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Verifying entanglement in the Hong-Ou-Mandel dip
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The Hong-Ou-Mandel interference dip is caused by an entangled state, a delocalized biphoton state. We
propose a method of detecting this entanglement by utilizing inverse Hong-Ou-Mandel interference, while taking
into account vacuum and multiphoton contaminations, phase noise, and other imperfections. The method uses
just linear optics and photodetectors, and for single-mode photodetectors we find a lower bound on the amount
of entanglement.
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I. INTRODUCTION

Quantum interference effects that arise when single photons
impinge on a beam splitter are crucial to linear-optics quan-
tum computing schemes [1–3], with the other indispensable
nonlinear ingredient provided by photon-counting measure-
ments. One such linear-optics quantum interference effect was
observed for the first time in 1987, by Hong, Ou, and Mandel,
and it still carries their name [4]. In the Hong-Ou-Mandel
interference (HOMI) effect, two photons in otherwise identical
modes impinge on two different input ports of a 50-50 beam
splitter, and, thanks to bosonic interference, always emerge
together in one of the two output ports. More precisely, the
output state can be expressed in Fock states as

|�〉AB = (|0〉A|2〉B − |2〉A|0〉B)/
√

2. (1)

Here A and B denote the two output modes, with identical
polarizations, frequencies, and transverse spatial quantum
numbers, and differing only in their propagation directions.
Great progress has been made recently in building waveguide
circuits on chips, with which high-visibility interference
fringes involving multiphoton states with high purity such as
|�〉 can be observed [5].

The aspect of the output state |�〉AB that interests us here
is that it, provided the modes A and B are spatially separated,
is entangled. For instance, the pure state |�〉 can be shown
to violate Bell-type inequalities [6]. What concerns us, in
particular, is how one could verify the entanglement of noisy
versions of the ideal state, containing, e.g., phase noise and
contaminations with states with different numbers of photons
(no photons at all, one photon in total, or more than two
photons in total). As it turns out, standard measurements and
operations used in, e.g., [5] to characterize and manipulate
few-photon states are indeed sufficient for entanglement
verification, provided (but this is a far from trivial proviso)
all photodetectors detect photons only in particular modes.
That is, if we assume our detectors are sensitive only to one
particular polarization, spectral profile, and transverse spatial
mode, then the method we present here will unambiguously
detect entanglement even if the actual input state (with
arbitrary numbers of photons in it) has a multimode character.
Moreover, in this case we can construct lower bounds on the
amount of entanglement as well. The reason is that such a
detection scheme is equivalent to a protocol where a filtering
operation is applied to the input state that keeps only photons
in the desired modes. Since this operation is local, the amount

of entanglement of the resulting filtered state cannot be larger,
on average, than the entanglement present in the input state.

On the other hand, if we drop the assumption about
the single-mode character of our detection devices, then
the problem of verifying entanglement of a delocalized
two-photon state becomes much more involved, also when
compared to the similar problem of verifying entanglement
of a delocalized single photon [7,8]. We will give the
essential reason for this difference and present solutions for
the multimode multiphoton entanglement verification problem
that will work if the state under investigation is sufficiently
close to a single-mode entangled state.

It may be interesting to compare our entanglement verifi-
cation scheme to a scheme proposed in Refs. [9,10], which
likewise uses the HOMI effect (but in its fermionic version) to
detect entanglement. The latter scheme detects entanglement
between electrons and assumes the number of electrons in
each input port of a 50-50 beam splitter is fixed and known,
whereas we do not assume a fixed photon number. Indeed, such
an assumption is perfectly fine for first-quantized electrons,
but not for second-quantized photons. Moreover, we use the
inverse HOMI effect to detect entanglement in a state: ideally,
we have either two photons or no photons in each input mode,
whereas Refs. [9,10] consider, in the ideal case, one electron
in each input mode, and then use the proper HOMI effect for
entanglement detection.

