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Optimal preparation of graph states
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We show how to prepare any graph state of up to 12 qubits with (a) the minimum number of controlled-Z
gates and (b) the minimum preparation depth. We assume only one-qubit and controlled-Z gates. The method
exploits the fact that any graph state belongs to an equivalence class under local Clifford operations. We extend
up to 12 qubits the classification of graph states according to their entanglement properties, and identify each
class using only a reduced set of invariants. For any state, we provide a circuit with both properties (a) and (b),
if it does exist, or, if it does not, one circuit with property (a) and one with property (b), including the explicit
one-qubit gates needed.
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I. INTRODUCTION

Building a quantum computer entails isolating atomic-scale
systems, except when a controlled interaction (e.g., a logic
gate) is applied. Isolation must be kept up until a subsequent
controlled interaction is applied. Any undesirable coupling
with the outside disrupts the quantum state of the systems
and ruins the computation. Due to the enormous difficulties
which keeping atomic-scale systems isolated and controlled
entails, a main limiting factor preventing the development of
quantum computing is the amount of time during which the
systems must be kept isolated and controlled to achieve the
computation. Therefore, the task of reducing this amount of
time is an essential factor in the process of achieving the goal
of building a quantum computer.

Another limiting factor for quantum computation is the
number of entangling gates needed. While one-qubit gates can
be built with fidelities higher than 99%, two-qubit entangling
gates hardly reach 93%, and this becomes worse for three-
qubit gates, etc. Therefore, since one- and two-qubit gates are
enough for universal quantum computation, it is reasonable
to focus on circuits with only one- and two-qubit gates, and
having the least possible number of two-qubit gates.

Here we address the problem of preparing an important
class of quantum states with circuits requiring (a) the minimum
number of two-qubit entangling gates and (b) the minimum
preparation depth (i.e., requiring a minimum number of
time steps). We assume that we can implement arbitrary
one-qubit gates and one specific two-qubit entangling gate,
the controlled-Z gate. The result can be easily extended to any
other specific two-qubit gate.

A. Graph states

Graph states [1,2] are a type of n-qubit pure state with
multiple applications in quantum-information processing. Two
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important examples are in quantum error correction, the
stabilizer codes which protect quantum systems from errors
[3–5] and, in measurement-based (or one-way) quantum
computation [6], the initial states consumed during the
computation [7].

The definition of a graph state already provides a blueprint
for its preparation: an n-qubit graph state |G〉 is a pure
state associated with a graph G = (V,E) consisting of a
set of n vertices V = {0, . . . ,n − 1} and a set of edges E

connecting pairs of vertices, E ⊂ V × V [1,2]. Each vertex
represents a qubit. An edge (i,j ) ∈ E represents an Ising-type
interaction between qubits i and j . To prepare |G〉, first
prepare each qubit in the state |+〉 = 1√

2
(|0〉 + |1〉), i.e., the

initial state will be |ψ0〉 = ⊗i∈V |+〉i . Then, for each edge
(i,j ) ∈ E connecting two qubits i and j , apply a controlled-Z
gate between these qubits, i.e., the unitary transformation
CZ = |00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|.

B. Preparation using only controlled-Z gates

Let us suppose that we have the state |ψ0〉 = ⊗n−1
i=0 |+〉i , and

we want to prepare the eight-qubit graph state |G〉 whose graph
G is in Fig. 1, using only controlled-Z gates. One possible
way is to follow the preparation procedure suggested by G,
taking into account the possible restrictions in performing
two or more controlled-Z gates simultaneously, and optimally
distributing the controlled-Z gates to minimize the number of
steps. The preparation depth of |G〉 is the minimum number
of time steps required to prepare |G〉 [8].

The state |ψ0〉 corresponds to a graph with n isolated
vertices. The total number of edges in G gives a trivial upper
bound to the preparation depth of |G〉, since each controlled-Z
can be applied in a time step. To find the minimum number of
time steps, we have to explore the possibility of applying two
or more controlled-Z gates in a single time step.

