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Stationary entanglement achievable by environment-induced chain links
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We investigate the possibility of chaining qubits by letting pairs of nearest-neighbor qubits dissipate into
common environments. We then study entanglement dynamics within the chain and show that steady-state
entanglement can be achieved.
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I. INTRODUCTION

It is nowadays well established that entanglement repre-
sents a fundamental resource for quantum information tasks
[1]. However, being a purely quantum feature, it is fragile
with respect to environmental contamination. Notwithstanding
that, the possibility of achieving entangled states as stationary
ones in open quantum systems has been put forward in many
different contexts (for those concerning qubit systems, see,
e.g., Refs. [2,3]). The subject has attracted a lot of attention,
until a recent striking experiment on long-lived entanglement
[4]. The works on this topic can be considered as falling
into two main categories: one where all qubits are plunged
in the same environment [2] and the other where each qubit
is plunged in its own environment [3]. In the former case,
the environment can provide an indirect interaction between
otherwise decoupled qubits and thus a means to entangle them.
In the latter case, a direct interaction between qubits is needed
to create entanglement, and to maintain it, one usually has to
also exploit other mechanisms (state resetting, driving, etc.).

Here we consider a hybrid situation as depicted in Fig. 1. It
represents a sort of spin- 1

2 chain dimerized by environments.
In practice, each environment induces a chain link between
contiguous qubits. Hence, we can expect that a simple
dissipative dynamics in such a configuration is able to establish
entanglement along the chain without the need to exploit any
other mechanism. Actually, we will show, for the case of three
qubits, the possibility of achieving stationary entanglement
for each qubit pair. The amount of entanglement results is
strongly dependent on the initial (separable) state. Also the
dependence from the chain boundary conditions (open or
closed) will be analyzed, as well as a left-right asymmetry
in the qubit-environment interaction.

The layout of this paper is the following. In Sec. II we
introduce the model relying on physical motivations and
we discuss the general dynamical properties. In Sec. III we
restrict our attention to the three-qubit case and investigate the
entanglement dynamics in the open boundary condition. In
Sec. IV we analyze the same system but with closed boundary
conditions. Concluding remarks are presented in Sec. V.
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II. THE MODEL

The model of Fig. 1 can be motivated by physically
considering two-level atoms inside cavities connected by fibers
[5]. In such a scheme, each atom-qubit can be thought of as
exchanging energy with the optical modes supported by the
fiber. In turn, the latter can be modeled as an environment.
Thus each qubit dissipates energy through two environments
(one on the left and the other on the right). It happens that two
contiguous qubits dissipate energy into the same environment.
Then this environment mediates the interaction between the
contiguous qubits.

More specifically, let us consider, at the ith site of a chain,
a qubit described by ladder operators σ±

i satisfying the usual
spin- 1

2 algebra [σ+
i ,σ−

i ] = σ z
i . Let us also consider, at the ith

site of a chain, radiation modes described by ladder operators
bi,j ,b

†
i,j satisfying the usual bosonic algebra [bi,j ,b

†
i,j ′ ] = δj,j ′ .

Then, the interaction Hamiltonian reads

HI =
∑

i

∑
j

σ−
i (b†i−1,j + bi,j ) + H.c.. (1)

By considering bi,j as environment operators for the ith qubit,
we can use standard techniques [6] to arrive at the following
master equation:

∂ρ

∂t
=

∑
i

Li,i+1ρ,

Li,i+1ρ = (σ−
i + σ−

i+1)ρ(σ+
i + σ+

i+1) (2)

− 1
2 {(σ+

i + σ+
i+1)(σ−

i + σ−
i+1),ρ},

where {,} denotes the anticommutator and we have assumed
a unit decay rate. Since we are interested in the steady state,
we have to notice that given a master equation written in the
standard Linbladian form,

∂ρ

∂t
= −i[H,ρ] +

∑
i

[LiρL
†
i − 1

2 {L†
i Li,ρ}], (3)

the uniqueness of the stationary solution is guaranteed if the
only operators commuting with Hamiltonian H and every
Lindblad operator Li are multiples of identity [7].

In the case of Eq. (2), there is no Hamiltonian term and
the σ−

i commute with Lindblad operators. Hence the steady
state may not be unique, that is, it may depend on the initial
conditions. Due to that, we need to study the full dynamics of
the system.
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III. THE THREE-QUBIT CASE WITH OPEN
BOUNDARY CONDITIONS

We restrict our attention to a chain of three sites. We first
consider open boundary conditions. Then, the dynamics will
be described by a master equation that can be easily derived
from Eq. (2),

∂ρ

∂t
= γL1,2ρ + (1 − γ )L2,3ρ = γ {2(σ−

1 + σ−
2 )ρ(σ+

1 + σ+
2 )

− [(σ+
1 + σ+

2 )(σ−
1 + σ−

2 ),ρ]} + (1 − γ ){2(σ−
2 + σ−

3 )

× ρ(σ+
2 + σ+

3 ) − [(σ+
2 + σ+

3 )(σ−
2 + σ−

3 ),ρ]}. (4)

Here we have considered the possibility, for each qubit,
of having an asymmetric decay rate on the left and right
environments. This has been accounted for by the real factors
γ and (1 − γ ), with the assumption 0 < γ < 1. Clearly the
symmetric situation is recovered when γ = 1/2.