Finally, we recall that the (proper) HOMI effect has been
used to detect entanglement between two input photons (see,
e.g., Ref. [11] and references therein). It is still true that the
assumption that there is exactly one photon in each input port
is not warranted in general, but, for entanglement verification,
it is an allowed filtering operation, because it is local. In
contrast, filtering on having two photons in total in the two
input ports (which operation we would like to perform for our
case) would be nonlocal. Also note that in our case, the output
of the inverse HOMI experiment would ideally be a product
state of two photons.

II. ENTANGLEMENT VERIFICATION
FOR SINGLE-MODE STATES

A. Defining “single mode”

Let us first consider so-called single-mode states, by which
we mean states where any photons present are in the same
transverse spatial, spectral, and polarization modes, with
the understanding that they can differ in their direction of
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propagation (there are two such modes in our case, spatially
separated, which we call modes A and B). Since experiments
typically must be repeated in time, we do allow the spectral
mode functions φ(ω) to differ by a phase factor exp(iωT )
with T a known delay time, without the photons losing their
single-mode character.

We could, in principle, perform tomography on the full
state to determine its density matrix and from this calculate a
measure of entanglement, e.g., the concurrence or negativity
of the state, and thus determine whether the state is entangled.
However, since we should not assume anything about the
Hilbert space that the state lives in (since we want be able to
verify the entanglement on noisy versions of our ideal state),
we would have an infinite number of matrix elements to
determine. Even if we were to make restrictive assumptions
about the Hilbert space of the state, it would still require
numerous measurements to fully determine the state. For
example, if we assumed that the state did not contain more
than two photons, this would still leave a 6 × 6 density matrix
to determine. If we are not interested in fully characterizing
the state, but merely in verifying its entanglement we do
not need to do so much work. Instead of trying to exactly
calculate a measure of entanglement of the state, we can
instead calculate a lower bound which will allow verification
of entanglement of the state with far fewer measurements.

B. Local filtering

Let the state whose entanglement we are trying to verify
be called ρ. A bound on the entanglement can be found in the
following way. Suppose we were to apply the following local
filtering operations: we ask about each of the two spatially
separated modes A and B two questions:

Filter 1. Is there exactly one photon in the mode?
Filter 2. Are there more than two photons in the mode?
We consider this filtering a success if the answer is “no” to

both questions [cf. Eq. (1)]. The probability then of successful
filtering is P̃ = P0,0 + P0,2 + P2,0 + P2,2, where Pi,j is the
probability to find i photons in mode A and j photons in mode
B in the unfiltered state ρ. This filtering collapses our state to
one living in the smaller Hilbert space spanned by |0〉A|0〉B ,
|0〉A|2〉B , |2〉A|0〉B , and |2〉A|2〉B . At this point we have a
state represented by a density matrix with up to 16 nonzero
elements. To simplify calculations we can further bound the
state’s entanglement by assuming we apply another local
operation, which in addition requires classical communication:

Phase shift. Apply the same random phase shift to both
modes.

This destroys any coherence between states with different
numbers of photons and reduces the number of nonzero matrix
elements to at most six.

C. Entanglement criterion

The end result of filtering is of the (normalized) form

ρ̃ = 1

P̃

⎛
⎜⎜⎜⎝

P0 0 0 0

0 P0,2 d 0

0 d∗ P2,0 0

0 0 0 P2,2

⎞
⎟⎟⎟⎠ . (2)

Since concurrence is an entanglement monotone and ρ̃ is the
result of only local operations and classical communication
applied to ρ, the concurrence of ρ̃ bounds the concurrence of
ρ: P̃C(ρ̃) � C(ρ). The concurrence of ρ̃ is

P̃C(ρ̃) = max[ 0, 2|d| − 2
√

P0P2,2 ], (3)

which is greater than zero when

P0P2,2 < |d|2. (4)

Thus ρ̃ is provably entangled if inequality (4) holds true, and
so too is ρ. Similarly, since negativity is also an entanglement
monotone, the negativity of ρ̃ bounds the negativity of ρ in the
same way: P̃N (ρ̃) � N (ρ). But calculating the negativity of
ρ̃ results in exactly the same bound as found by calculating the
concurrence: the state is provably entangled if P0P2,2 < |d|2.