Given a vertex i in G, the neighborhood of i,N (i), is the set
of vertices connected to i. Now let us suppose that there is more
than one element in N (i), i.e., |N (i)| > 1, and let j,k ∈ N (i)
be two of the neighbors. Then, to prepare the corresponding
graph state |G〉 we must apply a controlled-Z gate to entangle
qubits i and j , and another one to entangle qubits i and k.
Applying a controlled-Z gate between qubits i and j in a
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FIG. 1. (Color online) Graph corresponding to the eight-qubit
graph state we want to prepare. Edges in the same color represent
controlled-Z gates that can be performed in the same time step.

certain time step implies that both qubits are busy during this
entangling interaction. If we focus on qubit i, we have to wait
for a further time step to have qubit i free before applying
another controlled-Z gate to entangle i and k. Nevertheless,
vertex k could be connected to another vertex l �= {i,j} in G.
If such is the case, we could in principle take advantage of the
same time step we are using to entangle qubits i and j in order
to do the same with qubits k and l, because both controlled-Z
gates can be performed in parallel.

Remarkably, the problem of determining the minimum
number of time steps with the restrictions that we have
mentioned is related to an old problem in graph theory: given
an edge (i,j ) in G, let us use a certain color to mark (i,j )
and those other edges of G corresponding to controlled-Z
gates that can be performed at the same time step than that
of (i,j ), and use different colors for those edges related to
controlled-Z gates that do not fulfill this condition. Since two
controlled-Z gates can be performed at the same time step if
and only if the four qubits involved do not coincide, then every
edge incident to the same vertex must have a different color.
In graph theory this color configuration is called a proper
edge coloring or, to put it more concisely, the graph is said
to be edge-colored. Hence, the preparation depth problem
is equivalent to determining the minimum number of colors
required to get a proper edge coloring of G. This problem is
known as the determination of the chromatic index or edge
chromatic number χ ′(G).

Let us denote by �(G) the maximum degree of G (i.e.,
the maximum number of edges incident to the same vertex).
Vizing’s theorem [9] states that G can be edge-colored in either
�(G) or �(G) + 1 colors, and not fewer than that. Therefore,
χ ′(G) is either �(G) or �(G) + 1. A proof can be found
in [10]. The important point is that χ ′(G) gives the preparation
depth of |G〉 [8,11].

Graphs requiring �(G) colors are called class-1 graphs,
and those requiring �(G) + 1 colors are called class-2 graphs.
For instance, the four-qubit fully connected graph state is
represented by a graph of four vertices, six edges, and
maximum degree equal to 3: it is a class-1 graph, so that
its preparation depth coincides with its maximum degree: 3.
On the other hand, the three-qubit fully connected graph state
is represented by a graph of three vertices with three edges and
maximum degree equal to 2: it is the smallest class-2 graph
and, as a consequence, its preparation depth is also 3.
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FIG. 2. (Color online) A circuit with minimum preparation depth
for the graph state corresponding to Fig. 1, using only controlled-Z
gates. In the circuit, a qubit (vertex of the graph) is represented by
a horizontal wire, and a controlled-Z gate (edge in the graph) by
a vertical segment with diamond-shaped ends connecting the qubits
involved in the operation. Time steps are separated by vertical dashed
lines.

The graph in Fig. 1 is a class-1 graph: it can be edge-colored
with �(G) = 7 colors (this number corresponds to the degree
of vertex 3). Hence, if we use only controlled-Z gates, the
minimum preparation depth of the corresponding graph state
is 7. For instance, one of the optimal distributions of the 13
controlled-Z gates is given in the circuit of Fig. 2, which has
seven time steps.

However, if we are allowed to use one-qubit gates, in
most cases it is possible to get the desired graph state with
a lower number of two-qubit gates and less preparation depth.
For that purpose, one has to take into account the degree of
entanglement of the state we want to prepare.

