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We study discrete-time quantum walks on the line and on general undirected graphs with two interacting or
noninteracting particles. We introduce two simple interaction schemes and show that they both lead to a diverse
range of probability distributions that depend on the correlations and relative phases between the initial coin
states of the two particles. We investigate the characteristics of these quantum walks and the time evolution of the
entanglement between the two particles from both separable and entangled initial states. We also test the capability
of two-particle discrete-time quantum walks to distinguish nonisomorphic graphs. For strongly regular graphs,
we show that noninteracting discrete-time quantum walks can distinguish some but not all nonisomorphic graphs
with the same family parameters. By incorporating an interaction between the two particles, all nonisomorphic
strongly regular graphs tested are successfully distinguished.
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I. INTRODUCTION

Single-particle quantum walks have recently emerged as
a useful tool in the development of algorithms for quantum
computers [1,2]. These algorithms depend on interference
between the multiple paths that are simultaneously traversed
by the quantum walker. In multiparticle quantum walks, the
dimension of the state space increases exponentially with the
number of particles and there is the additional possibility of
entanglement between particles [3,4]. It is hoped that the
greater complexity of the multiparticle walk may lead to
more powerful applications, such as algorithms for the graph
isomorphism problem [5,6]. There have also been some recent
experimental realizations of two-particle quantum walks using
both ions [7] and photons [8], demonstrating the technical
feasibility of implementing quantum walks with more than
one particle.

Like classical random walks, quantum walks come in both
discrete-time and continuous-time variants. In this paper we
focus on the discrete-time quantum walk. We mention the
continuous-time case only in Sec. V when comparing the
results of our quantum-walk-based graph isomorphism testing.

The theoretical study of discrete-time quantum walks with
more than one particle was initiated by Omar et al. [3] who
considered noninteracting two-particle quantum walks on the
infinite line. Omar et al. established a role for entanglement
in two-particle quantum walks by showing that initial states
which are entangled in their coin degrees of freedom can
generate two-particle probability distributions in which the po-
sitions of the two particles exhibit quantum correlations. Also
with noninteracting particles, Štefaňák et al. [9] considered
the meeting problem in the discrete-time quantum walk.

In addition to these studies with distinguishable particles,
there have also been theoretical investigations of two-photon
quantum walks [4,10]. By increasing the dimension of the
coin Hilbert space to incorporate both the direction of
photon propagation and polarization, Pathak and Agarwal [4]
introduced a quantum walk in which two photons initially in
separable Fock states become entangled through the action
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of linear optical elements. While the quantum walk studied
in [3,9] requires entangled initial states to generate spatial
correlations, the two-photon walk studied in [4], with its larger
coin space, is capable of generating entanglement even from
initially separable states. Venegas-Andraca and Bose [11] have
also proposed a variant of the two-particle quantum walk in
which the particles have a shared coin space. In this system,
entanglement is introduced between the spatial degrees of
freedom of the particles by performing measurements in the
shared coin space.

In this work, we introduce spatial interactions between the
particles and show that they generate entanglement between
the two particles, even from initially separable states. We
study the effect of correlations and relative phases between
the initial coin states of the two particles on the time evolution
of the quantum walks. For interacting walks, we find that these
correlations and relative phases provide an additional resource
for tuning the time evolution of the quantum walk that is not
accessible in noninteracting two-particle quantum walks.

The interaction schemes considered here preserve the
unitary nature of the quantum walk and can be applied to two-
particle quantum walks on arbitrary graphs, with higher than
two-dimensional coin spaces. This allows us to numerically
test the capability of interacting and noninteracting quantum
walks to distinguish nonisomorphic strongly regular graphs.

The paper is structured as follows. In Sec. II we describe
the mathematical formalism for noninteracting and interacting
two-particle quantum walks. Results for the single- and two-
particle probability distributions obtained for these quantum
walks are presented in Sec. III and in Sec. IV we present
numerical calculations of the time evolution of entanglement
between the particles. In Sec. V, we discuss an application
to graph isomorphism testing. Finally, Sec. VI contains our
conclusions.

II. QUANTUM WALKS

A. Review of single-particle quantum walks

1. Quantum walk on the line

We begin by briefly reviewing the single-particle quantum
walk on the infinite line. Each position on the line is associated
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with a two-dimensional auxiliary “coin” Hilbert space HC ,
spanned by the orthonormal basis {|↑〉,|↓〉}. The quantum
walk on the line then takes place in the product space HP ⊗
HC , where HP is the position Hilbert space with orthonormal
basis given by the position states {|x〉,x ∈ Z}. One step of the
walk is defined as a single application of the unitary time-
evolution operator U = S(1 ⊗ C). The shifting operator S is
defined as

S := |x + 1, ↑〉〈x, ↑| + |x − 1, ↓〉〈x, ↓|. (1)

For each position x, the coin operator C can be represented by
a 2 × 2 unitary matrix which acts on HC as

C

(
a↑
a↓

)
=

( √
ρ

√
1 − ρ eiθ

√
1 − ρ eiφ −√

ρ ei(θ+φ)

)(
a↑
a↓

)
, (2)

where a↑ = 〈x, ↑|ψ〉 and a↓ = 〈x, ↓|ψ〉 are the probability
amplitudes for the |↑〉 and |↓〉 coin states, respectively. Setting
ρ = 1/2 and θ = φ = 0 gives the standard Hadamard coin.
Since the action of the shifting operator depends on the coin
state of the particle, the shifting operator entangles the coin
and position of the particle throughout the quantum walk [12].

