop alternative methods (in addition to existing proposals)
to enhance qubit lifetimes.
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APPENDIX

In Sec. IV, for the ψ± Bell states, the ensemble-averaged
〈ρ(t)〉 is obtained by using ρ(0) = |ψ±〉〈ψ±| in the short
time expansion (up to N = 4) of Eq. (19). For any θ , the
lowest-order contribution from J is obtained only when Eq.
(19) is expanded up to fourth order in time. Note that the
first-order term 〈[H (t1),ρ(0)]〉 = 0. Using nij (t) = Tr[σi ⊗
σj × 〈ρ(t)〉], the following ensemble-averaged nonzero Bloch
vector components are obtained for ψ±:

nox = −5

7
nxo = −10

3
BzJgxgzt

4, (A1)

noy = 3γ t − 4

2 − γ t
nyo = 4

3
Jgxgz(2 − γ t)t3, (A2)

noz = −nzo = −2

3
BzJg2

xt
4, (A3)

nxy = 3γ t − 4

γ t − 2
nyx = 2

3
Bzg

2
x(γ t − 2)t3, (A4)

nyz = 3γ t − 4

2 − γ t
nzy = 2

3
Bzgxgz(3γ t − 4)t3, (A5)

nxz = −2

3
gxgz

[
3t2 − 2γ t3 − (

3B2
z + 6J 2 + �2)t4] , (A6)

nzx = 2

3
gxgz

[
3t2 − γ t3 + (

B2
z + 10J 2 − �2

)
t4

]
, (A7)

nxx = 1 − 2g2
z

(
t2 − 2

3
γ t3

)
−

[
2B2

z g
2
x − 4

3
g2

z (2J 2 + �2)

]
t4,

(A8)

nyy = 1 − 2
(
g2

z + g2
x

) (
t2 − 2

3
γ t3

)

+ 4

3

[
g2

x(�2 − 2Bz2) + g2
z (�2 + 2J 2)

]
t4, (A9)

nzz = −1 + 2

3
g2

x

[
3t2 − 2γ t3 − (

B2
z + �2)t4], (A10)

where � = √
g2

x + g2
z − γ 2 and gx = gz tan(θ ).

Similarly for the φ± Bell state, ρ(0) = |φ±〉〈φ±| is used in
the short time expansion of Eq. (19). As in the case of ψ±,
Eq. (19) has to be expanded at least up to N = 4 to see the
lowest-order contributions from J at the pure relaxation and
dephasing points. As expected, the ensemble-averaged first-
order terms 〈[H (t1),ρ(0)]〉 = 0. The resulting nonzero Bloch
vector components are

nox = −3

5
nxo = −2BzJgxgzt

4, (A11)

noz = −−3g2
z

5g2
x

nzo = 2BzJg2
z t

4, (A12)

nxy = −2

3
Bz

[
16B2

z + g2
x(2 − γ t) + 4g2

z (3 − 2γ t)
]
t3,

(A13)

nyx = −2

3
Bz

[
16B2

z + g2
x(8 − 5γ t) + 4g2

z (2 − 3γ t)
]
t3,

(A14)

nyz = 8 − 6γ t

20 − 14γ t
nzy = 8 − 6γ t

3
Bzgxgzt

3, (A15)

nxz = 2

3
gxgz

[
3 − 2γ t − (

3B2
z + �2

)
t2

]
t2, (A16)

nzx = nxz + 28

3
gxgzB

2
z , (A17)

nxx = 1 − (
2g2

z + 8B2
z

)
t2 + 4

3
γg2

z t
3 (A18)

+ 2

3

[
16B4

z + (
5g2

x + 24g2
z

)
B2

z + gz2�2
]
t4,

nyy = g2
x

[
2 − 4

3
γ t −

(
14

3
B2

z + 2

3
�2

)
t2

]
t2 − nxx,

(A19)

nzz = 1 − 2g2
x

(
t2 + 2

3
γ t3 + B2

z + �2

3
t4

)
. (A20)
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