Now we must find a way to bound |d|2. Since d =
P̃ 〈02|ρ̃|20〉 = 〈02|ρ|20〉 we do not need to physically perform
any of the filtering mentioned above, since we can determine
the needed information, d, from the unfiltered state ρ. To
do this, consider placing the two modes of ρ on the two
input ports of a lossless 50-50 beam splitter. We will label
the input modes A and B, and the output modes C and D.
The transformation between input mode creation operators
and output creation operators can be written as follows (after
adding, for convenience, a π/2 phase shift to mode D to
compensate for the π/2 phase shift upon reflection):

a† → c† + d†
√

2
, b† → c† − d†

√
2

, (5)

which allows us to calculate photodetection probabilities Qi,j

for the output modes, where Qi,j is the probability to find i

photons in mode C and j photons in mode D. It can be shown
that

Q1,1 = 1
2 (P2,0 + P0,2 − d − d∗), (6)

which gives(
Q1,1 − P2,0 + P0,2

2

)2

=
(

d + d∗

2

)2

= Re(d)2 � |d|2.
(7)

So when

P0P2,2 <

(
Q1,1 − P2,0 + P0,2

2

)2

(8)

the state can be said to be provably entangled. Figure 1 plots
both sides of our inequality (8) for many randomly picked
separable states, to show how this criterion indeed verifies
entanglement. Moreover, the figure caption identifies the states
lying on the borderline between separable and verifiably
entangled.

D. An additional phase shift

Our condition (8) will not detect entanglement in an input
state, even when it is in fact present, when d is largely or purely
imaginary. But if one were to apply a phase shift to one of the
modes before placing the state on the beam splitter and vary
that phase until Q1,1 was maximized (the same local operation
with classical communication as performed in [5]), this would
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FIG. 1. (Color online) Scatter plot of the right-hand side vs the
left-hand side of our entanglement criterion (8). Red dots lie on
the boundary of entanglement vs separable, and correspond to pure
separable states of the form (|0〉A + a|2〉A) ⊗ (|0〉B + b|2〉B ) where a

and b are real. Blue triangles corresponds to mixtures of two randomly
generated separable states of the form (|0〉A + a1|1〉A + a2|2〉A) ⊗
(|0〉B + b1|1〉B + b2|2〉B ) (with complex coefficients).

maximize Re(d)2, thus making inequality (4) equivalent to
(8). In other words, such states then can be detected by our
criterion. Take, for instance, the state

ρ1 := 1
6 |00〉〈00| + 1

3 (|20〉+ i|02〉)(〈20| − i〈02|) + 1
6 |22〉〈22|.

(9)

For this state |d|2 = 1
9 and P0P2,2 = 1

36 so by inequality (4), the
state is in fact entangled. However Re(d)2 = 0, so inequality
(8) will not detect the entanglement. But if we apply a phase
shift of exp(i π

2 ) to one of the modes, then d will become purely
real (and so Q1,1 will be maximized), and inequality (8) will
detect the entanglement. As Fig. 2 (top) shows, for this state
with a phase exp(iφ) applied to the first mode, entanglement
will be detected when φ is between 1

6π and 5
6π or between 7

6π

and 11
6 π . A similar, but more noisy state,

ρ2 := 1
3 |00〉〈00| + 1

4 (|20〉+ i|02〉)(〈20| − i〈02|) + 1
6 |22〉〈22|,

(10)

will have a smaller range of detectable entanglement, specifi-
cally when φ is between 0.39π and 0.61π or between 1.39π

and 1.61π (see Fig. 2, bottom part).