2. Quantum walks on graphs

The quantum walk on the line described above can be
extended to a general undirected graph [13]. Let G(V,E) be
an undirected graph with vertex set V = {v1,v2,v3, . . .} and
edge set E = {(vi,vj ),(vk,vl), . . .} consisting of unordered
pairs of connected vertices. If there are d edges incident
on a vertex vi , we say that vi has degree d. In this case
HP is spanned by an orthonormal basis of vertex states
{|vi〉 : vi ∈ V } and HC is spanned by an orthonormal basis
of coin states {|ci〉 : i = 1, . . . ,d}, representing the outgoing
edges at a vertex vi . The discrete-time quantum walk on a graph
takes place on the subnodes of the graph, which are represented
by product states of the form |v〉 ⊗ |c〉 = |v,c〉 ∈ HP ⊗ HC .

S is redefined in this basis to shift the probability amplitudes
between connected subnodes,

S|vi,cj 〉 = |vj ,ci〉, (3)

where |vi,cj 〉 is the subnode state corresponding to the edge
(vi,vj ) at the vertex vi . The coin operator C at a vertex vi of
degree di can be represented by a di × di matrix which mixes
the probability amplitudes of the subnode states of vi . The only
coin operator considered in this paper for quantum walks on
graphs is the Grover coin G,

Gij = −δij + 2/d, (4)

for a vertex of degree d > 2.

B. Noninteracting two-particle quantum walks

1. Two-particle quantum walk on the line

A two-particle quantum walk takes place in the Hilbert
space H = H1 ⊗ H2, where Hi = (HP ⊗ HC)i for particle i,
as described in [3]. Let

|x,α ; y,β〉 := |x,α〉1 ⊗ |y,β〉2 (5)

be a two-particle basis state, where x,y represent the positions
of particles 1 and 2 and α,β ∈ {↑, ↓} represent their respective
coin states. The time-evolution operator is defined as

U := S(1 ⊗ C), (6)

where S is defined in the two-particle basis by

S : = |x + 1, ↑ ; y + 1, ↑〉 〈x, ↑ ; y, ↑ |
+ |x + 1, ↑ ; y − 1, ↓〉 〈x, ↑ ; y, ↓ |
+ |x − 1, ↓ ; y + 1, ↑〉 〈x, ↓ ; y, ↑ |
+ |x − 1, ↓ ; y − 1, ↓〉 〈x, ↓ ; y, ↓ |. (7)

For a particular x and y, the coin operator can be represented
as a 4 × 4 matrix C = C1 ⊗ C2. For example, if C1 and C2 are
both equal to the standard 2 × 2 Hadamard matrix then C acts
on the coin Hilbert space as

C

⎛
⎜⎜⎜⎝

a↑↑
a↓↑
a↑↓
a↓↓

⎞
⎟⎟⎟⎠ = 1

2

⎛
⎜⎜⎜⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a↑↑
a↓↑
a↑↓
a↓↓

⎞
⎟⎟⎟⎠, (8)

where aαβ := 〈x,α ; y,β|ψ〉. For noninteracting walks, C is
taken to be identical for all two-particle position states.

In order to study the two-particle quantum walk, it is
necessary to consider not only the single-particle probability
distributions of each of the two particles, but also the relation-
ship between these distributions. The two-particle probability
distribution, P (x,y,t), is the probability of finding particle 1
at position x and particle 2 at position y after t steps of the
two-particle quantum walk, i.e.,

P (x,y,t) =
∑

α,β=↑,↓
|〈x,α ; y,β|(U )t |ψ0〉|2, (9)

where |ψ0〉 is the initial state of the system.

2. Two-particle quantum walks on graphs

By analogy with single-particle quantum walks on graphs
described in Sec. II A 2, we can extend the formalism
introduced for two-particle walks on the line to general
undirected graphs. The two-particle basis for the Hilbert
space H now consists of states of the form |vi,cj ; vk,cl〉 :=
|vi,cj 〉1 ⊗ |vk,cl〉2. The time-evolution operator U is defined
as U = S(1 ⊗ C), where S is the two-particle shift operator
and C is the two-particle coin operator. S = S1 ⊗ S2 acts on a
two-particle basis state as

S|vi,cj ; vk,cl〉 = |vj ,ci ; vl,ck〉. (10)

The coin operator Cik can be represented as a didk × didk

matrix given by (C1)i ⊗ (C2)k , where (C1)i is the di × di coin
matrix for the vertex state |vi〉1 and (C2)k is the dk × dk coin
matrix for the vertex state |vk〉2. The matrix Cik acts on the
didk-dimensional two-particle coin state basis with the fol-
lowing ordering of basis states, {|c1,c1〉,|c2,c1〉, . . . ,|cdi

,c1〉,
|c1,c2〉,|c2,c2〉, . . . ,|cdi−1,cdk

〉,|cdi
,cdk

〉}.

