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Two-dimensional color-code quantum computation
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We describe in detail how to perform universal fault-tolerant quantum computation on a two-dimensional color
code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent
logical qubits. Triple-defect logical qubits are deformed into isolated triangular sections of color code to enable
transversal implementation of all single logical qubit Clifford group gates. Controlled-NOT (CNOT) is implemented
between pairs of triple-defect logical qubits via braiding.
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I. INTRODUCTION

Classical computers manipulate bits that can be exclusively
0 or 1. Quantum computers manipulate quantum bits (qubits)
that can be placed in arbitrary superpositions α|0〉 + β|1〉
and entangled with one another to create states such as
(|00〉 + |11〉)/√2. This additional flexibility provides both
additional computing power [1–8] and additional challenges
when attempting to cope with the now quantum errors in the
computer [9–11]. An extremely efficient scheme for quantum
error correction and fault-tolerant quantum computation is
required to correct these errors without making unphysical
demands on the underlying hardware and without introducing
excessive time overhead and thus wasting a significant amount
of the potential performance increase.

Recently, significant progress toward practical quantum
error correction and fault-tolerant quantum computation has
been made by making use of topological error correction
[12–16]. These schemes feature a single error correcting code
used for the entire computer with qubits associated with holes
or “defects” deliberately introduced using measurements.
Logical qubits can be initialized and measured in the XL and
ZL bases. Logical CNOT involves braiding defects around one
another. Individual logical qubits can be isolated and some
transversal single logical qubit operations applied [14,15]. All
of these schemes possess a sufficiently broad range of gates to
enable state distillation [17,18] and thus achieve universality,
but none possess a sufficiently broad range of gates to enable
universal computation without state distillation. Indeed, it has
recently been suggested that it is not possible for these types of
topological schemes to avoid nontopological techniques, such
as state distillation, to enable universal quantum computation
[19].

State distillation is typically used to produce a better
copy of one or both of the states |Y 〉 = (|0〉 + i|1〉)/√2
and |A〉 = (|0〉 + eiπ/4|1〉)/√2 consuming either seven or 15
imperfect copies of these states, respectively. Given reasonable
assumptions about the desired logical error rate and the
underlying physical error rate, three or more concatenated
layers of state distillation can easily be required to produce
sufficiently high-fidelity states [13]. A single Toffoli gate
requires seven accurate copies of |A〉 and up to seven accurate
copies of |Y 〉 [13,20]. Depending on the details of the quantum
algorithm being executed, the ancilla factory required to
produce a sufficiently high rate of distilled states can easily
be several orders of magnitude larger than the rest of the

computer. Reducing the reliance on state distillation can
thus result in a large reduction of the required number of
qubits.

In this work, we combine a two-dimensional (2D) color
code [21] with defect braiding, defect isolation, and transversal
rotation to enable the implementation of CNOT and the entire
single-qubit Clifford group of gates. This problem has also
received attention in a recent work [22], however, the scheme
presented here is simpler. Our scheme calls for a 2D array
of qubits with local tunable interactions and a measurement
time of the same order as the gate times. It features a
reasonably high threshold error rate of approximately 0.1%
[23]. Our scheme also supports fast long-range logical gates
and relatively low qubit overhead due to both its use of efficient
topological error correction and its reduced reliance on state
distillation.

The discussion is organized as follows. In Sec. II we review
a 2D color code from [21] which forms the error correction
substrate of all that follows. Logical qubit initialization and
measurement are described in Sec. III, with each logical qubit
being represented by three defects. Section IV describes defect
deformation. The logical gates CNOT, H , X, Z, and S are
detailed in Sec. V. Section VI summarizes our results.

II. ERROR CORRECTION SUBSTRATE

Consider Fig. 1. This shows a 2D lattice of qubits arranged
on faces with either four or eight edges [21]. Each face is
associated with two stabilizers [24]: the tensor product of
X on every qubit around the face and similarly for Z. Note
that because every face has two qubits in common with its
neighboring faces, all stabilizers commute. Note also that the
unit cell indicated in Fig. 1 contains eight qubits and can
be associated with eight independent stabilizers. An infinite
lattice of this form, therefore, contains no logical qubits. In the
absence of errors, the lattice of qubits may be assumed to be
in the simultaneous +1 eigenstate of each stabilizer.