C. Optimum preparation

Two graph states have the same degree of entanglement
if and only if they are equivalent under local unitary (LU)
operations [12], so that they belong to the same LU-
equivalence class. Moreover, previous results suggest that
for graph states of up to 26 qubits [13], the notions of LU
equivalence and LC equivalence (equivalence under local
Clifford operations) coincide, and, therefore, entanglement
classes are in fact local Clifford equivalence classes (LC
classes). This implies a remarkable simplification, since it is
possible to carry out a graphical description of the action
of local Clifford transformations on graph states [14]: the
successive application of a simple graph transformation rule,
the so-called local complementation, on a certain graph G and
on those that are obtained from G, allows us to generate the
whole LC class of |G〉. The entire set of graphs connected to
a given G by a sequence of local complementations is usually
referred to as the orbit of G (i.e., the LC class of |G〉).

Any of the graph states belonging to a given LC class could
be used as a representative for that orbit, but there is a practical
advantage in taking one requiring (a) the minimum number of
controlled-Z gates or (b) the minimum preparation depth of the
class. If we can identify which LC class a given |G〉 belongs
to, then we can prepare |G〉 by preparing instead the LC-
equivalent state |G′〉 requiring (a) and (b), and then transform
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|G′〉 into |G〉 by means of single-qubit Clifford operations
corresponding to a sequence of local complementations carried
out on G′. This last transformation from |G′〉 to |G〉 requires
only one additional time step, since the local complementation
at vertex a is equivalent [1,2] to the unitary operation

Uτ
a (G) = exp

(
− i

π

4
σ (a)

x

) ∏
b∈N (a)

exp

(
i
π

4
σ (b)

z

)
, (1)

where σ (a)
x is the Pauli matrix σx acting on qubit a, σ (b)

z is the
Pauli matrix σz acting on qubit b, andN (a) is the neighborhood
of a. Operations on different qubits commute, and therefore
one can group together a sequence of local complementations
Uτ

a (G) into n one-qubit gates Ri (with i = 0, . . . ,n − 1),
which can be jointly performed in a single step.

The preparation procedure of a graph state |G〉 through
the optimum LC representative provides an advantage in time
steps when compared to the standard graph-based controlled-Z
procedure when

χ ′(G) − χ ′(G′) > 1, (2)

since the preparation depth for the standard procedure is
χ ′(G), while the preparation depth through the optimum LC
representative is χ ′(G′) + 1, that is, the sum of the preparation
depth of the optimum LC representative plus a unit of
time corresponding to the one-qubit gates. This means that
the preparation depth through the optimum LC representative
provides an advantage for most graph states. For instance,
as we will see, for the graph state of Fig. 1, the optimum
preparation circuit requires only seven controlled-Z gates and
three time steps: saving six controlled-Z gates and requiring
four time steps fewer than in the standard procedure.

However, the preparation through the optimum LC repre-
sentative requires us to identify which LC class |G〉 belongs
to. To be practical, this must require us to identify the simplest
signature of the class.

In Sec. II, we classify all LC classes for graph states up
to n = 12 qubits. This classification is based on a reduced set
of invariants which allows us to identify which class a given
state belongs to. In Sec. III, we provide a representative of
the class with both properties (a) and (b), if it exists, or, if it
does not, one with property (a) and one with property (b). All
these results, which occupy several hundreds of megabytes,
are organized in two tables, one for n < 12 and one for n =
12, and presented as supplementary material [15]. Finally, in
Sec. IV, we explain how to obtain the one-qubit gates needed
and provide as supplementary material a computer program
[16] to, given the graph G corresponding to the state we want
to prepare, generate a sequence of local complementations
which connect G to the corresponding optimum graph(s). In
Sec. V, the whole method is illustrated with an example.

II. CLASSIFICATION OF GRAPH STATES IN TERMS OF
ENTANGLEMENT

The classification of the entanglement of graph states
has been achieved up to n = 7 [1,2], and has recently been
extended to n = 8 [17]. There are 45 LC classes for graph
states up to seven qubits, and 101 LC classes for eight-qubit
graph states, which are ordered according to certain criteria

based on several entanglement measures, which are invariant
under LC transformations.