C. Interacting two-particle quantum walks

For the noninteracting quantum walks considered above,
the single-particle probability distributions for each particle
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evolve independently. We now consider incorporating an
explicit interaction between the particles. We introduce two
alternative interaction schemes, which will be referred to as the
1 interaction and the π -phase interaction. These interactions
have not previously been considered.

For two-particle quantum walks on both the line and on
graphs, the 1 interaction is implemented by substituting the
standard coin operator with the negative identity operator when
both of the particles are in the same position (or vertex) state.
For example, in the two-particle quantum walk on the line
with the Hadamard coin H , the coin operator for the states
{|x,α; y,β〉,α,β ∈ {↑, ↓}} becomes

C =
{
H ⊗ H when x �= y,

−1 ⊗ −1 = 1 when x = y.
(11)

This interaction is introduced by analogy with the quantum-
walk-based search procedure described in [14], in which
a quantum oracle is implemented as a substitution of the
Grover coin operator at the “marked” vertices. In some
sense, the 1-interacting two-particle walk is equivalent to the
search procedure with all doubly occupied vertex states being
“marked.”

The π -phase interaction is similar to the above 1 interaction;
however, when both particles are at the same vertex, rather
than using the identity coin operator, we shift the phase of all
subnode states by π . For example, in the two-particle quantum
walk on the line with the Hadamard coin H , the π -phase
interacting quantum walk coin operator becomes

C =
{
H ⊗ H when x �= y,

eiπH ⊗ H when x = y.
(12)

Neither of these interactions are intended to represent partic-
ular physical situations. We study them here as they allow
us to examine characteristics of the two-particle quantum
walks that are affected by explicit spatial interactions between
particles.

III. PROBABILITY DISTRIBUTIONS

It is well known that for a single-particle quantum walk
on the infinite line with the Hadamard coin, the unbiased
initial state |ψ0〉 = 1√

2
(|0, ↑〉1 + i|0, ↓〉1) generates a prob-

ability distribution that is symmetric about the origin [15].
For two-particle quantum walks, we consider a separable
product state formed from two particles, each in this unbiased
state,

|sep〉 = 1
2 (|0, ↑〉1 + i|0, ↓〉1) ⊗ (|0, ↑〉2 + i|0, ↓〉2)

= 1
2 (|0, ↑ ; 0, ↑〉 + i|0, ↑ ; 0, ↓〉
+ i|0, ↓ ; 0, ↑〉 − |0, ↓ ; 0, ↓〉). (13)

We also consider the Bell states |	+〉,|	−〉,|
+〉, and |
−〉
in which the coin states of the two particles are maximally
entangled:

|	+〉 = 1√
2

(|0, ↑ ; 0, ↓〉 + |0, ↓ ; 0, ↑〉), (14)

|	−〉 = 1√
2

(|0, ↑ ; 0, ↓〉 − |0, ↓ ; 0, ↑〉), (15)

|
+〉 = 1√
2

(|0, ↑ ; 0, ↑〉 + |0, ↓ ; 0, ↓〉), (16)

|
−〉 = 1√
2

(|0, ↑ ; 0, ↑〉 − |0, ↓ ; 0, ↓〉). (17)

Note that for all initial states considered here
(|sep〉,|	±〉,|
±〉), the probability of measuring particle i in
the |↑〉 or |↓〉 coin state is equal to 1/2, for i = 1,2.

The two-particle probability distribution obtained for a
Hadamard walk on the line using the initial separable state
|sep〉 is simply the product of two standard Hadamard
single-particle probability distributions [3]. That is, for the
noninteracting two-particle quantum walk, when there is no
entanglement between the particles in the initial state, both
quantum walks evolve independently and no correlations are
introduced between the positions of the particles.

The entangled initial states |	+〉 and |	−〉 were also
studied in [3]. It was found that while the single-particle
probability distributions obtained from both initial states were
identical, the two-particle probability distributions revealed
correlations between the positions of the particles at later times
that depend on the relative phases between the coin states of
the two particles. We find similar results for the initial states
|
+〉 and |
−〉.

We now consider the interacting two-particle quantum
walks described in Sec. II C. The results of incorporating the 1
interaction and the π -phase interaction on the time evolution
of the two-particle quantum walk are shown in Figs. 1 and 2,
respectively. In the noninteracting walk, the single-particle
probability distributions are independent of whether or not the
coins of the two particles are entangled in the initial state. It can
be seen, however, that for the interacting quantum walks, dif-
ferent correlations and relative phases between the initial coin
states of the two particles generate different single-particle
probability distributions. This arises because the interacting
quantum walk depends on the relative positions of the two
particles, which in turn depends on the correlations and relative
phases between the initial coin states of the two particles.