E. Asymmetric beam splitters

To bound d we placed our state on a 50-50 beam splitter, but
it is easy to generalize our analysis to beam splitters which are
not equally balanced. Suppose our beam splitter has a (real)
reflection coefficient r and a (real) transmission coefficient
t = √

1 − r2 such that the input creation operators transform
as

a† → rc† + td†, b† → tc† − rd†. (11)

FIG. 2. (Color online) [Q1,1 − 1
2 (P2,0 + P0,2)]2, that is, the right-

hand side of inequality (8), for the state ρ1 (top), defined in Eq. (9),
and the more noisy ρ2 (bottom), defined in Eq. (10), as a function
of a phase shift exp(iφ) applied to the first mode. The shaded region
represents the values of φ entanglement that will be detected by
inequality (8) (both states are entangled for any value of φ).

Following the same analysis as before we find that if

P0P2,2 <

(
Q1,1 + P1,1(t2 − r2)

4r2t2
− P2,0 + P0,2

2

)2

, (12)

the state is provably entangled.

F. Losses

We conclude this section by noting that it is straightforward
to take into account the influence of losses and inefficient
photodetectors. Namely, all our measurements boil down to
counting photons in the end (with the results being typically
0 or 1, sometimes 2, and rarely 3). Provided all loss rates
and detector inefficiencies are known, one can infer the actual
photon number distributions [to be used in inequalities (8) or
(12)] from the measured distributions by inversion.

III. CONSIDERATIONS CONCERNING MULTIMODE
MULTIPHOTON STATES

We made the assumption at the beginning of our analysis
that any photons present are in the same transverse spatial,
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spectral, and polarization mode. However, if our detectors
only detect a certain single mode we can drop the assumption
that the photons being are in the same mode because this
is equivalent to a local filtering. That is, using single-mode
detectors is equivalent to an additional filtering performed on
each of the spatially separated modes, filtering out all photons
not in the single mode of interest before detection takes place.
What if we drop the assumption of single-mode detectors?

Suppose we have an input state in which the photons
present are not all in the same transverse spatial, spectral,
and polarization mode. The entanglement verification scheme
described above did assume that the two photons in the filtered
state (after the local filtering operations 1 and 2) are in the
same mode because of the explicit assumption that there is
interference (of the inverse HOMI type) taking place on a
beam splitter. But this assumption does affect how we interpret
the results of the measurements: in particular, the quantity
Q11 (which we would like to be large) could be dangerously
contaminated with contributions from those input states that
lead to larger values of Q11 for photons in different modes
than for photons in the same modes. For example, if we start
with an output state with one photon in each output port, but
of different colors, then applying the inverse beam-splitter
transformation yields an input state that has this undesired
property. The question is to what extent we can avoid or correct
for the presence of such input states.

A. Corrected entanglement criterion

One way of correcting for these unwanted states is to
subtract the contribution from the worst possible kind of state,
i.e., one that maximizes the right-hand side of Eq. (8) without
HOMI entanglement, such as the state mentioned above, i.e.,

(|10〉red + |01〉red) ⊗ (|10〉blue − |01〉blue)/2. (13)

While this state has twice as much entanglement as the HOMI
state, it is not the type of entanglement we are interested in
trying to detect here. A state such as this with a probability P o

2
of detecting two photons of different color will contribute at
most 3P o

1,1/2 to the quantity being squared on the right-hand
side of Eq. (8), so we will compensate for this possible
contribution by subtracting 3P o

1,1/2. For states close to the
ideal state the contamination of different colored photons
will be small and thus the correction will be small. We
can also construct a bound that does not rely on measuring
the probability of detecting two photons of different colors,
since it is always less than or equal to the probability of
detecting two photons of any color (P o

1,1 � P1,1). Using this,
our (conservative) condition for entanglement becomes

P0P2,2 < (max[ Q1,1 − P1,1 − P2/2 ,0 ])2. (14)

