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Reduce, reuse, recycle for robust cluster-state generation
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Efficient generation of cluster states is crucial for engineering large-scale measurement-based quantum
computers. Hybrid matter-optical systems offer a robust, scalable path to this goal. Such systems have an
ancilla which acts as a bus connecting the qubits. We show that by generating the cluster in smaller sections of
interlocking bricks, reusing one ancilla per brick, the cluster can be produced with maximal efficiency, requiring
fewer than half the operations compared with no bus reuse. By reducing the time required to prepare sections of the
cluster, bus reuse more than doubles the size of the computational workspace that can be used before decoherence
effects dominate. A row of buses in parallel provides fully scalable cluster-state generation requiring only 20
controlled-PHASE gates per bus use.
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I. INTRODUCTION

Hybrid schemes for quantum information processing are
among the most promising for scalable quantum computers.
Such systems combine both matter and optical elements, where
the computational gates between qubits of one type can be
mediated by a shared bus of the other type [1–3]. A com-
putational model for such hybrid systems has recently been
characterized as ancilla-based computation [4], in contrast
to the usual quantum computation models that use direct
qubit-qubit gates. Ancilla-driven schemes are important for
chip-based quantum computing architectures, where a flying
ancilla mediates between fixed qubits [5–7].

Hybrid architectures form a natural substrate for
measurement-based quantum computing (MBQC) [8], one
type of which (the topological model based on the surface code
[9]) has the best error threshold for quantum computing [10]. In
MBQC a highly entangled cluster state is generated, and then
computation is performed by sequential qubit measurements.
The quantum processing task is to generate the cluster state,
after which it becomes a matter of measurement and classical
processing to feed forward the measurement outcomes. The
first proposal for cluster-state construction was a one-shot
scheme, where the entire cluster was created by a small number
of global operations [8]. Since the cluster qubits are measured
sequentially in scalable physical realizations, the cluster is
prepared dynamically, a few rows at a time [11,12]. This avoids
the need for long coherence times for entangled qubits [13,14],
a critical requirement for scalable schemes. Photonic schemes
for constructing cluster states probabilistically [14] exploit the
linear optics quantum computing scheme of Knill, Laflamme,
and Milburn [15]. The disadvantage of this approach is the
large number of repeated operations required to successfully
build the cluster. To reduce this overhead, heralded controlled-
PHASE (CPHASE) operations occurring between two qubits were
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proposed by Browne et al. [16]. Duan et al. [17] showed that
this probabilistic generation does indeed allow the cluster to
grow, and Gross et al. [18] determined the optimal growth
strategies for regimes with low and high probabilities of
success per operation. Louis et al. [19] showed that using
a three-qubit entangling gate instead of a two-qubit entangling
gate increased the success probability from 1/2 to 3/4. The
advantages of deterministic gates were explored by exploiting
ancilla-based schemes [5,19–22]. Wang et al. [23] proposed a
method to transfer an atomic cluster state to photonic qubits,
inverting the usual role of the qubit and ancilla between the
matter and optical systems.

As the cluster state is the fundamental quantum resource
of a measurement-based computation, it becomes extremely
important to make it as error free as possible. Errors in
constructing the cluster can propagate rapidly through a
computation because of the highly entangled nature of the
state, leading to failure of the computation. Topological surface
encodings on cluster states provide a robust fault tolerance
for quantum computation, provided each component in the
system has an error below a certain threshold [7,24,25]. The
construction of the cluster itself is one such component, and
schemes to reduce cluster error can enable systems that would
otherwise be unusable to reach the threshold for use with
error correction. Hybrid systems are susceptible to specific
types of error that other systems are not, because of the use
of the mediating ancilla. In cases where the ancilla is not
destroyed after each gate, there is the additional possibility of
errors propagating through ancilla reuse. We show there is a
trade-off between increasing efficiency by using the same bus
for multiple gates and increasing errors because of this.