First, we examine the results for the 1 interaction in more
detail. In Fig. 1(a), the time evolution of the quantum walk
from the initial separable state |sep〉 is shown. This initial
state results in part of the probability distribution traveling
linearly outward from the origin without spreading. This is
caused by the |0, ↑ ; 0, ↑〉 and |0, ↓ ; 0, ↓〉 terms in |sep〉. In
the interacting walk the 1 coin operator acts on these states
because both particles are at the same position. Since both
particles are also in the same coin state and the 1 operator does
not mix the coin states of each particle, they are translated
together and move in the same direction at each step of the
walk. This is also observed in Figs. 1(g) and 1(i) for the initial
states |
+〉 and |
−〉.

The remaining terms in |sep〉 that are not immediately
separated by the 1 interaction are equivalent to the entangled
state |	+〉 and result in a similar probability distribution
[Fig. 1(c)]. As shown in Fig. 1(c), the single-particle prob-
ability distribution for the state |	+〉 is identical to that
obtained for the noninteracting walk with the same initial
state. The initial entangled state |	−〉 results in the unusual
single-particle probability distribution shown in Fig. 1(e). The
1 interaction in this case results in two peaks moving in either
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FIG. 1. (Color online) Single-
particle probability distributions af-
ter 100 steps of an 1-interacting
Hadamard walk on the infinite line,
for the initial states shown. Also
shown is the time evolution of the
probability distribution from the ini-
tially localized state.

direction. The fastest moving peak spreads with the usual
speed and the slower of the peaks spreads with approximately
half the speed. The interaction results in a slowing of the
propagation of the walk for the portion of the probability dis-
tribution which does not immediately escape the local spatial
interaction.

Next we consider the π -phase interaction. From Fig. 2,
it can be seen that the diversity of single-particle probability
distributions obtained with the π -phase interaction is much
greater than with the 1 interaction. The behavior seen for |sep〉,
|
+〉, and |
−〉 in the 1-interacting walk no longer occurs in
the π -phase interacting walk because the Hadamard coin is
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FIG. 2. (Color online) Single-
particle probability distributions
after 100 steps of a π -phase in-
teracting Hadamard walk on the
infinite line, for the initial states
shown. Also shown is the time
evolution of the probability distri-
bution from the initially localized
state.

applied to all position states at each step of the walk, mixing the
coin states at each position. It should be noted that none of the
single-particle probability distributions obtained are similar to
the noninteracting two-particle quantum walk and also that
the single-particle probability distributions obtained for both

interaction schemes are identical for the initial state |	−〉
[Figs. 1(e) and 2(e)].

Figures 3 and 4 compare the two-particle probability
distributions obtained from quantum walks with the 1 inter-
action and with the π -phase interaction for the same initial
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FIG. 3. (Color online) Two-particle probability distributions after 25 steps of a two-particle quantum walk on the infinite line for (a) the 1
interaction and (b) the π -phase interaction, from the separable initial state |sep〉.

states. It can be seen that the interactions generate spatial
correlations between the two particles for all initial states. This
is notably different behavior from the noninteracting quantum
walk, where initial coin space entanglement between the two
particles is required to generate spatial correlations [3].

As can be seen in Figs. 3 and 4, the peaks which are farthest
from the origin of the walk are anticorrelated in position for
all initial states. This means that if, upon measurement of the
system, one particle is found to be relatively far from the origin
of the walk then the other particle is likely to be found at the
opposite end of the line. These interacting quantum walks may
therefore be useful for generating spatially correlated pairs of
particles from arbitrary localized initial states. In addition, for
all initial states considered, the π -phase interaction generates
probability distributions in which both particles have a high
probability of bunching together, close to the origin of the
walk.

We have shown that these interactions introduce spatial
correlations between the two particles. We therefore find it
interesting to quantify the entanglement generated between
the particles in these quantum walks.

IV. ENTANGLEMENT BETWEEN PARTICLES

Entanglement between the coin and position in single-
particle quantum walks on regular graphs has been well studied
[12,16–18]. There has also been a study of the entanglement
between lattice positions in single- and (noninteracting) many-
particle quantum walks on the infinite line [19]; however, this
does not quantify the entanglement between the positions of
the particles undergoing the quantum walk.

We use the von Neumann entropy to measure the total
entanglement between the subsystems describing each of the
two particles in quantum walks on arbitrary graphs.

The entanglement between two subsystems of a bipartite
pure quantum state |ψ〉 can be quantified using the von
Neumann entropy S of the reduced density matrix of either
subsystem [20],

E(|ψ〉) = S(ρ1) = S(ρ2) = −Tr(ρ1 log2 ρ1), (18)

with 0 log2 0 := 0. Since the trace is invariant under similarity
transformation and the density matrix ρ1 has real, nonnegative

eigenvalues λi , the von Neumann entropy is most easily
calculated as

S(ρ1) = −
∑

i

λi log2 λi. (19)

For two-particle quantum walks, the composite spaceH can
be partitioned into single-particle subsystems, H1(2) = (HP ⊗
HC)1(2), to give a measure of the total entanglement between
the two particles.