Figure 2 contains examples of the effects of errors. Note that
one of the three colors red (dark), blue (medium), and green
(light) has been assigned to each of the faces such that no
two adjacent faces have the same color. This will simplify the
discussion of the various types of errors and the later discussion
of logical operators. Every qubit is on three faces. If a qubit
suffers an X (Z) error, the Z (X) stabilizers of these three faces
become negative if no other error of the same type occurs on
these three faces. A second error of the same type adjacent
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FIG. 1. (Color online) The stabilizers of the error correction
substrate. Dots indicate the location of qubits. The dashed box is
a unit cell of the lattice containing eight qubits and associated with
eight independent stabilizers.

to the first error results in just two faces of the same color
having negative stabilizers. Such chains of errors are said to
have the same color as the faces they connect. A chain of each
color can meet at a single qubit without changing the sign of
any stabilizers. Arbitrarily complex error trees can occur with
multiple intersections.

Additional syndrome qubits are required to determine the
sign of the face stabilizers. For red (dark) faces we choose to
use just one additional syndrome qubit and the simple circuits
shown in Fig. 3 to determine the sign of their associated X and
Z stabilizers. Note that errors occurring during these circuits
can propagate to the data qubits with a single syndrome qubit
error propagating to multiple data qubits. For red (dark) faces,
the potential number of affected data qubits is sufficiently low
that we choose to leave the detection and correction of these
errors to later rounds of syndrome extraction.

Green (light) and blue (medium) faces, with eight data
qubits, could simply use the eight qubit analogs of Fig. 3 and
live with the fact that up to four data qubits could be affected by
an error on the single syndrome qubit. We choose not to do this.
Instead, five syndrome qubits are devoted to each green (light)

FIG. 2. (Color online) Examples of errors in a color code. White
dots indicate the locations of errors. White circles indicate stabilizers
of changed sign. As drawn, each chain of errors is of a single type X

or Z and the neighboring stabilizers of changed sign are of type Z or
X, respectively.
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FIG. 3. Circuit showing how an additional syndrome qubit (top
line of each figure) is used to measure red (dark) face (a) Z stabilizers
and (b) X stabilizers.

and blue (medium) face as shown in Fig. 4. Initially, the circuit
of Fig. 5 is repeatedly executed until the central syndrome qubit
is measured in state |0〉 indicating successful preparation of a
four-qubit cat state provided no more than one error occurred
during the execution of the circuit. The circuits of Figs. 6
and 7 are then executed for X and Z syndrome extraction,
respectively, with each qubit of the cat state interacting with
its two nonsyndrome nearest neighbors.

In addition to reducing the number of data qubits that can
be corrupted after a single error during syndrome extraction,
a significant benefit of using five syndrome qubits on green
(light) and blue (medium) faces is avoiding the need to have
a single syndrome qubit coupled to eight data qubits, greatly
simplifying the underlying lattice of qubits and network of
connections. Note that in Fig. 4 no qubit is connected to more
than four other qubits with most connected to just three other
qubits. Note also that the concepts of color and the different
face sizes arise only from how the underlying hardware is used,
not from any aspect of its physical construction.

The lattices we will discuss in this work will both have and
make extensive use of boundaries. Figure 8 shows examples
of the three different colors of boundaries. At this point in the
discussion, the only property of a boundary of a given color
that is of interest is the fact that an error chain of the same color
can connect to it without changing the sign of any stabilizers.
An example of an error chain of each color starting at each

1
2 3

45

FIG. 4. (Color online) Underlying lattice of physical qubits. Dots
represent qubits, lines represent tunable interactions between qubits.
The numbered qubits are used in Figs. 6 and 7.

042310-2



TWO-DIMENSIONAL COLOR-CODE QUANTUM COMPUTATION PHYSICAL REVIEW A 83, 042310 (2011)

Ψcat

H M

0

0

0

0

01 2

3

4

5

2 1

3

2

3

4 5

4

FIG. 5. Preparation of a four-qubit cat state using the five qubits
indicated in Fig. 4. The states initially stored in qubits 1–4 are
manipulated to form a cat state stored on qubits 2–5. The state stored
in qubit 5 is used to check the cat state and is read out using qubit 1.

boundary and meeting at a single qubit is shown. The details
of how error correction might be performed and a calculation
of the threshold error rate can be found in [23].