By arranging the density matrix (expressed in the compu-
tational basis {|e〉,|g〉}⊗3) as a vector v (e.g., ρi,j = v8(i−1)+j ),
the master equation (4) can be rewritten as a linear set of
differential equations,

v̇(t) = Mv(t), (5)

where M is a 64 × 64 matrix of constant coefficients given by

M = 2γ (σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2) ⊗ (σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2)

− γ (σ+ ⊗ I2 ⊗ I2 + I2 ⊗ σ+ ⊗ I2)(σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2) ⊗ I8

− γ I8 ⊗ (σ+ ⊗ I2 ⊗ I2 + I2 ⊗ σ+ ⊗ I2)(σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2)

+ 2(1 − γ )(I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−) ⊗ (I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−)

− (1 − γ )(I2 ⊗ σ+ ⊗ I2 + I2 ⊗ I2 ⊗ σ+)(I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−) ⊗ I8

− (1 − γ )I8 ⊗ (I2 ⊗ σ+ ⊗ I2 + I2 ⊗ I2 ⊗ σ+)(I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−), (6)

with In being the (n × n)-dimensional identity matrix and

σ+ = ( 0 1
0 0 ), σ− = ( 0 0

1 0 ). Then, the set of differential Eq. (5)

can be converted into a set of algebraic equations via the
Laplace transform, ṽ(s) = ∫ ∞

0 exp(−st)v(t), i.e.,

sṽ(s) − v(0) = M ṽ(s). (7)

By decoupling these equations, one finds that the Laplace
transforms of the density-matrix elements are rational func-
tions of polynomials, and the inverse Laplace transformation
can be performed analytically. The results are not explicitly
reported because the expressions are too cumbersome.

Having the density matrix of the system, we can study
the entanglement dynamics for each qubit pair of the system.
To quantify the amount of entanglement between each of the
qubits, we use the concurrence [8]. We recall that to find the
concurrence of a bipartite system described by the density
matrix ρ, the following steps should be taken:

(i) Find the complex conjugate of the density matrix in the
computational basis and denote it by ρ∗.

(ii) Define ρ̃ := (σy ⊗ σy)ρ∗(σy ⊗ σy), where σy =
i(σ− − σ+).

(iii) Find the square root of the eigenvalues of ρρ̃ and sort
them in decreasing order: {λ1, λ2, λ3, λ4}.

(iv) The concurrence is given by

C = max{0,λ1 − λ2 − λ3 − λ4}. (8)

FIG. 1. Environments (ellipses) inducing chain links between
contiguous qubits (gray circles).

A. Entanglement dynamics

Figure 2 shows the evolution of entanglement between each
qubit pair for the |eee〉 initial state. As can be seen in this
figure, when all the qubits are initially in an excited state,
it takes a longer time for the first and the third qubits to
become entangled compared to the time needed to generate
entanglement between the first and second, or second and third,
qubits. As a consequence, for the qubits that are not nearest
neighborhood, we have a sudden birth of entanglement, i.e., it
suddenly becomes nonzero at times greater than zero (it does
not smoothly increase starting from the initial time) [9].

If we start with different initial states, the entanglement
behaves differently in time. The left panel of Fig. 3 shows
the value of concurrence in time for |eeg〉 as the initial state.
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FIG. 2. (Color online) Qubit-pair concurrence vs time for the
|eee〉 initial state. The dashed blue line shows C1,2 , the solid green
line shows C2,3 , and the dotted red line shows C1,3 .
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FIG. 3. (Color online) Qubit-pair concurrence vs time for the |eeg〉 (left) and |ege〉 (right) initial states. The dashed blue line shows C1,2 ,
the solid green line shows C2,3 , and the dotted red line shows C1,3 .

Like the previous case, it shows that the time needed by the
first and third qubits to become entangled is longer than the
time needed by the nearest-neighborhood qubits. Moreover,
we still have the entanglement sudden-birth phenomenon,
but this time it manifests not only for distant qubits (first
and third), but also for the first and second qubits. The
interesting point in this figure is that the entanglement
generation between the nearest neighbors is quicker if they
are initially prepared in the |eg〉 rather than the |ee〉 state.
The other possibility with two excitations in the initial state
is |ege〉, for which the time evolution of entanglement in
shown in the right panel of Fig. 3. This time the entanglement
sudden-birth phenomenon only manifests for distant qubits
(first and third).