Here we extend the classification up to n = 12. The number
of orbits for n � 8 qubits is 146. For n = 9, there are 440
orbits; for n = 10, there are 3132 orbits; for n = 11, there are
40 457; and for n = 12, there are 1 274 068. All the information
about each LC class is presented as supplementary material
[15].

For each LC class we give the number of nonisomorphic
graphs in that class (size of the orbit), |LC|. Then, the orbits
are classified according to the number of vertices (qubits),
|V |; the minimum number of edges of a graph belonging to
the class (controlled-Z gates needed for the preparation), |E|;
the Schmidt measure, ES (upper and lower bounds are given
where the exact value is unknown); and for n/2 � i � 2, the
rank indexes RIi for bipartite splits with i vertices in the
smallest partition. The classifying labels |V |, |E|, ES , and
RIi are applied in this order. Additionally, we include the
information regarding the existence (or not) of a two-colorable
graph belonging to the class (a piece of data which is useful,
in some cases, to calculate lower and upper bounds for the
Schmidt measure).

However, these numbers, which were (almost) enough to
identify every class if n � 8, are not enough to identify every
class if n > 8. In other words, the set of entanglement measures
for n-qubit graph states used in [1,2,17] failed to distinguish
between inequivalent classes under local Clifford operations
if n > 8: different LC classes had coincident values for those
entanglement measures. In fact, the number of problematic
LC classes increases with n. Therefore, using these invariants
for deciding which entanglement class a given state belongs
to is unreliable. A finite set of invariants that characterizes
all classes has been proposed in [18]. However, already for
n = 7, this set has more than 2 × 1036 invariants which are not
explicitly calculated anywhere, and hence this set is not useful
for classifying a given graph state.

Nevertheless, a compact set of invariants related to those
proposed in [18] is enough to distinguish among all in-
equivalent LC classes with n � 8 qubits: the four two-index
invariants called cardinalities-multiplicities [19]. There is a
straightforward procedure for calculating these four invariants
using the information contained in the graphs.

We have analyzed the utility and limitations of the
cardinalities-multiplicities (C-M hereafter) as LC-class dis-
criminants for graph states up to 12 qubits, a question that
was left as an open problem in [19], where it was conjectured
that four of these C-M invariants would be enough to label and
discriminate all the LC classes. Our results show that for graph
states of n � 9 qubits, the C-M invariants fail to distinguish
between inequivalent LC classes: the smallest counterexample
of the conjecture corresponds to a pair of nine-qubit orbits that
have exactly the same entire list of C-M invariants. These are
the only problematic orbits for n = 9 qubits. As an alternative
for discriminating between them, we have calculated the whole
list of Van den Nest-Dehaene-De Moor (VDD) invariants
of type r = 1 [18] for these two orbits, and once again
these invariants coincide. In order to determine the number
of C-M and VDD “problematic” (undistinguishable) orbits,
we have extended our calculations up to n = 12 qubits. The
ratio pf (n) of the number of graphs belonging to problematic
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TABLE I. Orbits for which C-M and VDD invariants are not good
LC discriminants.

n No. of orbits No. of problematic orbits pf (n)

�8 146 0 0
9 440 2 0.001 221 8
10 3 132 8 0.000 699 6
11 40 457 78 0.001 192 9
12 1 274 068 472 0.000 094 9

orbits and the overall number of graphs for each n, gives the
probability that a randomly chosen graph state falls in one of
the problematic orbits. The values of pf (n) are, fortunately,
quite low (see Table I). Therefore, the first step of the procedure
of preparation, i.e., the identification of the orbit, resorts to
C-M invariants (and, sometimes, type r = 1 VDD invariants),
and works in most cases. For those rare states whose orbit
identification through C-M or VDD (r = 1) invariants is not
univocal, one would resort to VDD invariants of higher order
r [18]. However, the computational effort of this task makes
this procedure less efficient than simply generating the whole
LC orbit of the graph.