In the following, x,y,z,w represent vertices in a graph,
while i,j,k,l represent coin states and axiyj ∈ C are coef-
ficients of the two-particle basis states. For the pure state
|ψ〉 ∈ H,

|ψ〉 =
∑
xy

∑
ij

axiyj |x,i ; y,j 〉, (20)

the reduced density matrix ρ1 is obtained by tracing the density
matrix ρ = |ψ〉〈ψ | over subsystem 2,

ρ1 = Tr2(ρ) =
∑
xyzw

∑
ijkl

axiyj a
∗
zkwl|x,i〉〈z,k|〈w,l|y,j 〉. (21)

Using the orthonormality of the subnode states 〈w,l|y,j 〉 =
δywδjl , we obtain

ρ1 =
∑
xz

∑
ik

bxizk|x,i〉〈z,k|, (22)

where bxizk = ∑
y

∑
j axiyj a

∗
zkyj .

Equation (22) provides a direct method for calculating ρ1

from the coefficients axiyj . Numerical methods can then be
used to calculate the eigenvalues of ρ1, and from Eqs. (18)
and (19), the entanglement E between the two particles can be
obtained at each time step.

The maximum value of entanglement E between two k-
dimensional subsystems is Emax = log2 k. In the quantum walk
on the infinite line, the coin space is two dimensional. If both
particles are initially localized at the origin, then the position
space is one dimensional, so the Bell states |	±〉,|
±〉 are
maximally entangled (Emax = log2 2 = 1). As the quantum
walk can spread at a rate of one lattice position per time step in
each direction, the number of possible occupied states in a two-
particle quantum walk on the infinite line increases linearly
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FIG. 4. (Color online) Two-particle probability distributions after 25 steps of a two-particle quantum walk on the infinite line for (left panel)
the 1 interaction and (right panel) the π -phase interaction, from initial states shown.

with the number of steps. The dimension of each of the single-
particle subspaces is therefore k = 2(2t + 1), giving Emax =
log2[2(2t + 1)] = 1 + log2(2t + 1). So the upper bound on

entanglement grows logarithmically with the number of steps
in the walk. For an N -cycle, the subsystems of the individual
particles each have dimension k = 2N , so the upper bound on
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entanglement is fixed at Emax = log2 2N . For the 16-cycle, a
maximally entangled bipartite state has E = log2 32 = 5.

Numerical evaluation of the entanglement between the
particles in noninteracting two-particle quantum walks demon-
strates that the entanglement between the particles does not
change throughout the evolution of the walk, E(|sep〉) ≡ 0 and
E(|ψ〉) ≡ 1 for ψ ∈ {	±,
±}, for all t � 0. This is consistent
with the fact that each of the single-particle probability
distributions evolve independently in this case.

For the interacting cases, the spatial correlations observed
between the particles in Fig. 3 suggest that the interactions can
generate entanglement between the two particles even from
initially separable states. Numerical evaluation of the time
evolution of entanglement between the particles in interacting
quantum walks on the infinite line and 16-cycle are shown
in Figs. 5 and 6, respectively, for initial states |sep〉,|	±〉,
and |
±〉. It can be seen that both interactions are capable of
generating entanglement between the particles.

It is also apparent that for both the infinite line and the 16-
cycle, the entanglement introduced by the π -phase interaction
is generally greater than the entanglement generated from the
same initial state by the 1 interaction. The Bell states |
±〉,
which propagate linearly outward without mixing in the 1-
interacting quantum walk, maintain a constant entanglement,
E = 1, while for the same initial states, the π -phase interaction
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FIG. 5. (Color online) Time evolution of the entanglement be-
tween the two particles for (a) the 1-interacting and (b) the π -phase
interacting quantum walk on the infinite line using the Hadamard
coin, from initial states shown.
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FIG. 6. (Color online) Time evolution of the entanglement be-
tween the two particles for (a) the 1-interacting and (b) the π -phase
interacting quantum walk on the 16-cycle using the Hadamard coin,
from initial states shown. Emax = 5.

generates significant entanglement throughout the evolution of
the walk.

In the 1-interacting quantum walk on the infinite line
[Fig. 5(a)], the entanglement generated from initial states |sep〉
and |	+〉 rapidly approaches its asymptotic value, while that
from the antisymmetric initial state |	−〉 appears to increase
logarithmically with time. If we compare these results with the
two-particle probability distributions shown in Figs. 3(a), 4(a),
and 4(c), we see that both the |sep〉 and |	+〉 initial states result
in two-particle distributions in which the particles are likely
to be located at opposite ends of the line, whereas in the |	−〉
case, the two particles, even after 25 steps, are likely to be
found at the same position. In effect, the 1 interaction results
in rapid spatial separation of the two particles from initial
states |sep〉 and |	+〉, preventing the generation of greater
entanglement at later times. For the |	−〉 initial state, the
entanglement continues to increase at later times because the
interaction continues to act on doubly occupied states, which
form a considerable portion of the distribution.

As discussed in Sec. III, the π -phase interaction gener-
ates two-particle probability distributions in which the two-
particles have a reasonably large probability of being found at
the same position for all initial states. By maintaining the two
particles at the same position the π -phase interaction continues
to generate entanglement between the particles for all initial
states, even at later stages of the walk.
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Greater entanglement introduced by the π -phase interaction
is also observed on the 16-cycle (Fig. 6); however, rather
than increasing logarithmically, the entanglement for all initial
states rapidly increases to an asymptotic value of ≈3.2
(≈0.65Emax).