B. Nonexistence of local filters for sameness of modes

It would be nice if we could find a local filtering operation
that checks whether two input photons propagating in one
direction are in the same mode with respect to the other
quantum numbers or not. There is certainly no von Neumann
measurement that achieves that goal, since the target states
are not all orthogonal. But, surprisingly, we cannot even

construct a positive operator-valued measure that does the
trick: the reason is that even if we start with a state that
contains two photons in orthogonal modes, say, described by
creation operators a

†
1 and a

†
2, then we can view the same state

as a superposition of two states, each with the two photons
in identical modes, as described by the creation operators
a
†
± = (a†

1 ± a
†
2)/

√
2. This results from the identity

a
†
1a

†
2 = (a†

+)2 − (a†
−)2

2
. (15)

This is then the essential difference between single-photon and
multiphoton states, which makes entanglement verification
much harder for two-photon states than for single-photon
states. Moreover, this also illustrates a difference between
bosons and fermions: in the case of two fermions there is an
antisymmetric subspace, and, e.g., we can certainly perform a
measurement that checks whether two spin-1/2 systems have
different spins (singlet state).

C. Alternative local operation

All is not quite lost, since we can still apply other sorts of
local operations that are useful for the analysis of entanglement
of the input state. In particular, suppose that our input state
is some coherent superposition of, e.g., the desired state
|0〉A|2〉B − |2〉A|0〉B and an unwanted state |1〉A1 |1〉A2 |0〉B
(with photons in different modes). There is a local operation
that transforms this superposition into an incoherent mixture of
these two states: for each pair of orthogonal modes Ak and Bk

(picked from some fixed basis, which is the essential difference
from the no-go statement from the preceding section), apply
a random k-dependent phase shift, and then forget the precise
phase shifts applied. This operation will only preserve the
coherence of superpositions of photons in the same spectral,
polarization, and transverse modes in A and B. That is, by a
local operation we can transform the input state into a state of
the form

ρ = Psρ
s + (1 − Ps)ρ

⊥, (16)

where the first term denotes states that do display (inverse)
HOM interference, and the second term states that do not; Ps

is the probability of observing HOM interference, given ρ. The
point is that we have now separated the input state into two
parts, the first part of which is the state for which our method
demonstrates entanglement (see below for further elaborations
of this point). The second term has no entanglement, since any
superpositions in that term have been destroyed. Its presence
could imply the state ρ is not entangled, even if ρs is, namely,
if 1 − Ps is too large. We will not solve the (hard) general
problem of identifying for what values of Ps and for what
states ρs entanglement of the latter still implies entanglement
of ρ.

Let us return to the statement that ρs is entangled, if our
verification method succeeded. We still have to discuss the
fact that our method assumed that both photons are in one
particular mode, whereas for photons in ρs we only know they
are in the same mode, but not in which one. This does have
consequences for the amount of entanglement (see [12] for
extensive discussions of this issue), but not for the bare fact
that the state is entangled. We can demonstrate this by showing
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that the state ρs can be distilled (the following protocol is far
from optimal, and one can easily improve its efficiency; here
its point is only an existence proof): just take two copies of ρs ;
first determine a particular mode such that the projection of ρs

onto that mode is entangled; then perform on each of the A and
B modes a joint measurement that counts how many photons
in that particular mode there are in total in the two copies. If
the answer is 2 for both A and B, we have an entangled state
in that one particular mode. In this highly inefficient protocol,
the average amount of entanglement decreases (unless only a
single mode is occupied), but it stays nonzero. Hence ρs must
be entangled.

For clarity, let us add that the point of the distillation
protocol is not that it would be used in an actual entangle-
ment verification experiment. Instead, it is just a theoretical
construct used to show that ρs must be entangled, by showing
it contains a nonzero amount of distillable entanglement. For
that limited theoretical purpose, it is sufficient to consider any
suitable ideal protocol, including one that uses single-mode
photodetectors.