In the supplementary material [15], those LC classes
which have the same set of quantities {|V |,|E|,ES,RIi}
are ordered according to the C-M invariants, going from
the smallest cardinality (zero) to the biggest one, and in-
creasing the value of the associated multiplicity of each
cardinality. For those orbits with the same set of quantities
{|V |,|E|,ES,RIi,C-M invariants}, orbits are ordered by the
increasing size of the orbit, |LC|. We do not apply any subse-
quent classifying criteria, in case there were undistinguishable
LC classes left.

C-M invariants are given as an ordered list of multiplicities
Mi , for i = 0, . . . ,x. The value Mi is the multiplicity of the
cardinality i. We do not list all 2n possible multiplicities, but
only the multiplicities of cardinalities 0, . . . ,x, where x is
the smallest number such that all “nonproblematic” orbits are
distinguished. This may not be the smallest possible set of C-M
invariants. For instance, only the cardinalities {0,1,3,4} are
needed for n � 8, but, for simplicity’s sake, we have included
the continuous list {0,1,2,3,4}.

III. OPTIMUM REPRESENTATIVE

We have determined the optimum representatives for all
the orbits up to 12 qubits, initially defined as one of those
with the minimum number of edges in the orbit and, among
them, one of those with the minimum chromatic index. In
the supplementary material [15], we have included a column
labeled min(|E|,χ ′,#) for each LC class, where |E| is the
minimum number of edges in the class, χ ′ is the minimum
chromatic index of the graphs with |E| edges, and # is the
number of nonisomorphic graphs with |E| edges and chromatic
index χ ′. The value of χ ′ coincides with the preparation depth
of those representative states and indicates how much more
efficient the preparation procedure we are proposing is than
the standard one [it is χ ′(G′) in Eq. (2)].

While carrying out the LC classification, an interesting
observation arose: the optimum representative of a certain

orbit was determined by the application of two filters to the
orbit in a certain order. First, we looked for the graph with
the minimum number of edges (which implies a minimum
number of two-qubit entangling operations), |E|, and second
the minimum chromatic index χ ′ fixed that |E| (which means
a minimum preparation depth given those graphs with |E|
edges). However, if we commute the order of the filters,
for n � 7 qubits, the result of the permutation of the filters
gives the same graph, but this is not the case for n > 7.
We get the simplest example of noncoincidence between the
final optimum representatives for n = 8, where there is only
one orbit (LC class number 136) in which the permutation
of the filters does not produce the same final graph. There
are two graphs in this orbit with |E| = 11 and χ ′ = 4, and
one graph with χ ′ = 3 and |E| = 12 (see Fig. 3). For each
n � 12, we calculated the number of orbits with different final
representatives when we applied the filters in different order:
the ratio of the number of “exceptional” orbits and the entire
number of orbits increases with n, for n � 9 (Table II).

Moreover, we have included in our tables (see supplemen-
tary material [15]), beside the column labeled min(|E|,χ ′,#),
another column labeled min(χ ′,|E|,#), with a 3-tuple of values
(χ ′,|E|,#), where χ ′ is now the minimum chromatic index
in the class, |E| is the minimum number of edges of the
graphs with chromatic index χ ′, and # is the number of
nonisomorphic graphs with chromatic index χ ′ and |E| edges.
Checking the coincidence of χ ′ and |E| in both columns
directly tells us if a certain orbit is exceptional or not. In case
of coincidence, we have left the second column blank. From an
experimental point of view, the appropriate order for the filters
is something that the experimentalists should elucidate, since it
is related to the physical substrate used to implement the qubits,
and the resources at their disposal. If minimizing the number
of two-qubit entangling operations is a critical factor, because
the fidelity in performing such quantum gates is lower than
desirable, then the appropriate order is (|E|,χ ′): once the
number of gates is minimized, then it is the turn of reducing
the preparation depth.