The entanglement between the two particles can also be
calculated for two-particle quantum walks on graphs. In
Sec. V, we study two-particle quantum walks on strongly
regular graphs in the context of graph isomorphism testing. It
is therefore interesting to see how the interactions introduced
here entangle the two particles for quantum walks on strongly
regular graphs.

Since the dimension of the single-particle coin Hilbert space
HC is equal to the degree of the graph, even if both particles
start at the same position there are many possible initial
states to consider. In addition, if the graph is not vertex- and
edge-transitive then these initial states depend on the particular
vertex and coin states chosen to be occupied in the initial state,
since they are not all equivalent. We consider the following
initial states,

|ξ 〉 =
d∑
i,j

|1,ci ; 1,cj 〉, (23)

|ζ 〉 = |1,c2; 2,c1〉 + |2,c1; 1,c2〉, (24)
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FIG. 7. (Color online) Time evolution of the entanglement be-
tween the two particles for (a) the 1-interacting and (b) the π -phase
interacting quantum walk on a strongly regular graph with family
parameters (16,6,2,2), from initial states shown.

where vertices 1 and 2 are chosen randomly on the graph. Note
that |ξ 〉 is separable [E(|ξ 〉) = 0] but |ζ 〉 is entangled with
E(|ζ 〉) = 1. As shown in Fig. 7, entanglement is generated
by both the π -phase interaction and the 1 interaction for
both of these initial states. Once again we see that the
π -phase interaction generates greater entanglement between
the particles than the 1 interaction.

V. GRAPH ISOMORPHISM TESTING

We now investigate the application of two-particle discrete-
time quantum walks to the graph isomorphism problem.

Two graphs G and H are isomorphic if there exists a
bijection f : V (G) → V (H ) such that vi and vj are adjacent
in G if and only if vertices f (vi) and f (vj ) are adjacent in H .
Such a mapping f is called an isomorphism. In other words,
two graphs are isomorphic if the vertices can be relabeled so
that the graphs are identical. The graph isomorphism problem
(GI) is the computational problem of determining whether
two graphs are isomorphic [21]. It is a problem that attracts
considerable attention in computational complexity studies
since it is one of very few problems in NP that is not known
to be in P or to be NP complete. While there are many classes
of graphs for which it is computationally easy to solve GI,
the best known general algorithm has an upper bound of
O(e

√
N log N ) [21,22].

One class of graphs, for which there is no known
polynomial-time GI algorithm, is the strongly regular graphs
(SRGs). A SRG with parameters (N,d,λ,µ) is an undirected
graph on N vertices in which each vertex has degree d, each
pair of adjacent vertices have exactly λ common neighbors,
and each pair of nonadjacent vertices have exactly µ common
neighbors. SRGs are categorized into families based on their
parameters (N,d,λ,µ) with each family possibly having many
nonisomorphic members [23].

There have been several recent attempts to generate physi-
cally motivated GI algorithms [5,24–26]. Using discrete-time
quantum walks, Douglas and Wang [24] developed a single-
particle GI algorithm that successfully distinguished all pairs
of graphs tested, including all SRGs with up to 64 vertices
(over 40 000 graphs in total). In order to generate probability
distributions which differ for nonisomorphic SRGs of the same
family, it was necessary to perturb the quantum walks by
applying different phase shifts to two different vertices of the
graph at each time step.

Other studies by Shiau et al. [5] and Gamble et al. [6]
have examined continuous-time quantum walks on SRGs and
have found that the dynamics of (unperturbed) single-particle
and noninteracting two-particle quantum walks are completely
determined by the SRG family parameters (N,d,λ,µ). These
walks cannot, therefore, be used to distinguish nonisomorphic
SRGs from the same family. By introducing an interaction
between the particles, these studies were able to successfully
distinguish all nonisomorphic SRGs tested. While it was left as
an open problem in [5] and [6] whether this algorithm solved
GI in general, it has since been shown that there are pairs of
nonisomorphic graphs for which this algorithm fails, even if
extended to k-particle walks for arbitrary k [27]. The pairs
of graphs for which this interacting two-particle algorithm has
been proven to fail are not strongly regular graphs, so it remains
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an open question whether interacting two-particle continuous-
time quantum walks can distinguish arbitrary SRGs [27].

Given the demonstrated algorithmic differences between
continuous- and discrete-time quantum walks [28], we find it
interesting to consider whether two-particle quantum walks in
discrete time can be used to distinguish SRGs. Continuous-
time walks have no “coin” degrees of freedom so the Hilbert
space on which the quantum walk takes place is spanned by
N orthonormal vertex states. The state space of the k-particle
continuous-time quantum walk therefore has dimension Nk .
Conversely, the discrete-time quantum walk for a single
particle on a d-regular graph takes place on a Hilbert space
of dimension dN . So when this is extended to k particles,
the dimension of the space grows to (dN)k . It is interesting
to consider whether these extra dimensions can be used to
give discrete-time quantum walks greater graph-distinguishing
power.