A big difference appears if the number of excitations
of the initial state reduces to one. Figure 4, left and
right panels, shows entanglement evolution for the initial
states |egg〉 and |geg〉, respectively. As can be seen in this
figure, entanglement is generated between each qubit pair
from the beginning, no matter how far they are from each
other, i.e., we no longer have the entanglement sudden-birth
phenomenon.

Finally, in the case of the |ggg〉 initial state, there is no
entanglement at any time because this state represents a fixed
point of the Liouvillian superoperator on the right-hand side
of the master equation (4), or, in other words, Mv = 0 with
vj = δj,64.

B. Stationary entanglement

Taking the limit t → ∞ in the density-matrix elements, we
arrive at the following general form for the steady state:

ρs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 f 0 −f f 0

0 0 0 0 0 0 0 0

0 0 0 −f 0 f −f 0

0 0 0 f 0 −f f 0

0 0 0 0 0 0 0 1 − 3f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

t

C

 

 

C
1,2

C
1,3

C
2,3

γ=0.7

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

t

C

 

 

C
1,2

C
1,3

C
2,3

γ=0.7

FIG. 4. (Color online) Qubit-pair concurrence vs time for the |egg〉 (left) and |geg〉 (right) initial states. The dashed blue line shows C1,2 ,
the solid green line shows C2,3 , and the dotted red line shows C1,3 .
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where f ∈ R is determined by the initial state of the system.
In particular, we have the following correspondence:

f = 24 − 19γ + 19γ 2

216 + 81γ − 81γ 2
, |eee〉

f = 4(4 − 5γ + γ 2)

27(8 + 3γ − 3γ 2)
, |eeg〉

f = 4(4 + 5γ − 5γ 2)

27(8 + 3γ − 3γ 2)
, |ege〉 (10)

f = 1

9
, |egg〉, |geg〉, |gge〉

f = 4γ (3 + γ )

27(8 + 3γ − 3γ 2)
, |gee〉

f = 0. |ggg〉

To find the amount of entanglement in each qubit pair at the
steady state, we first write the reduced density matrices,

ρ1,2 = ρ2,3 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 f −f 0

0 −f f 0

0 0 0 1 − 2f

⎞
⎟⎟⎟⎠ ,

ρ1,3 =

⎛
⎜⎜⎜⎝

0 0 0 0

0 f f 0

0 f f 0

0 0 0 1 − 2f

⎞
⎟⎟⎟⎠ . (11)

Then, it is easy to show that the concurrence becomes

C12 = C13 = C23 = 2f. (12)

Figure 5 shows the stationary entanglement vs γ for different
initial states. For initial states such as |egg〉, |geg〉,and |gge〉,
the entanglement does not depend on γ . For the |eee〉 initial
state, by increasing the difference in the dissipation rates, more
entanglement will be induced in the system. On the contrary,
for |ege〉, the maximum value of entanglement is achieved
when the dissipation rates into the two environments are the
same. As is expected, the entanglement for the initial states
|eeg〉 and |gee〉 are equal at γ = 1/2. In these cases, the
maximum value can be attained when there is one excitation
in the initial state.

IV. THE THREE-QUBIT CASE WITH CLOSED
BOUNDARY CONDITIONS

We now study the chain of three sites with closed boundary
conditions. In this case, the master equation (2) reads

∂ρ

∂t
= γL1,2ρ + µL2,3ρ + νL3,1ρ = γ {2(σ−

1 + σ−
2 )ρ(σ+

1 + σ+
2 ) − [(σ+

1 + σ+
2 )(σ−

1 + σ−
2 ),ρ]} + µ{2(σ−

2 + σ−
3 )ρ(σ+

2 + σ+
3 )

− [(σ+
2 + σ+

3 )(σ−
2 + σ−

3 ),ρ]} + ν{2(σ−
3 + σ−

1 )ρ(σ+
3 + σ+

1 ) − [(σ+
3 + σ+

1 )(σ−
3 + σ−

1 ),ρ]}, (13)

where the possibility, for each qubit, of having an asymmetric
decay rate on the left and right environments is accounted for
by the real factors γ , µ, and ν (0 � γ,µ,ν � 1). Clearly the
symmetric situation is recovered when γ = µ = ν (=1/2).