To complete our results in [15] we provide, in the two final
columns for each LC class, an optimum graph resulting from
the filters applied in the order min(|E|,χ ′,#), and another one
applying the filters as min(χ ′,|E|,#) (if it is not coincident with
the former; in case of coincidence, the second final column
is left blank). The edges of the graph are listed, with vertices
indexed as 0, . . . ,n − 1. Moreover, edges are divided in classes
(enclosed by parentheses) that define a proper edge-coloring
(with χ ′ colors). This information is equivalent to providing an
optimum circuit [with a number of time steps equal to χ ′(G′)]
for preparing the optimum representative graph G′ of the class.
The graphs and circuits in Fig. 3 have been designed according
to the information in the supplementary material [15] for LC
class number 136.

IV. ONE-QUBIT GATES

Assuming that an experimentalist has prepared the optimum
representative graph state |G′〉 corresponding to the desired
state |G〉, he or she needs to know at least one sequence of
local complementations connecting |G′〉 with |G〉. The length
of this LC sequence is not relevant, due to the possibility of

042314-4



OPTIMAL PREPARATION OF GRAPH STATES PHYSICAL REVIEW A 83, 042314 (2011)

1 2 3 4 5

Qubit 1

Qubit 0

Qubit 2

Qubit 3

Qubit 4

Qubit 5

Qubit 6

Qubit 7

R0

R1

R2

R4

R5

R6

R3

R7

0

7

6

54

3

2

1 0

7

6

54

3

2

1

1 2 3 4

Qubit 1

Qubit 0

Qubit 2

Qubit 3

Qubit 4

Qubit 5

Qubit 6

Qubit 7

R’0

R’1

R’2

R’4

R’5

R’6

R’3

R’7

FIG. 3. (Color online) Two optimum representatives for LC class number 136 (up). The graph on the left is obtained by applying over
the entire orbit the filter min(|E|,χ ′), i.e., first minimizing over |E| and then over χ ′, whereas the one on the right is obtained by applying
the filter min(χ ′,|E|). Any graph state belonging to LC class number 136 could be prepared by means of the circuits depicted under those
representatives. The circuit on the left prioritizes a lower number of entangling gates; the one on the right prioritizes a lower preparation depth.
Ri and R′

i are one-qubit gates. They are specific for the state of the class 136 we want to prepare.

implementation of these local operations as one-qubit gates in
only one time step, as was already discussed above. However,
finding a way in the orbit from |G′〉 to |G〉 is a hard task. To
make the entire orbit-based preparation procedure practical,
we have designed a computer program that accomplishes this
task. Very briefly, it uses the information about the graph
G related to the state |G〉 that one wishes to obtain. The
input is the information about the edges. The program finds
the optimal graph(s) G′ with respect to both the number of
edges and chromatic index (these two quantities are also part
of the output), and provides a sequence of LC operations

TABLE II. Orbits for which a different order of filters relating the
minimum number of edges and minimum chromatic index produces
a noncoincident representative graph.

n No. of orbits No. of exceptional orbits

�7 45 0
8 101 1
9 440 3
10 3 132 65
11 40 457 2 587
12 1 274 068 136 518

transforming |G′〉 into |G〉. This computer program is included
as supplementary material [16].

V. EXAMPLE

In order to clarify the whole process, we go back to the graph
in Fig. 1. As we mentioned, G is a class-1 graph. Therefore,
the preparation depth of |G〉 using only controlled-Z gates
is 7. The orbit-based procedure allows us to reduce significa-
tively the preparation depth and the number of controlled-Z
gates. It consists of the following steps:

0
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54
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1

FIG. 4. (Color online) Graph state LC8, optimum representative
of orbit 68.
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FIG. 5. (Color online) Optimum circuit for preparing the graph
state corresponding to Fig. 1.

(I) To identify the orbit or LC equivalence class the graph
state |G〉 belongs to, we calculate the cardinality-multiplicity
invariants [19]. The result is {0170,135,312,47}. Therefore, after
consulting [15], we conclude that the graph state |G〉 belongs
to the LC class number 68.

(II) Also in [15] we find the optimum representative graph
G′: it is the eight-vertex linear cluster LC8 (see Fig. 4). Graph
LC8 is a class-1 graph, whose maximum degree is �(G′) = 2.
Hence its preparation depth is 2, which means a remarkable
saving in the preparation depth compared to that of |G〉.

