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Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED:
Joint measurement, Zeno effect, and feedback
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In a solid-state circuit QED system, we extend the previous study of generating and stabilizing a two-qubit
Bell state [Phys. Rev. A 82, 032335 (2010)] to a three-qubit GHZ state. In a dispersive regime, we employ the
homodyne joint readout for multiple qubits to infer the state for further processing, and in particular we use it to
stabilize the state directly by means of an alternate-flip-interrupted Zeno (AFIZ) scheme. Moreover, the state-
of-the-art feedback action based on the filtered current enables not only a deterministic generation of the pre-GHZ
state in the initial stage, but also a fast recovery from occasional error in the later stabilization process. We show
that the proposed scheme can maintain the state with high fidelity if the efficient quantum measurement and rapid
single-qubit rotations are available.
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I. INTRODUCTION

Quantum entanglement is novel and useful because it
exhibits correlations that have no classical analog, and it is
one of the key ingredients for quantum technology applica-
tions such as quantum teleportation, quantum cryptography,
quantum dense coding, and quantum computation [1]. The
conventional approach to generate quantum entanglement is
via unitary two-qubit gates, using the necessary qubit-qubit
interactions. Interestingly, instead of employing entangling
gates, one can exploit quantum measurement as an alternative
means to achieve a similar goal. In both cavity and circuit
QED systems, promising ideas along this route were proposed
to probabilistically create entangled states by means of the
homodyne measurement alone [2–5].

The circuit QED system [6–8], a solid-state analog of the
conventional quantum optics cavity QED, is a promising solid-
state quantum computing architecture. This architecture cou-
ples superconducting electronic circuit elements, which serve
as the qubits, to harmonic oscillator modes of a microwave
resonator, which serve as a “quantum bus” that mediates
interqubit coupling and facilitates quantum measurement for
the qubit state. Moreover, quantum measurement in this system
can be carried out by operating in the dispersive limit, i.e.,
with a detuning between the resonator and the qubit much
larger than their coupling strength. In this limit, the qubit-
resonator interaction induces a qubit-state-dependent shift on
the resonator’s frequency. Then, by measuring the resonator
output voltage with a homodyne scheme, information about
the qubit state is obtained.

With these advantages, the schemes proposed in Refs. [4,5]
for using measurement to create, respectively, two- and three-
qubit entangled states in the circuit QED system are attractive.
However, in addition to the drawback of being probabilistic,
the measurement-only approach cannot stabilize the generated
state. To resolve this problem, the technique of quantum
feedback control may emerge as a possible route [9]. In a recent
work [10], a feedback scheme was analyzed for the creation
and stabilization of the two-qubit Bell states. Owing to using
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the dispersive joint readout of multiple qubits and performing
proper feedback, the scheme leads to results superior to some
previous ones. For instance, it enhances the concurrence to
values higher than 0.9, by noting the 0.31 obtained in Ref. [11];
and also it avoids the experimental difficulty in the jump-based
feedback [12] or the complexity for a state-estimation feedback
[2,13,14].

In this work, we extend the study of generating and
stabilizing the two-qubit Bell state in Ref. [10] to the three-
qubit GHZ state. To our knowledge, unlike the feedback
control of a two-qubit Bell state [10–12,15,16], schemes for
stabilizing a three-qubit GHZ state are not well investigated. In
Ref. [2] elegant analysis is carried out for preparing the Dicke
state of an ensemble of atoms (qubits) in a cavity, by means of
projective measurement in a dispersive limit, and as well by
using feedback to make the scheme deterministic. However,
the ability of stabilizing the generated Dicke state against
decoherence is not demonstrated. In the present work, we plan
to exploit the advantages of the homodyne joint readout in
a dispersive regime for multiple qubits, to infer the state for
further processing, and in particular to stabilize the target state
directly by means of an alternate-flip-interrupted Zeno (AFIZ)
scheme. Also, the state-of-the-art feedback action properly
designed according to the measurement current enables both
a deterministic generation of the pre-GHZ state in the initial
stage and a fast recovery from occasional error in the later
stabilization process.