IV. SUMMARY

We demonstrated how the inverse HOMI effect can be
used to verify the mode entanglement present in a state of
the form (|0〉|2〉 − |2〉|0〉)/√2, and noisy versions thereof. If
the photons in the state are all single mode, that is, all have
the same polarization, the same transverse mode profile, and
the same spectral profile, then our method easily bounds the
amount of entanglement from below. That directly gives a
criterion, inequality (8), which, when satisfied for a given

single-mode state, is sufficient to prove entanglement. We
analyzed how the applicability of the criterion can be improved
simply by applying an additional phase shift to one of the
two modes. The operations needed to verify entanglement
can be implemented with linear optics, and are just those
demonstrated in the experiment of [5].

We discussed how the problem of verifying entanglement in
the delocalized two-photon state with the inverse HOMI effect
becomes more “interesting” (a euphemism for “complicated”)
without this single-mode assumption (more precisely, when
both the input state and one’s photodetectors are multimode),
and why a delocalized single-photon state does not suffer from
these complications. On the other hand, the interpretation
of violating a Bell inequality with unbalanced homodyne
measurements [6] is immune to the single-mode or multimode
character of the input state, at the small cost of requiring
phase-locked local oscillators, thus showing an advantage of
Bell inequalities in the context of entanglement verification.

We gave a simple solution to the full problem of in-
verse HOMI multimode multiphoton mode entanglement,
based on bounding the deviation of the actual state from
a single-mode state. This solution works well when that
deviation is sufficiently small. It yields an entanglement
criterion (14), similar to, but more conservative than
inequality (8).

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation Graduate STEM Fellowship in K-12
Education Program under Grant No. DGE-0742540.

[1] E. Knill, R. Laflamme, and G. J. Milburn, Nature (London) 409,
46 (2001).

[2] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and
G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

[3] J. L. O’Brien, Science 318, 1567 (2007).
[4] C. K. Hong, Z. Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044

(1987).
[5] J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, Nat.

Photon 3, 346 (2009).
[6] C. F. Wildfeuer, A. P. Lund, and J. P. Dowling, Phys. Rev. A 76,

052101 (2007).

[7] P. Lougovski, S. J. van Enk, K. S. Choi, S. B. Papp, H. Deng,
and H. J. Kimble, New J. Phys. 11, 063029 (2009).

[8] S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J. van Enk,
and H. J. Kimble, Science 324, 764 (2009).

[9] G. Burkard and D. Loss, Phys. Rev. Lett. 91, 087903
(2003).

[10] V. Giovannetti, D. Frustaglia, F. Taddei, and R. Fazio, Phys. Rev.
B 74, 115315 (2006).

[11] V. Giovannetti, Laser Phys. 16, 1406 (2006).
[12] J. O. S. Yin and S. J. van Enk, Phys. Rev. A 77, 062333

(2008).

042318-5

http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1103/RevModPhys.79.135
http://dx.doi.org/10.1126/science.1142892
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1038/nphoton.2009.93
http://dx.doi.org/10.1038/nphoton.2009.93
http://dx.doi.org/10.1103/PhysRevA.76.052101
http://dx.doi.org/10.1103/PhysRevA.76.052101
http://dx.doi.org/10.1088/1367-2630/11/6/063029
http://dx.doi.org/10.1126/science.1172260
http://dx.doi.org/10.1103/PhysRevLett.91.087903
http://dx.doi.org/10.1103/PhysRevLett.91.087903
http://dx.doi.org/10.1103/PhysRevB.74.115315
http://dx.doi.org/10.1103/PhysRevB.74.115315
http://dx.doi.org/10.1134/S1054660X06100033
http://dx.doi.org/10.1103/PhysRevA.77.062333
http://dx.doi.org/10.1103/PhysRevA.77.062333