(III) Therefore, it is worth preparing |G〉 by preparing
|G′〉 and then applying suitable one-qubit gates. The program
in [16] outputs a sequence of local complementations which
connects G′ to G. For instance, the sequence of LC operations
applied on vertices 6, 7, 4, 5, and 2 in graph G′ enables us to
obtain G. Denoting the corresponding series of local Clifford
operations by τ (G′), we have |G〉 = τ (G′)|G′〉. Applying
Eq. (1) and rearranging terms so that τ (G′) = ∏

i∈V Ri , where
Ri is a specific gate on qubit i, we obtain that

R0 = exp

(
i
π

2
σ (0)

z

)
, (3a)

R1 = exp

(
i
3π

4
σ (1)

z

)
, (3b)

R2 = exp

(
− i

π

4
σ (2)

x

)
exp

(
i
π

4
σ (2)

z

)
, (3c)

R3 = exp

(
i
π

2
σ (3)

z

)
, (3d)

R4 = exp

(
i
π

4
σ (4)

z

)
exp

(
− i

π

4
σ (4)

x

)
exp

(
i
π

4
σ (4)

z

)
, (3e)

R5 = exp

(
− i

π

4
σ (5)

x

)
exp

(
i
π

4
σ (5)

z

)
, (3f)

R6 = exp

(
i
π

2
σ (6)

z
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R7 = exp
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)
exp

(
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π

4
σ (7)

x

)
. (3h)

In addition, the number of controlled-Z gates necessary to
get |G〉 is remarkably reduced (six two-qubit gates fewer than
in the standard preparation method). The optimum circuit for
preparing |G〉, with a preparation depth equal to 3, is the one
in Fig. 5.

VI. CONCLUSIONS

We have proposed a procedure for the optimal preparation
of any of the more than 1.65 × 1011 graph states with up to 12
qubits, based on their entanglement properties. Optimal means
with both (a) a minimum number of entangling gates and (b)
a minimum number of time steps, when possible, or choosing
between (a) or (b), in the other cases. The preference will
depend on the particular physical system we are considering.
The main goal has been to provide in a single package all
the tools needed to rapidly identify the entanglement class the
target state belongs to, and then easily find the corresponding
optimal circuit(s) of entangling gates, and finally the explicit
additional one-qubit gates needed to prepare the target, starting
with a pure product state and assuming only arbitrary one-
qubit gates and controlled-Z gates, which constitutes the most
common scenario for practical purposes.

The results presented in this paper go beyond those in [1,2,
17,19] the classification of entanglement for a highly relevant
family of qubit pure states (graph states and, by extension,
stabilizer states) of 9, 10, 11, and 12 qubits. In total, almost
1.3 × 106 entanglement classes are introduced.

The results have experimental relevance. For example,
imagine an experimentalist in the field of trapped ions who
wants to prepare graph states. The experimentalist knows that
he can keep, e.g., nine ions (qubits) isolated from external
influences for a given period of time, and knows that during
this time he can perform a maximum of m two-qubit entangling
operations with an efficiency above a certain threshold. The
experimentalist wants to know which classes of graph states
(which classes of entanglement) are a reasonable target with
these resources. The results in this paper allow him to
answer this question: if m = 8, he can prepare 47 different
classes (classes 147–193 in [15]); if m = 9, he can prepare
47 + 95 = 142 different classes (classes 147–288 in [15]),
etc. Moreover, the paper tells the experimentalist which is
the optimum sequence of lasers (gates) required for preparing
any state of each class.

More interestingly, consider that the experimentalist wants
to prepare a specific nine-qubit graph state. The paper provides
the simplest known protocol to identify which entanglement
class the target state belongs to, and gives the simplest
circuit to prepare it, where “simplest” means in most cases
the one requiring the minimum number of entangling gates
and computational steps, or, in those cases in which such
a circuit does not exist, gives a circuit requiring the min-
imum number of entangling gates, and a circuit requiring
minimum depth.
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