Before proceeding to the details of the proposed scheme, we
first briefly outline the control efficiency. For the deterministic
generation of the pre-GHZ state, keeping track of the joint
measurement information together with simple individual
qubit rotations in our scheme will either lead to a direct
subsequent success of target state generation with probability
1/2, being higher than the 1/4 given by the naive rerunning
scheme, which additionally needs the difficult “data-clearing”
procedures, or avoid clearing the wrong state before rerunning
the generation scheme. More importantly, the AFIZ stabiliza-
tion protocol, based only on an alternate but regular qubit
flips and continuous measurement, can maintain very high
fidelity (higher than 90%) for a considerably long time (much
longer than the single-qubit decoherence time). In principle,
if the continuous measurement can approach the effect of
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fast repeated strong projective measurement, i.e., the ideal
Zeno effect, the AFIZ scheme can stabilize the pre-GHZ state
for an arbitrarily long time. Meanwhile, another remarkable
advantage of the AFIZ scheme is that it greatly simplifies
the unitary manipulations on qubits, compared to either the
state-based or current-based continuous feedback. Moreover,
associated with the AFIZ scheme, an auxiliary alarm to the
failure of AFIZ control, which may occur occasionally owing
to the finite strength of the measurement, can restart the fast
deterministic generation of the target state by simply using
two-qubit flips, one-qubit (π/2) rotation, and two projective
measurements.

II. MODEL AND FORMALISM

We consider a specific circuit QED system consisting of
three superconducting qubits coupled to the fundamental mode
of a microwave resonator cavity. The qubits, the resonator
cavity, and their mutual coupling are well described by the
Jaynes-Cummings Hamiltonian [6,17]:

H = ωra
†a + E(a† + a) +

3∑
j=1

[
�j

2
σ z

j + gj (σ−
j a† + σ+

j a)

]
.

(1)

The operators σ−
j (σ+

j ) and a(a†) are, respectively, the lowering
(raising) operators for the j th qubit and the resonator cavity
photon (hereafter we will call it a cavity photon for simplicity).
ωr is the frequency of the cavity photon, and �j and gj are
the j th qubit transition energy and its coupling strength to the
cavity photon, respectively. In this work we consider a three-
qubit setup as shown schematically in Fig. 1, which can result
in the required sign, sgn(g1) = sgn(g2) =−sgn(g3). The E term
in Eq. (1) stands for a microwave driving to the resonator
cavity that is employed for the task of measurement. Explicitly,
E = εe−iωmt + c.c., where the driving frequency can differ
from the cavity photon frequency, i.e., �r ≡ ωr − ωm �= 0.
Moreover, we will focus on a dispersive limit measurement
[6–8], i.e., with the energy detuning �j = ωr − �j much
larger than gj . In this limit, the canonical transformation,
Heff � U †HU , where U = exp[

∑
j λj (aσ+

j − a†σ−
j )] with

λj = gj/�j , yields (in a joint rotating frame with the driving
frequency ωm with respect to both the cavity photon and each

FIG. 1. (Color online) Schematic diagram of the circuit QED with
three qubits, together with a microwave transmission measurement in
a dispersive limit. The Cooper-pair box qubits are fabricated inside
a superconducting transmission-line resonator and are capacitively
coupled to the voltage standing wave.

individual qubit)

Heff � �ra
†a + (ε∗a + εa†)

+
3∑

j=1

(ωj + χj )
σ z

j

2
+

3∑
j=1

χja
†aσ z

j , (2)

where ωj = �j − ωm and χj = g2
j /�j . Here we have ne-

glected the virtual cavity-photon-mediated effective coupling
between qubits, as is appropriate for sufficient detuning
between qubits [5].