In this paper we present the optimal scheme for dynamic
two-dimensional (2D) cluster-state generation in hybrid sys-
tems where the mediating system (bus) can be used for more
than one gate operation without being reset. We divide the
cluster state into interlocking bricks, each of which is built
with a single bus. We give the optimal method for constructing
the bricks, reducing the number of system-bus entanglements.
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We then show how to determine the brick size based on
the error threshold of the system being used. We find that,
even when the probability of error in the system is high, this
scheme can still deliver significant efficiency savings through
bus reuse, enabling a larger cluster to be generated. The paper
is organized as follows. In Sec. II we give an overview of
the qubus system, the particular ancilla-based scheme we will
focus on. Section III explains how to reduce the number
of operations required when reusing the qubus for multiple
gates. In Sec. IV we introduce our error model for reusing the
qubus, and in Sec. V we apply bus reuse to generating a 2D
cluster state. In Sec. VI we calculate the optimal bus reuse
scheme in the ideal case, and in Sec. VII we combine this with
our error model to give the optimal bus reuse scheme with
dephasing. Section VIII discusses how to apply our results to
dynamic generation schemes, and in Sec. IX we calculate the
optimal brick size in terms of the system parameters. Section X
summarizes our conclusions.

II. QUBUS SYSTEM

To provide a concrete setting for our calculations, we will
focus on the qubus system, which consists of matter qubits and
a photonic field as the mediating ancilla [1,26,27]. The cluster
state we are generating is a regular square lattice of qubits
with nearest neighbors entangled. Each qubit is initialized
in the state (|0〉 + |1〉)/√2, then CPHASE gates are applied
between neighboring qubits. Using the qubus, CPHASE gates
are performed using a conditional evolution

Ue = exp(−iHintτ/h̄), (1)

where τ is the fixed time for one such operation and

Hint = h̄χσz(a
†eiθ + ae−iθ ), (2)

where χ is nonlinearity strength, a (a†) are the field annihila-
tion (creation) operators, and θ = 0 (π/2) describes coupling
of the qubit to the position (momentum) quadrature of the
field. This interaction results in deterministic displacements
along discrete paths in phase space, of amplitude β = χτ .
The application of Ue(±xj ) applies a displacement of β in
the positive (negative) direction in position space for the j th
qubit, and Ue(±pk) applies a displacement of β along the
positive (negative) axis in momentum space for the kth qubit.
The sequence

Ue(x2)Ue(−p1)Ue(−x2)Ue(p1) (3)

performs a geometric phase gate between qubits 1 and 2, with
the phase change proportional to the area traced out [1,28].
When β2 = π/8, this provides the CPHASE gate required for
cluster-state construction. The qubus thus acts as a discrete-
level system with two partitions, equivalent to two coupled
qudit ancillas. There are two options for using such an ancilla-
based system to construct a cluster state: Either the ancilla is
discarded after every gate, or it is recycled for use with further
gates.

III. REUSING THE BUS

If each CPHASE gate is performed by a different bus, then
each qubit in the cluster (apart from the perimeter) needs to

be operated on by four different buses to generate the four
entanglements it is part of. For a cluster of m × n qubits we
therefore need

N = 8mn − 4(m + n) (4)

bus operations to complete it—one entangling and one
disentangling operation per qubit per gate. However, if we
are able to reuse the bus, then we can use fewer operations.
Consider the following sequence of unitaries for three qubits:

Ue(x3)Ue(−p2)Ue(−x3)Ue(−x1)Ue(p2)Ue(x1). (5)

Reading from the right, a CPHASE is performed between qubits
1 and 2, and then qubit 1 is disentangled from the bus. Qubit
2 is kept on the bus, and qubit 3 is entangled with the position
quadrature. Finally, qubits 2 and 3 are disentangled from the
bus (in that order). The result is CPHASE gates between both
(1,2) and (2,3) using six bus operations rather than the eight
needed if qubit 2 were disentangled after the first interaction.
Such sequential operations are possible in all ancilla-based
systems which can reuse the ancilla.