III. LOGICAL QUBIT INITIALIZATION
AND MEASUREMENT

In Sec. II we discussed an infinite lattice of qubits and error
correction circuits, however, the lattice contained no logical
qubits. Logical qubits can be introduced by ceasing to enforce
stabilizers and thereby introducing degrees of freedom into the
lattice. We call a connected region of a single color of faces
whose stabilizers we no longer enforce a defect. Examples
of red (dark), green (light), and blue (medium) defects are
shown in Fig. 9. Note that by connected we mean faces
connected by an XX and a ZZ measurement. The effect
of these measurements is to create a single large face of
the same color as the constituent faces. Initially, provided
the defect is constructed from the measurement of complete
faces, it is in the +1 eigenstate of its associated bounding
X and Z stabilizers. We will henceforth always use defects
constructed from the measurement of complete faces. Note
that the bounding stabilizers can be regarded as rings of either
of the two colors the defect is not.

Before a defect can be used as part of a logical qubit, some
of its neighboring stabilizers must be corrected. Stabilizers that
have had their sides reduced by XX and ZZ measurements will
have a sign dependent on the results of these measurements.
Note that such reduced size stabilizers of negative sign always
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FIG. 6. Circuit giving the eigenvalue of the eight-qubit X stabi-
lizer associated with a green (light) or blue (medium) face.
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FIG. 7. Circuit giving the eigenvalue of the eight-qubit Z stabi-
lizer associated with a green (light) or blue (medium) face.

occur in pairs. They can therefore also be connected and
corrected in pairs using appropriate chains of operators.

Note that direct XX and ZZ measurements are actually not
necessary to create a large defect. It is equivalent and simpler to
just measure the stabilizers of reduced size. The qubits inside
the defect can be ignored. These inner qubits only become
important again if the size of the defect is reduced.

Many types of logical qubits are possible. We will be
interested in logical qubits consisting of three defects, one
of each color. Note that chains of operators of the same
color commute regardless of whether they consist of X or
Z operators as they always have an even number of qubits in
common. Figure 10 shows examples of the two types of triple
defect logical qubits we will use. We call logical qubits with
triangular XL operators “primal” and those with triangular
ZL operators “dual.” Primal qubits will store the data in our
computer whereas dual qubits will facilitate multiple qubit
gates. Note that the six types of primal ZL operators are
equivalent in the sense that they all commute with one another
and all anticommute with primal XL. When performing a
logical phase flip, it does not matter which primal ZL operator
is used. Dual XL operators are also all equivalent.

Primal qubits are naturally initialized to the +1 eigenstate of
ZL, namely |0L〉. Similarly, dual qubits are naturally initialized
to |+L〉. Note that since primal and dual qubits are structurally
identical, when we create a logical qubit we actually create
both a primal and a dual qubit. Furthermore, we do nothing
to distinguish these two types of qubits. As we shall see,

red (dark)

green
(light)

blue
(medium)

FIG. 8. (Color online) Examples of the three colors of boundaries
and error chains of each color starting at each boundary and meeting
at a single qubit.
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FIG. 9. (Color online) (a) Red (dark)
defect created by measuring XX and ZZ on
qubits indicated by a white line. The signs
of these measurements determine the signs
of the stabilizers of the neighboring faces of
reduced size. (b) Red (dark) defect created
by measuring a complete face. Equivalent
blue (dashed square) and green (dashed
diamond) boundary stabilizers with posi-
tive sign independent of the measurement
results assuming no errors. These boundary
stabilizers are always positive as they are
equal to the product of the five complete
face stabilizers contained within the defect.
(c) Blue (medium) defect. (d) Green (light)
defect.

computation proceeds with both types of qubit present and we
simply ignore one type and focus on the computation occurring
in the qubit type of interest.

Measurement of a logical qubit can be performed trans-
versely by measuring a region of qubits encompassing the three
defects in either the X or Z basis. Measurement results are
error corrected using the standard algorithm with syndromes
calculated from the parity of measurement results around
each face. After error correction, all rings of measurements
around each defect will have the same parity and similarly
all three-way chains of measurements connecting all three
defects will have the same parity. These parities are the
logical measurement results. Note that when performing the
transversal X and Z measurements we perform both a primal
and a dual XL and ZL measurement. The unnecessary logical
measurement result is simply ignored.