In the circuit-QED system, the measurement is typically
performed via a homodyne detection of the transmitted
microwave photons. The photon’s leakage from the res-
onator cavity is described by a Lindblad term κD[a]ρ
in the master equation, where κ is the leakage rate and
the Lindblad superoperator acting on the reduced density
matrix ρ is defined by D[a]ρ = aρa† − 1

2 {a†a,ρ}. However,
conditioned on the output homodyne current, i.e., Ihom(t) =
κ〈a + a†〉c(t) + √

κξ (t), there will be an additional unraveling
term in the conditional master equation, H[a]ρcξ (t). Here
〈(· · ·)〉c(t) ≡ Tr[(· · ·)ρc(t)] with ρc(t) the conditional density
matrix, and H[a]ρc ≡ aρc + ρca

† − Tr[(a + a†)ρc]ρc. The
Gaussian white noise ξ (t), which has the ensemble average
properties E[ξ (t)] = 0 and E[ξ (t)ξ (t ′)] = δ(t − t ′), stems
from the quantum-jump-related stochastic nature.

In this work, we assume a strongly damped resonator
cavity, which enables us to adiabatically eliminate the cavity
photon degree of freedom [4,18]. Qualitatively, observing
the effective coupling

∑3
j=1 χja

†aσ z
j in Eq. (2), we can

understand that the fluctuation of the photon number will
cause a pure dephasing backaction onto the qubits, with a
joint dephasing operator Jz = ∑3

j=1 δjσ
z
j , where δj = χj/χ̄

and χ̄ = ∑N
j=1 χj/N . Thus, we can expect the following

results after adiabatic elimination of the photon’s degree of
freedom: (i) the dephasing term ∼ D[Jz]ρc, (ii) the unraveling
term ∼ H[Jz]ρcξ (t), and (iii) the homodyne current Ihom(t) ∼
〈Jz〉c(t) + ξ (t). Indeed, following the standard procedures of
adiabatic elimination [4,18], an effective quantum trajectory
equation (QTE) involving only the degrees of freedom of
qubits can be obtained as

ρ̇c = Lρc + d

2
D[Jz]ρc +

√
m

2
H[Jz]ρcξ (t), (3)

in which the Liouvillian is defined as

Lρc = −i

[ ∑
j

ωj + χj

2
σ z

j + χ̄ |α|2
∑

j

δjσ
z
j ,ρc

]

+
∑

j

(γj + γpj )D[σ−
j ]ρc +

∑
j

γφj

2
D

[
σ z

j

]
ρc.

Here we have also assumed a resonant driving, i.e., �r = 0.
In Eq. (3), γj and γφj are the relaxation and dephasing
rates caused by the surrounding environments, respectively.
Since the external dephasing can be strongly suppressed by
proper design of the superconducting qubits, we will thus
neglect it in our following simulations. The γpj terms, with
γpj = κλ2

j , stem from the so-called Purcell effect, describing
an indirect qubit decoherence induced by the damping of
the cavity photons. Since we assumed mutually distinct
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frequencies of qubits, we can treat the Purcell effect under
secular approximation, i.e., neglecting the cross-terms in
D[

∑
j gjσ

−
j ]ρc. (The cross-terms characterize interference

between the radiation from different qubits and become
important only if the qubit frequencies are sufficiently close.)
With these considerations, the Purcell-effect-induced and other
environment-caused decoherences can be equally treated.
Therefore, we combine them by γ = γj + γpj . Moreover,
the measurement-backaction-induced dephasing rate d =
8|α|2χ̄2/κ , with α = −2iε/κ . And finally, the information-
gain rate m in Eq. (3) is in general related to the backaction
dephasing rate in terms of the quantum efficiency, η =
m/(2d ).

III. FILTERING THE OUTPUT CURRENT

After adiabatic elimination of the cavity degree of freedom,
we obtain an effective measurement operator Jz = ∑3

j=1 δjσ
z
j ,

which has a number of discrete eigenvalues. However, in
the practical homodyne measurement, the output record
is the homodyne current, which we rewrite as dIhom(t) =√

m〈Jz〉c(t)dt + dW (t), where dW (t) = ξ (t)dt is the Wiener
increment that has the statistical properties E[dW (t)] = 0
and E[dW (t)dW (s)] = δ(t − s)dt . In this context, we remind
readers that we are actually employing a series of photons
by using their transmission through the cavity to measure
the qubit state. Accordingly, the stochastic Wiener increment
in the homodyne current just characterizes the very weak
(partial) random collapse caused by the individual measuring
photons. It is the sum of the 〈Jz〉c(t) term plus the Wiener
increment that corresponds to the measurement record after
the (infinitesimal) partial collapse, while 〈Jz〉c(t), from its
definition 〈Jz〉c(t) = Tr[Jzρc(t)], exposes the information of
state before the infinitesimal collapse.