IV. DEPHASING ERRORS

Reusing the ancilla reduces the total number of operations
required, speeding up the process and hence reducing the
length of time decoherence acts on the cluster qubits. For
N bus operations taking a total time Nτ to perform, the
probability of a phase-flip error due to qubit dephasing is
[1 − exp(−Nγ τ )]/2, where γ is the dephasing rate for one
qubit. Fewer bus operations, therefore, mean less dephasing.
However, we have to take into account error accumulating on
the ancilla. For the qubus, the errors come from photon loss.
The probability of a phase-flip error due to photon loss on
the bus is [1 − exp(−4Cηβ2)]/2, where C is the number of
CPHASE gates constructed per bus and η is the loss parameter
for the bus. Combining these gives the total probability of
dephasing:

ε = 1

2
[1 − exp(−Nγ τ − 4Cηβ2)]. (6)

We can therefore trade off the two dephasings by reusing the
bus, which reduces N but increases C. If we minimize N for a
given ε, this then enables a maximum number of CPHASE gates
to be completed before the dephasing reaches a critical value.

V. CLUSTER-STATE GENERATION

We now apply bus reuse to more efficient cluster-state
construction. Extending the bus reuse sequence in Eq. (5) to
further qubits allows one ancilla to generate a line of entangled
qubits with just two operations per qubit, one entangling
followed by one disentangling. A set of such lines of length
L arranged to form an L × L grid generates a 2D cluster,
as proposed by Louis et al. [19,29]. The minimum number
of operations required to build a cluster from 1D entangled
lines of qubits can be obtained by a simple combinatorial
argument. Consider the cluster as a 2D lattice graph, with
qubits as vertices and entanglement links as edges. We count
how many edges of the graph can be generated using a line of
qubits when each qubit is only visited once; this corresponds to
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being connected to the bus once only, thus minimizing bus use.
For the cluster of m × n qubits, the total number of vertices
is mn. The maximum number of edges that can be generated
is therefore mn − 1. Each entangling action requires two bus
operations per qubit (one to connect to the bus and one to
disconnect). We can therefore generate mn − 1 edges with
2mn bus operations. The total number of edges in the cluster
is m(n − 1) + n(m − 1), so we are left with (n − 1)(m − 1)
edges to fill in. The path we have generated can connect a
maximum of two edges to each vertex in the lattice. All vertices
except the corners require more than two edges. Therefore
all qubits except the four corners will require reactivation in
order to fill in the extra edges, requiring 2mn − 8 additional
operations. We therefore have a minimum number of bus
operations 4mn − 8 to generate the cluster state using an
ancilla system where at most two qubits are coupled to the
ancilla at any time. The method of Louis et al. [19] achieves
the minimum up to a constant. If the total number of operations
one bus can perform is limited by the errors accumulating, each
change to a new bus requires, in general, an extra disentangling
of the old bus and re-entangling of the new bus: a total of two
extra operations per extra bus.

VI. OPTIMAL BUS REUSE

Generation of a line of entangled qubits is the simplest
use of sequential operations, with a maximum of one qubit
on each quadrature of the bus at any time. However, it does
not use the full power of the qubus to reduce the number of
bus operations per gate. The displacement operators on the
qubus allow a qubit on one quadrature to become entangled
with all qubits on the other. If we start by connecting one
qubit to, say, the position quadrature, then all its neighbors
can be simultaneously coupled to the momentum quadrature.
However, if we then try to connect any other qubit to
the position quadrature there will be cross-entanglements
generated that are not part of the required cluster state (where
qubits are entangled only with nearest neighbors). Only two
of the momentum-quadrature qubits can remain on the bus
and not generate unwanted entanglement. These qubits must
neighbor both of the position-quadrature qubits; this then
forms a closed box in the lattice.