Primal (dual) qubits can also be initialized to |+L〉 (|0L〉)
by first initializing a region of qubits to |+〉 (|0〉) and then
creating defects by measuring appropriate Z or X stabilizers.

These stabilizers will have random sign initially, and must be
corrected before the logical qubit is used.

A number of different types of logical errors are possible.
Figure 11 contains a few examples. If an error chain half
encircles a defect, it cannot be reliably corrected because,
given only endpoint information, it is not possible to know
which half of the defect is encircled and thus which half
of the defect to which to apply corrective operations. If
the wrong half is chosen, we form a logical operation
instead of correcting the error. For primal (dual) qubits,
half rings of Z (X) errors are dangerous. Similarly, if a
collection of different color error chains half constructs a
three-way connection, the error correction procedure cannot
in general determine which half has been constructed and
correct it. For primal (dual) qubits, half connections of X

(Z) errors are dangerous. Furthermore, individual defects
of a given color can be half connected to other defects
of the same color by error chains or half connected to
boundaries of the same color. Both situations correspond

(a)
ZL

ZL

XL

ZL

ZL

ZL

ZL

(b)

ZL

XL

XL

XL

XL XL

XL

FIG. 10. (Color online) A defect of each
color forming (a) a primal qubit and (b) a dual
qubit. Note that the six primal ZL and dual XL

operators are equivalent.
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FIG. 11. (Color online) Examples of error chains likely to lead
to logical errors. (a) Half encircling a defect. (b) Half connecting a
defect to a boundary of the same color. (c) Half connecting the three
defects. (d) Half connecting a defect to another of the same color.

to errors that cannot be reliably corrected. Given the rich error
structure of color codes, an unlimited number of additional

types of logical errors are possible, though suppressed if
boundaries and defects are kept well separated. Note that the
strength of X or Z error correction can be independently set
by adjusting the circumference and separation of defects.

IV. DEFECT DEFORMATION

We have discussed error correction and the creation and
measurement of logical qubits. We now turn our attention to the
techniques required to perform computation. Defect expansion
and contraction can be used to adjust the size of a defect
and thus the local error correction strength. By combining
expansion and contraction, defects can be moved and braided
around one another, realizing multiple qubit gates as we shall
see in Sec. V. Expanding all three defects comprising a logical
qubit until they touch and creating an enclosed triangular
region isolates the logical qubit from the rest of the lattice,
enabling transversal gates to be applied.

Consider Fig. 12(a). This shows the procedure for expand-
ing a red (dark) defect and the effect of doing so on both a green
(light) and blue (medium) stabilizer. Figure 12(b) shows the
effect of contracting a defect on a red (dark) stabilizer attached

Blue GreenBlue Green

deRdeR
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±±

±±

(a)

(b)

±

±±

±

±
±

±
±

±

±

±

FIG. 12. (Color online) (a) Procedure for expanding a red (dark) defect. It is conceptually simpler to imagine that the operators XX and
ZZ are measured directly on the qubits on the white lines, but in practice these qubits can be ignored and only the stabilizers of the indicated
partial faces measured. (b) Procedure for contracting a red (dark) defect. The full stabilizers of the indicated faces are measured once more.
The signs of these face stabilizers are then corrected using the regular error correction procedure.
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FIG. 13. (Color online) Step-by-step de-
formation of a ring operator into a pair of
tree operators via deformation of the associated
defects to create an isolated region of lattice.

to the defect. Note that even in the absence of errors, corrective
operations must be applied when moving the defect to ensure
that the signs of all stabilizers remain unchanged at the end of
the procedure. The procedures for expanding and contracting
green (light) and blue (medium) defects are analogous.

Figure 13 shows the effect of isolating a triangular region
of the lattice, the detailed structure of which can be found
in Fig. 8, by simultaneously expanding all three defects
comprising a logical qubit. Stabilizers encircling a defect
are converted into pairs of three-way stabilizers. Section
V makes use of such isolated regions. Note that the iso-
lation is reversible by simply contracting the defects once
more.