Of great interest and very usefully, instead of knowing
〈Jz〉c(t) from the usual ensemble measurement by repeating
a large number of realizations (noting that the quantum
mechanical expectation indicates a statistical or ensemble-
average interpretation), we can approximately obtain it in
the context of continuous weak measurement by averaging
the homodyne current over a properly chosen window of
time. This has some similarity to the ergodic assumption in
statistical physics, where the average along time is assumed
to replace the ensemble average. In practice, we can low-pass
filter the homodyne current over a small time window [19] and
get a smoothed signal as Īhom(t) = 1

N
∫ t

t−T
e−γft(t−τ )dIhom(τ ),

where γft is a low-pass filtering parameter, and the factor N
normalizes the smoothed signal to a maximum magnitude of
unity. A numerical test shows that Īhom(t) indeed coincides
with 〈Jz〉c(t) satisfactorily. Thus, in the numerical simulations
of this work, we simply use 〈Jz〉c(t) as a state indicator to guide
our feedback manipulations. In particular, after the qubits have
experienced sufficient transmission measurement by a large
number of photons and fully collapse onto one eigenstate of
the measurement operator, we can in principle unambiguously
infer it from the filtered current 〈Jz〉c(t).

Finally, we remark that, in regard to feedback design,
〈Jz〉c(t) in the homodyne current dIhom(t) is informative about
the state and is thus useful, yet the dW (t) term is harmful.
In other words, the dW (t) term is harmful the homodyne

current has distinct roles when using the current to update
the state versus to perform feedback. In doing the former,
it is necessary, whereas in doing the latter, it is useless and
should better be erased. This understanding was demonstrated
in recent work [10].

IV. DETERMINISTIC GENERATION OF
THE PRE-GHZ STATE

Since our control target, say, the GHZ state |000〉 + |111〉,
can be easily obtained by a simple flip of a single qubit (i.e.,
the third one) from |001〉 + |110〉, which may be accordingly
named a pre-GHZ state, we can aim to control this pre-GHZ
state instead. From the QTE formalism outlined above in
a dispersive regime, we see that an effective measurement
operator reads Jz = ∑

j δjσ
z
j . Noting that the consequence of

a quantum measurement is to collapse an arbitrary state onto
one of the eigenstates of the measurement operator, we may
design Jz = σ z

1 + σ z
2 + 2σ z

3 , which makes the pre-GHZ state
be its eigenstate with eigenvalue Jz = 0. In practice, this can
be realized by setting the dispersive shifts χ1:χ2:χ3 = 1:1:2.

More specifically, let us start with an initially separable
state:

|�i〉 = 1√
2

(|0〉 + |1〉)1 ⊗ 1√
2

(|0〉 + |1〉)2 ⊗ 1√
2

(|0〉 + |1〉)3

= 1√
8

[|000〉 + |111〉 + (|010〉 + |100〉)

+ (|011〉 + |101〉) + (|001〉 + |110〉)]. (4)

Performing the above designed homodyne measurement, in
an individual single realization, would collapse |�i〉 stochas-
tically onto one of the eigenstates of Jz. According to the
principle of quantum projective measurement, |�i〉 would
collapse onto the pre-GHZ state |001〉 + |110〉 with probability
1/4, as a result of getting the record Jz = 0. However, there are
probabilities of getting other results. That is, the state would
collapse onto |011〉 + |101〉 or |100〉 + |010〉 with probability
1/4, depending on the result being Jz = 2 or −2. It may also
collapse onto |111〉 or |000〉 with probability 1/8 if one gets
Jz = 4 or −4.