A. Description of the testing procedure

In order to distinguish two graphs, the two-particle prob-
ability distributions resulting from quantum walks on those
graphs must differ whenever the graphs are nonisomorphic.
To investigate the distinguishing power of two-particle quan-
tum walks, we directly compare the two-particle probability
distributions obtained on different graphs. This is achieved
by applying the two-particle quantum walk operator U a
fixed number of times to some initial state, and computing
a certificate based on the two-particle probability distribution
obtained. The certificates of each graph are then sorted and
compared.

Not all initial states will permit differences in graph
structure to be detected. For example, the equal superposition
of all two-particle subnode states on a regular graph is an
eigenvector of the two-particle quantum walk operator U

in both the noninteracting and 1-interacting cases, so the
probability distributions obtained from this initial state are
trivial and cannot be used to distinguish graphs. An initial state
must therefore have some asymmetry to produce nontrivial
dynamics.

We also require that the GI certificate computed for a graph
depend only on the geometric relationship between the vertices
and not on a particular labeling. That is, the certificate must
be identical for all possible permutations of the vertex set. In
the context of computing a GI certificate, this means that if the
walk is started at, say, two particular subnodes, then we need to
cycle over all possible selections of those subnodes within the
graph, to eliminate the dependence on labeling. With this in
mind, we consider a state in which the particles are initially in
a superposition of adjacent vertex states, with their coin states
corresponding to the edge joining the two vertices,

|β+〉 = 1√
2

(|vi,cj ; vj ,ci〉 + |vj ,ci ; vi,cj 〉). (25)

These states will be referred to as bosonic edge states.
Notice that each particle is delocalized across an edge rather
than being in a single vertex state and also that the state
is symmetric under particle exchange. The entanglement
between the particles in this state is E = 1. On a d-regular
graph with N vertices, there are only Nd/2 distinct states of

this form. The number of initial states which must be cycled
over therefore scales as O(dN), with d < N .

The following procedure is used to generate a graph
certificate based on the two-particle probability distribution.

(1) Starting in an initial bosonic edge state |β+〉, perform
2N steps of the two-particle quantum walk on a graph, storing
the values

∑2N
t=1 P (i,j,t) for all i,j ∈ [1,N ]. This generates a

list of length N2. 2N steps are performed to ensure that the
geometry of the graph is adequately sampled by the particles.

(2) Repeat step 1 for all Nd/2 possible initial states,
concatenating values obtained for each initial state into a total
list of length N3d/2.

(3) Construct the certificate of the graph, consisting of a
sorted list containing each distinct value obtained in steps 1
and 2 along with the number of times the value occurred.

By cycling over all possible initial states, the dependence
on the labeling of the vertices is eliminated, so that two
isomorphic graphs necessarily produce the same certificate.
This fact was also verified numerically by comparing the
certificates produced by permutations of a single SRG.

Computationally, the most complex procedure in the two-
particle quantum walk is performing the N2 coin operations at
each step. On a d-regular graph the coin is a d2 × d2 matrix
so the 2N -step quantum walk has time complexity O(N3d4).
Cycling over all Nd/2 initial states gives a classical upper
bound for the time complexity of the above computation of
O(N4d5).

B. GI certificates for noninteracting particles

The first four rows in the GI certificates of the two noniso-
morphic SRGs in the (16,6,2,2) family (Fig. 8) are shown in
Table I. It can be seen that these graphs are easily distinguished
using noninteracting two-particle quantum walks. It is worth
recalling that the corresponding continuous-time algorithm
would fail in this case [6], since the dynamics of noninteracting
two-particle continuous-time quantum walks depend entirely
on the SRG family parameters (N,d,λ,µ). This finding imme-
diately highlights a difference in the algorithmic capability of
the two formulations of quantum walks.

The SRGs tested are shown in Table II. It was found
that two noninteracting particles successfully distinguished all
members of most of the families tested. There are, however,
nonisomorphic graphs with 36 and 40 vertices which produce
the same noninteracting two-particle GI certificates using the
above method. Two such graphs in the (40,12,2,4) family are
nonisomorphic 3-isoregular graphs, which are an extension of
strongly regular graphs that have the additional requirement
that the set of neighbors and nonneighbors of each vertex are
also SRGs [29]. Due to the additional symmetry, we expect

FIG. 8. The two nonisomorphic SRGs with family parameters
(16,6,2,2).
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TABLE I. The first four entries in the certificates computed for
noninteracting two-particle quantum walks on the two nonisomorphic
strongly regular graphs with family parameters (16,6,2,2) (shown
in Fig. 8). “No.” represents the number of occurrences of the∑N

t=1 P (i,j,t) values.

Graph 1 Graph 2∑N

t=1 P (i,j,t) No.
∑N

t=1 P (i,j,t) No.

0.0080650955 1728 0.0064520764 960
0.0098066692 3456 0.0080650955 768
0.0176278617 864 0.0098066692 768
0.0180697993 1152 0.0109051753 1152
...

...
...