In contrast with the previous scenario, we now need to
consider a path across the lattice that is two qubits wide, rather
than a single-qubit line (Fig. 1). By inspection, the maximum
number of edges that can be generated on such a path that
visits all mn qubits in the cluster only once is 3mn/2 − 2, for
even mn. The number of cluster edges remaining after 2mn

sequential bus operations is therefore 1
2mn − (m + n) + 2. We

could either finish the sequential operations and then generate
these edges separately (requiring two qubits per edge to be
reconnected with the bus), or we could construct these edges as
we go along. In the latter case, before a qubit is disconnected
from the bus, we generate the extra edges required for that
qubit. Then only one qubit per additional edge needs to be
connected to the bus again. With two bus operations per
connection, this requires a further mn − 2(m + n) + 4 uses
of the bus. This gives a lower bound of

Nmin = 3mn − 2(m + n) + 4 (7)

FIG. 1. (Color online) A path of width two generating a 5 × 6
cluster. Dark edges represent entanglement between qubits that have
connected to the bus once, light edges require at least one qubit to
connect to the bus twice, and dotted edges indicate CPHASE gates not
yet performed.

operations to construct the cluster. We show elsewhere [30] that
using a spiral pattern for the path of width two achieves the
bound Nmin. A spiral path does not allow dynamic generation,
so in practice we will use a zigzag path (Fig. 1). The U-shaped
turns require up to two extra operations per turn, so we will
want to minimize their number to minimize the actual cost.
The zigzag path in Fig. 1 is the minimum turn arrangement for
dynamically generating rectangular clusters.

Equation (7) tells us the most efficient a scheme can be when
the bus acts as an ancilla partitioned into two. It is clear that, in
general, an ancilla can have more than two partitions, although
multipartition ancillas are more naturally suited to multiqubit
gates. With a path of width a, the number of operations using
a single bus would only improve to order 2mn + 2(mn/a).
Thus, we can see that going to large partition sizes significantly
increases the ancilla complexity for a rapidly reducing payoff
in terms of bus efficiency.

VII. REUSE WITH DEPHASING

We now consider the case where building the entire cluster
with one bus would take us beyond the threshold value of
the error as given by Eq. (6). In such a situation we would
need to use multiple buses, each one creating a smaller part
of the cluster. Since there are always at least two qubits
entangled with the bus for the path of width two, changing
buses requires two qubit disconnects and reconnects, a total
of four extra operations per extra bus. These sections of the
cluster generated by one bus we call bricks (Fig. 2). If these
bricks have length b [see Fig. 2(a)], then an m × n cluster
will contain mn/2b bricks. The number of extra operations is
thus 4(mn/2b − 1), giving a minimum number of operations
to create the cluster using multiple buses of

Nmin(b) = (3 + 2/b)mn − 2(m + n). (8)

Figure 2(b) shows how the bricks fit together in the cluster,
with shared qubits being reactivated by different buses during
the construction. The bus thus entangles a total of 3b + 2 qubits
to construct a brick that adds 2b qubits to the cluster. Where
whole bricks fit neatly into the cluster (as shown), we achieve
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(a)

(b)

FIG. 2. (Color online) (a) A brick of size b = 5, consisting of
a core of 2b = 10 qubits and (b + 2) = 7 connections to qubits in
neighboring bricks. (b) Four bricks joined together, showing how
qubits are shared between bricks and thus entangled by more than
one bus (at different times) during cluster construction.

the bound in Eq. (8). Each brick needs 6b + 4 bus operations
to produce it (two operations per qubit), so by multiplying by
the number of bricks mn/2b, and subtracting the 2(m + n)
operations not required for the sides not connected to further
bricks, the total number of operations Nmin(b) is obtained.