What we described above is in fact a measurement alone
scheme to generate the pre-GHZ state stochastically. Below
we show that proper current-based feedback manipulations
can make the scheme deterministic. If, unfortunately, we
did not get the result Jz = 0, we may adopt the following
distinct procedures based on the specific measurement results
obtained: (i) If the result is Jz = 2, which indicates the state
|011〉 + |101〉 projected out, we perform a σx flip on the first
qubit and a π/2 − σy rotation on the third qubit. Noting that
|011〉 + |101〉 can be rewritten as (|01〉 + |10〉) ⊗ |1〉, it is clear
that the above rotations will transform it to |000〉 + |111〉 +
|001〉 + |110〉, which then has a new probability of 1/2 in the
successive measurement to be collapsed onto the pre-GHZ
state |001〉 + |110〉. (ii) Similarly, for the result Jz = −2, a σx

flip on the first qubit and a 3π/2 − σy rotation on the third one
can be performed to achieve the same goal as described in (i).
(iii) If the measurement result is Jz = 4 or −4, which indicates
the state |111〉 or |000〉 obtained, we then apply a π/2 − σy or a
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Γ

FIG. 2. (Color online) Two representative quantum trajectories
showing the deterministic generation of the pre-GHZ state.

3π/2 − σy rotation on each qubit, making the state return back
to the initial one (|0〉 + |1〉)1 ⊗ (|0〉 + |1〉)2 ⊗ (|0〉 + |1〉)3,
which allows us to rerun the generating procedures.

In Fig. 2 we show two representative quantum trajectories
that are deterministically guided to the pre-GHZ state. The
quantity 〈Jz〉c(t) plotted here is an appropriate indicator for the
finally collapsed state. Here we remark that our present scheme
of entangled state generation is efficient. Generally speaking,
a probabilistic scheme of quantum information processing
needs to recycle the process with the same initial state. This
will require a procedure of clearing the unwanted data (qubit
states), which is, unfortunately, not an easy job in quantum
system compared to its classical counterpart. On the contrary,
in addition to that we do not require “data clearing,” our
scheme in case (ii) needs only two single-bit rotations, and
the subsequent success probability of projection (i.e., 1/2)
is higher than the recycling scheme, which has a success
probability 1/4. Even in the worst case (iii), the manipulation
of qubit rotations is identical to rerunning the generation
procedure, but the process of “data clearing” is avoided.

V. STABILIZATION USING FLIP-INTERRUPTED ZENO
PROJECTION AND FEEDBACK

In the above, we discuss an efficient deterministic scheme to
generate the pre-GHZ state. However, under the unavoidable
influence of the surrounding environment, this state will
degrade if we do not provide proper active protections. Below
we first propose an alternate-flip-interrupted Zeno (AFIZ)
stabilization scheme to enhance considerably the lifetime of
the pre-GHZ state, then design additional manipulation to
prevent the state from degradation. Actually, the pre-GHZ
state is an eigenstate of the measurement operator Jz. Then,
if one performs a continuous observation (measurement) on
it, the quantum Zeno effect would attempt to freeze the
state. Using the Zeno effect to stabilize the quantum state
is an interesting topic in quantum physics and particularly in
quantum computing [20,21]. However, as we will see shortly,
generalization of the Zeno protection from single to multiple

FIG. 3. (Color online) (a) State fidelity under the conventional
quantum Zeno (not the AFIZ) stabilization for the pre-GHZ state,
showing the result (solid line) much better than the uncontrolled one
(dashed line). (b) Detailed inspection for the Zeno pulled-back state
in (a), |�(t)〉 = α(t)|001〉 + β(t)|110〉, showing a gradual deviation
from the target state |�T 〉 = (|001〉 + |110〉)/√2. (c) Unconscious
output current for the changing state |�(t)〉. Single-qubit decoherence
rate: γ = 0.01d .

qubits will suffer more complexities. As a major contribution
of the present work, we will see that the proposed AFIZ
stabilization scheme can greatly improve the control quality.

In Fig. 3(a) we plot the state fidelity under Zeno protection
against the one in the absence of such protection, where
the Zeno effect is automatically realized via the continuous
Jz-type measurement as discussed above. We see that, pro-
vided the measurement strength is much stronger than the
decoherence rate, the effect of Zeno stabilization is obvious.
Regarding the underlying mechanism of Zeno stabilization
for a multiple-qubit state, it is analogous to that for a single
qubit. That is, while the environment is causing the state to
move away from the target state to other unwanted states, the
relatively strong continuous measurement is at the same time
pulling it back. Since our target state is a superposition of
|001〉 and |110〉, it should, however, be more fragile than the
one-component state in regard to the Zeno stabilization.