...

that these graphs are very difficult to distinguish. We also
analyzed the other sets of graphs in this family for which the
algorithm failed using the graph analysis package NAUTY [30].
The automorphism groups for these graphs were found to
have various sizes and the orbit structures are distinct within
the sets of non-distinguished graphs. Further graph-theoretic
analysis is required to determine the graph-structural basis for
the failure of the method in these cases.

C. GI certificates for 1-interacting particles

Using two-particle quantum walks with 1 interaction, GI
certificates were computed for the graphs listed in Table II.
This resulted in unique GI certificates for all nonisomor-
phic SRGs tested, demonstrating that explicit interaction
significantly increases the graph-distinguishing power of the
two-particle quantum walk.

In order to determine whether entanglement between the
two particles in the initial state is an important part of this
algorithm, we also considered a similar initial state which is
again delocalized over two vertices but which is now separable

TABLE II. Sets of nonisomorphic strongly regular graphs tested
by computing the noninteracting and interacting two-particle quan-
tum walk GI certificates. The “Yes” indicates that all nonisomorphic
family members produced unique GI certificates, while “No” indi-
cates that some graphs in the family produced identical certificates.
The “-” indicates that the family was not tested.

All Graphs Distinguished?

(N,d,λ,µ) Group Size Noninteracting Interacting

(16,6,2,2) 2 Yes Yes
(25,12,5,6) 15 Yes Yes
(26,10,3,4) 10 Yes Yes
(28,12,6,4) 4 Yes Yes
(29,14,6,7) 41 Yes Yes
(35,16,6,8) 3854 - Yes
(36,14,4,6) 180 No Yes
(40,12,2,4) 28 No Yes

in the two particles,

|βsep〉 = 1
2 (|vi,cj ; vi,cj 〉 + |vi,cj ; vj ,ci〉
+ |vj ,ci ; vi,cj 〉 + |vj ,ci ; vj ,ci〉). (26)

The GI certificates for the (36,14,4,6) and (40,12,2,4)
families were computed using the method outlined above,
this time using the separable initial states |βsep〉. While
these certificates were different from the entangled case,
the same sets of graphs were successfully distinguished.
Antisymmetric “fermionic” edge states also produced iden-
tical results, suggesting that the distinguishing power of
the two-particle algorithm comes from delocalization of the
initial state rather than initial entanglement between the two
particles.

D. This procedure cannot distinguish arbitrary graphs

Quantum-walk-based GI algorithms are, in some respects,
similar to a classical GI algorithm known as Weisfeiler-Leman
(W-L) vertex refinement, which typically distinguishes pairs
of nonisomorphic graphs in polynomial time. In fact, recent
studies have suggested a direct correspondence between the
two methods [31]. It has been shown by Cai, Fürer, and
Immerman, however, that for certain graphs, there exist two
related graphs, which cannot be distinguished by the W-L
method in polynomial time [32], thus proving that the W-L
method is not a polynomial-time algorithm for GI.

To test whether or not the interacting two-particle quantum-
walk procedure described above can distinguish pairs of these
graphs, we constructed a pair of Cai-Fürer-Immerman graphs
with 80 vertices and computed their GI certificates using the
above procedure with 1 interaction. Both graphs in the noniso-
morphic pair produced the same certificate, demonstrating that
the procedure, in its current form, cannot distinguish arbitrary
graphs. Nonetheless, this technique provides an interesting tool
for computer scientists interested in GI. In particular, recent
work by Douglas [31] has shown that the Weisfeiler-Leman
method can however be extended to distinguish all known
counterexamples. It is therefore possible that a quantum-walk-
based graph isomorphism testing procedure could also be
extended in a similar fashion.

VI. CONCLUSION

We have introduced two related schemes that allow spatial
interactions between particles in two-particle discrete-time
quantum walks. While maintaining purely unitary dynamics,
these interactions have been shown to generate single-particle
probability distributions that depend on the correlations and
the relative phases between the initial coin states of the two
particles. It was also shown that these interactions generate
spatial correlations and entanglement between the particles
undergoing the quantum walk. In particular, the π -phase
interaction was shown to generate two-particle probability dis-
tributions with specific spatial correlations from all localized
initial states studied.

These interaction schemes can also be applied to quantum
walks on arbitrary undirected graphs. In Sec. V, we discussed
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an application of discrete-time two-particle quantum walks
to the graph isomorphism problem. The graph-distinguishing
power of the walks was examined by computing and com-
paring GI certificates based on the two-particle probability
distributions. In contrast to continuous-time quantum walks, it
was shown that two noninteracting particles can distinguish
some (but not all) nonisomorphic SRGs with the same
family parameters. In addition, the GI certificates produced
in the interacting quantum walk successfully distinguished all
nonisomorphic graphs tested, which is equivalent to the results
obtained for the continuous-time quantum walk with two
interacting bosons [5,6]. While the continuous-time interaction
was implemented by incorporating an energy cost in the
Hamiltonian for multiply occupied quantum states (or by
using hard-core bosons), it is interesting to see that the

simple spatial interaction introduced here leads to similar
graph-distinguishing power.

Algorithmic applications of the diverse single- and two-
particle probability distributions obtained by performing quan-
tum walks with interacting and entangled particles will be an
interesting subject for further study.
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