We recall that for finding the stationary state for the open
boundary condition, we have solved the equation

[γL1,2 + (1 − γ )L2,3]ρ = 0. (14)

It resulted in a nonunique steady state. A special case occurs
when we have |ggg〉 as the initial state. This is invariant under
the action of [γL1,2 + (1 − γ )L2,3] and therefore the steady
state is the pure state |ggg〉 itself. For other possible initial
states, the steady state is a mixed state characterized by a
parameter f depending on the initial state [see Eq. (9)]. For
the closed boundary conditions, we should solve the equation

(γL1,2 + µL2,3 + νL3,1)ρ = 0 (15)

to find the steady state. By comparing it with Eq. (14), it
becomes clear that it puts more constraints on the steady state,
hence we expect it to have a more restricted form than the one
in Eq. (9).

It is easy to check that |ggg〉 is also invariant under the
action of (γL1,2 + µL2,3 + νL3,1), so it will be one of the
possible steady states of the system with a closed boundary
condition. Actually it is the unique one. To show that, we again
arrange the density matrix (expressed in the computational

basis {|e〉,|g〉}⊗3) as a vector v (e.g., ρi,j = v8(i−1)+j ). The
master equation (13) can be rewritten as a linear set of
differential equations,

v̇(t) = Mv(t), (16)
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FIG. 5. (Color online) Steady-state entanglement vs γ for differ-
ent initial states.
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where M is a 64 × 64 matrix of constant coefficients given by

M = 2γ (σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2) ⊗ (σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2)

− γ (σ+ ⊗ I2 ⊗ I2 + I2 ⊗ σ+ ⊗ I2)(σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2) ⊗ I8

− γ I8 ⊗ (σ+ ⊗ I2 ⊗ I2 + I2 ⊗ σ+ ⊗ I2)(σ− ⊗ I2 ⊗ I2 + I2 ⊗ σ− ⊗ I2)

+ 2µ(I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−) ⊗ (I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−)

−µ(I2 ⊗ σ+ ⊗ I2 + I2 ⊗ I2 ⊗ σ+)(I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−) ⊗ I8

−µI8 ⊗ (I2 ⊗ σ+ ⊗ I2 + I2 ⊗ I2 ⊗ σ+)(I2 ⊗ σ− ⊗ I2 + I2 ⊗ I2 ⊗ σ−)

+ 2ν(I2 ⊗ I2 ⊗ σ− + σ− ⊗ I2 ⊗ I2) ⊗ (I2 ⊗ I2 ⊗ σ− + σ− ⊗ I2 ⊗ I2)

− ν(I2 ⊗ I2 ⊗ σ+ + σ+ ⊗ I2 ⊗ I2)(I2 ⊗ I2 ⊗ σ− + σ− ⊗ I2 ⊗ I2) ⊗ I8

− νI8 ⊗ (I2 ⊗ I2 ⊗ σ+ + σ+ ⊗ I2 ⊗ I2)(I2 ⊗ I2 ⊗ σ− + σ− ⊗ I2 ⊗ I2). (17)

In this case, it is possible to see that

Mv = 0 (18)

admits a unique solution vj = δj,64, corresponding to |ggg〉,
for all values of γ,µ, and ν. By having the extra constraints
for the closed boundary conditions, no parameter is left free
to characterize the steady state. Actually in this case, all
excitations of the initial state, whichever it is, dissipate to the
environment. Hence no entanglement survives at stationary
conditions. Then, comparing the steady states for the open
and closed boundary conditions, we can loosely speak about
entanglement frustration because it is the addition of an
extra bath (interaction 1–3) that prevents the state from
having entanglement. Likewise, in [10], it is the addition
of extra spins (or modes) that prevents maximally entangled
states.

V. CONCLUSION

In this work, we have first considered a spin- 1
2 chain

dimerized by environments. By means of a dissipative
mechanism, each environment induces a chain link between
contiguous qubits. Then we have studied the possibility of
having long-lived entanglement without resorting to any other
mechanism. In particular, for the case of a three-qubit chain
with an open boundary condition, we have classified the

amount of stationary entanglement according to some initial
(separable) states. Here we have also shown the appearance
of the entanglement sudden birth. On the contrary, for the
case of a three-qubit chain with a closed boundary condition,
we have proven the impossibility of stationary entanglement.
This fact can be interpreted as the entanglement frustration
phenomenon [10], induced in this context by the imposed
periodic boundary conditions.

The proposed scheme lends itself to be extended to n > 3
sites, where one can evaluate how entanglement scales as a
function of the distance between the two qubits. Moreover,
in the limit of large n, these results could also be useful
for studying possible connections between quantum phase
transitions and reservoir properties.

Finally, the discussed method of generating entanglement
seems economical and offers interesting perspectives for
the generation of the so-called graph states (useful for
measurement-based quantum computation) [11], when one
considers network topologies more complicated than a simple
chain.
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