V. LOGICAL GATES

In this section, we describe the logical gates CNOT, H , X, Z,
and S. By far the simplest logical gates are XL and ZL, which
can be implemented with simple rings and three-way trees of
single-qubit operators. We shall not discuss these further. The
remaining logical gates require individual discussion.

Logical Hadamard, HL, shall be applied transversely to
an isolated triangular logical qubit, however, some care is
required. Given a primal (dual) qubit, during the isolation
process ZL (XL) is split into two three-way trees. The
tree external to the isolated region must be removed before
transversal gates can be applied. This can be achieved by
measuring a region of qubits around the isolated region in

ZL

XL

(a)

ZL

XL

(b)
ZL

XL

ZL

XL

ZL

XL

ZL

XL
ZL

(c)

FIG. 14. (Color online) Logical CNOT via braiding with a primal qubit (top) as control and dual qubit (bottom) as target. The appropriate
mappings of logical stabilizers XI �→ XX, IX �→ IX, ZI �→ ZI , and IZ �→ ZZ can be seen by tracing the deformation of one logical
stabilizer at a time.
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FIG. 15. (Color online) Circuit constructed from available com-
ponents implementing primal-primal logical qubit CNOT.

the Z (X) basis. Note that all external operator trees must have
the same parity in the absence of errors and that the standard
error correction procedure can be used to ensure that the parity
is determined fault tolerantly. Note that this does not constitute
logical measurement of ZL (XL) as the isolated region is not
measured and the parity of internal three-way trees must also be
known to affect logical measurement. Measuring the parity s of
external trees does, however, introduce a byproduct operator
Xs

L (Zs
L). With the external trees pruned, logical Hadamard

can then be applied transversely. The appropriate external
face stabilizers must be measured and corrected before the
logical qubit is converted back to three isolated defects. The
conversion back does not introduce a byproduct operator.

Logical S requires extra care. In addition to pruning trees,
we need to ensure that the correct number of qubits have been
enclosed. In the original color-code work, triangular logical
qubits with 3 mod 4 total physical qubits and either four or eight
qubits per face were used [21]. For convenience, we require
there to be 1 mod 4 enclosed qubits. Using enclosed regions
of the form shown in Fig. 8, this can be achieved by having an
even number of rows of red (dark) faces. When single-qubit
S is applied transversely, the condition of having either four
or eight qubits per face ensures that every state comprising
|0L〉 and every state comprising |1L〉 acquires the same phase.
Having 1 mod 4 qubits in total ensures that |0L〉 �→ |0L〉 and
|1L〉 �→ i|1L〉. Transversal S thus implements SL.

With an odd number of enclosed qubits and every three-way
chain containing an odd number of operators, we can also
implement XL and ZL transversely. While this would not be

done under normal circumstances, as it is easier to simply
apply ring or tree operators to nonisolated logical qubits, if
the logical qubit has already been isolated, the ability to apply
transversal XL and ZL enables us to avoid further modification
of the shape of the logical qubit.

Logical CNOT is carried out in a similar manner to the
schemes of [13,15]. A primal qubit can be used to control a
CNOT gate with a dual qubit as target as shown in Fig. 14.
Note that all of the CNOT stabilizer mappings XI �→ XX,
IX �→ IX, ZI �→ ZI , and IZ �→ ZZ are faithfully realized.
We can then use the circuit shown in Fig. 15 to simulate CNOT

between two primal qubits.

VI. CONCLUSION

We have described how to perform universal fault-tolerant
quantum computation with reduced reliance on state dis-
tillation on a specific 2D color code. This scheme has a
relatively high-threshold error rate of 0.1%, relatively low
qubit overhead, fast long-range logical gates, and makes few
demands on the underlying hardware. Our scheme calls for
a measurement time of the same order as the gate times,
local single-qubit unitaries, and a 2D nearest neighbor tunably
coupled lattice of qubits, with each qubit coupled to either
three or four neighbors and with no couplings crossing. This
lattice is shown in Fig. 4. Ideally, it should be possible to
simultaneously measure an arbitrary subset of qubits in the
lattice, although if measurement hardware cannot be located
near every qubit, it would be sufficient to be able to measure a
fraction of the qubits that is independent of the lattice size.
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