VIII. DYNAMIC GENERATION

For dynamic generation of our cluster, we need to produce
a strip a few qubits wide with the measurements that perform
the computation applied just behind the construction process.
When a whole number of bricks fit across the cluster, it can be
dynamically generated without any loss of efficiency. When
bus-changing operations do not happen conveniently at the
edge of the cluster, we will need to turn a corner within a brick.
These shaped turns will cost at most two extra operations per
turn [30].

Our brick method also facilitates optimally efficient dy-
namic generation where multiple buses are used in parallel
to produce a fully scalable cluster-state scheme. We orient
our bricks along the growth direction (see Fig. 3), producing
parallel connected paths of width two. To avoid the buses
entangling to the same qubit at the same time, alternate buses
must be started six operations apart. Since we want a wide
enough strip to allow room for the measurements to follow
behind the cluster construction, we can also use twice as many
buses (one per qubit row). This is less efficient in operations
per bus but generates a wider strip in the same time frame [30].
The optimal choice will depend on the decoherence rates and
the cost of extra buses for the particular system.

IX. OPTIMAL BRICK SIZE

The system’s error threshold ε will determine the size of
our bricks. A brick has 3b + 2 qubits, each operated on twice

ancillas

measurement devices

FIG. 3. (Color online) Dynamic generation using multiple ancillas.

for a total of 6b + 4 bus operations, and 4b edges (CPHASE

gates). Using Eq. (6) we require

1
2 {1 − exp[−(6b + 4)γ τ − 16bηβ2]} � ε. (9)

For a given set of experimental parameters γ , τ, and η, and
desired dephasing limit ε, this determines b.

Let us now compare our scheme to the capabilities of one
without bus reuse. If we use one bus per CPHASE gate to
generate a brick, Eq. (6) gives

1
2 [1 − exp(−16bγ τ − 4ηβ2)] � ε. (10)

Comparing Eqs. (9) and (10), we find our scheme produces less
qubit dephasing than using one bus per CPHASE gate provided
ηβ2 <∼ γ τ/2. For example, if γ τ = 5 × 10−4 and η = 10−4,
then for an error threshold of ε = 10−2, the bus-per-gate
method could generate only 8 CPHASE gates between 8 qubits
(b = 2) before reaching the threshold, while our brick method
would be able to connect at least 17 qubits with 20 CPHASE

gates (b = 5) before the same dephasing occurred. For the case
using multiple buses in parallel, this would give a coherent
strip of cluster four qubits wide, just enough to apply the
measurements behind the construction, as shown in Fig. 3.

X. CONCLUSIONS

We have described the optimally efficient method for
generating cluster states in ancilla-based computation, based
on dividing the cluster into interlocking bricks, each of which
is constructed with a single, reused ancilla. We have shown
how, in the specific case of the qubus system, the reduction
in ancilla operations can offset the increased noise due to bus
reuse, allowing approximately twice the number of qubits to
be connected into a cluster state compared to single-bus use.
Compared with 8mn − 4(m + n) bus operations with no bus
reuse, for large clusters, the interlocking-brick scheme uses
fewer than half for b > 2, O(3mn) compared to O(8mn). Even
for b = 1, the reduction is to 5mn − 2(m + n), equivalent to
the method in [19] when limited to five qubits per bus. This
will therefore be the method of choice for any deterministic
ancilla-based cluster generation that allows bus reuse (see [18]
for optimal probabilistic schemes). This form of bus reuse can
provide savings in many other contexts, including the quantum
Fourier transform [31].
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While the exact error model will vary with the underlying
physical system, our analysis can be generalized to all ancilla-
based cluster generation schemes. Our results are directly
applicable to bus-based experimental production of cluster
states, enabling the same resources to produce dynamically
generated cluster states of twice the size compared to single-
gate bus use. For multibus dynamic schemes, this means fully
scalable operation can be achieved with half the coherence
time compared to single-gate buses. In practical terms, this
needs as few as 20 gates per bus, independent of cluster
size.
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