We may understand this point better as follows. Owing
to coupling with environment, the qubits would experience an
entangling evolution with the environment, for an infinitesimal
interval of time. Then the measurement projects the qubit state
back. Since each individual qubit couples to the environment
independently, this pull-back action via measurement from
entangling with the environment cannot guarantee the reorga-
nized components |001〉 and |110〉 with exactly unchanged su-
perposition weights. And, unfortunately, the changed superpo-
sition amplitudes cannot be distinguished by the measurement,
since the arbitrary superposition of |001〉 and |110〉 is the eigen-
state of the measurement operator and will result in the same
output current. In Figs. 3(b) and 3(c) we show, respectively,
the gradual change of the superposition amplitudes away from
the initial value 1/

√
2 and the corresponding output current.
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The Zeno-effect-induced pull-back action, in terms of
quantum measurement language, corresponds to a null-result
record of spontaneous emission of the qubits. Conditioned on
the null result of spontaneous emission, an effective Hamilto-
nian governing the qubits state evolution reads H̃qu = Hqu −
i

γ

2

∑3
j=1 σ+

j σj , where Hqu stands for the qubits Hamiltonian
contained in Eq. (2). This effective Hamiltonian acting on
the target pre-GHZ state |�T 〉 = (|001〉 + |110〉)/√2, or more
generally on |�〉 = α|001〉 + β|110〉, leads to an effective evo-
lution as |�(t)〉 = (αe−γ t/2|001〉 + βe−γ t |110〉)/|| · ||, where
|| · || denotes the normalization factor. We have checked that
this effective evolution is in perfect agreement with the results
from numerical simulation, e.g., the one shown in Fig. 3(b).
Then, favorably, we get an insight that the change of the
superposition amplitudes is owing to the unbalance of qubit
states “0” and “1” in the components |001〉 and |110〉. Based on
this observation, quite simply, if we flip simultaneously each
of all the three qubits after the Zeno stabilization continuing
for a time period τ , the pre-GHZ state will be restored from
the flipped state after an equal time interval τ . In practice, the
time interval τ can be chosen as a few −1

d , since on such a
short timescale the variations of the state amplitudes α and
β are negligibly small, provided γ � d . We can expect and
will demonstrate in the following that this alternate evolution,
which is called in this work an alternate-flip-interrupted Zeno
(AFIZ) scheme, is capable of stabilizing the pre-GHZ state
very efficiently. As an interesting remark, this AFIZ scheme
has a certain similarity to the refocus technique in the echo
physics in quantum optics or nuclear magnetic resonance,
where a similar flip is manipulated to cause an inverse
evolution toward the initial state, i.e., to produce an echo.

Unfortunately, to implement the above AFIZ protection in
practice, there should exist very small but nonzero probabilities
to collapse the qubits’ state to |000〉 and a mixture of |100〉
and |010〉, owing to the finite strength of the measurement.
(i) For the result of |000〉, the output current would trigger a
feedback action as described in the deterministic generation
scheme, which will force the state rapidly back to the pre-GHZ
state under the guided efficient projection of measurement. (ii)
For the mixture of |100〉 and |010〉, the output current will
also trigger a feedback action as described in the deterministic
generation scheme. As a result, besides being projected to
|000〉 and |111〉, which will be further guided to the pre-GHZ
state, a mixed state with |001〉 and |110〉 will be filtered out by
the measurement. Very unfortunately, this mixed state is not the
pre-GHZ state, but with the same zero output current. To elim-
inate this error, one can perform a flip action on the third qubit.
Then, a mixed state with |000〉 and |111〉 is formed, and the
rapid deterministic generation procedures will be triggered.

In Fig. 4 we show the numerical result of stabilizing the pre-
GHZ state, based on the measurement and feedback schemes
described above. The stabilization dynamics is illustrated by
both the state fidelity and the output current. We see that at
most times the current is zero, only interrupted occasionally
by jumps between 0, ±2, and ±4. The flat current indicates
the stage of Zeno stabilization, during which the quality of the
pre-GHZ state is maintained at a desirable high level, with a
state fidelity larger than 0.9.

The state fidelity of a single quantum trajectory has a certain
stochasticity, owing to the measurement-induced quantum

FIG. 4. (Color online) (a) Fidelity of the pre-GHZ state under the
combined AFIZ-plus-feedback stabilization. (b) The corresponding
output current. Single-qubit decoherence rate: γ = 0.01d .

jumps. We may follow the conventional way to employ the
fidelity of the ensemble average state as a reliable figure of
merit to characterize the control quality. Figure 5(a) shows
the results of ensemble average fidelity, for γ = 10−2d and
10−3d , respectively. We notice that, even for γ = 10−2d ,
which in most cases such as the one- or two-qubit feedback
control is taken as a tolerable error rate, the average fidelity
can be higher than 0.9, while for a smaller error rate such as
γ = 10−3d the average fidelity can reach nearly unity, and
the individual quantum trajectory also shows a perfect control
result as illustrated in Fig. 5(b). In addition, in Fig. 5(c) we

111110101100011010001000

111
110

101
100

011
010

001
000

−0.1
0

0.25

0.5

(a)

(b)

(c)

FIG. 5. (Color online) (a) Average fidelity of the pre-GHZ
state over 1000 quantum trajectories. (b) Fidelity of an individual
realization with γ = 0.001d , showing perfect control result under
this even weaker decoherence when compared to γ = 0.01d in
Fig. 4. (c) The full state density matrix at a specific time in (b).
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present the full density matrix for a representative state during
the Zeno stabilization stage, which clearly reveals the quality
of the protected pre-GHZ state.

VI. CONCLUDING REMARKS

Finally, we make a number of remarks before summarizing
the work. (i) Some approximations are involved, for instance,
the rotating-wave approximation contained in the Jaynes-
Cummings model Eq. (1), the effective Hamiltonian Eq. (2)
in a dispersive regime, and the adiabatic elimination of cavity
photons leading to Eq. (3). In the recent work by Liu et al. [10],
all these approximations are properly justified. (ii) The main
problem of doing feedback in circuit QED is the lack of
efficient homodyne detection. Currently, the way to perform
homodyne and heterodyne detection is to first amplify the
signal before mixing it on a nonlinear circuit element of
some kind. As a consequence, the extra noise added by the
amplifier will reduce the quantum efficiency and prohibit
quantum-limited feedback. It seems that this situation is to
be changed quickly, for instance, by developing Josephson
parametric amplifiers that can be realized in superconducting
circuits [22]. (iii) In our numerical simulation, we did not
explicitly include the nonunit quantum efficiency in the
homodyne detection of the field. After adiabatic elimination
of the cavity photon degree of freedom, the nonunit quantum
efficiency of homodyne detection will reduce the effective
information-gain rate m in Eq. (3). This implies an emergence
of an extra nonunraveling dephasing term in the quantum

trajectory equation. However, for the present particular study,
this term results only in dephasing among the pre-GHZ state
and the others in the single quantum-trajectory realizations. In
addition to simple intuitive expectation, we have numerically
examined that lowering the quantum efficiency by some
acceptable amount does not obviously change the results. (iv)
Experimental verification of the GHZ state is of great interest
and is analyzed theoretically in the recent work by Bishop
et al. [5]. In order to observe a violation of the Bell-Mermin
inequality, a relatively high signal-to-noise ratio in performing
the measurement is required, which is unfortunately beyond
the existing scope of experiment. But, optimistically, the
situation is expected to change in the near future by fast
experimental progress.

To summarize, we have presented a promising quantum
control scheme for deterministic generation and stabilization
of a three-qubit GHZ state in the solid-state circuit QED
system. The scheme largely depends on a joint readout of
multiple qubits in a dispersive regime, which enables us not
only to infer the state for further processing, but also to
stabilize the target state directly by means of an alternate-flip-
interrupted Zeno (AFIZ) projection. The proposed scheme was
demonstrated by quantum trajectory simulations, which show
satisfactory control effects.
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