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An approximation hierarchy, called the lattice-path-based subsystem (LPSUBm) approximation scheme, is
described for the coupled-cluster method (CCM). It is applicable to systems defined on a regular spatial lattice.
We then apply it to two well-studied prototypical (spin- 1

2 Heisenberg antiferromagnetic) spin-lattice models,
namely, the XXZ and the XY models on the square lattice in two dimensions. Results are obtained in each
case for the ground-state energy, the ground-state sublattice magnetization, and the quantum critical point. They
are all in good agreement with those from such alternative methods as spin-wave theory, series expansions,
quantum Monte Carlo methods, and the CCM using the alternative lattice-animal-based subsystem (LSUBm)
and the distance-based subsystem (DSUBm) schemes. Each of the three CCM schemes (LSUBm, DSUBm,
and LPSUBm) for use with systems defined on a regular spatial lattice is shown to have its own advantages in
particular applications.
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I. INTRODUCTION

The coupled-cluster method (CCM) [1–9] is widely rec-
ognized nowadays as providing one of the most powerful,
most universally applicable, and numerically most accurate,
at attainable levels of computational implementation, of all
available ab initio methods of microscopic quantum many-
body theory. The number of successful applications of the
CCM to a wide range of physical and chemical systems is
now impressively large. Some typical examples, from among
many others, of systems existing in the spatial continuum, and
to which the method has been applied, include the electron
gas [10–12], atomic nuclei and nuclear matter [13,14], and
molecules [15]. In these and many other cases the numerical
results obtained with the CCM are either the best or among
the best available. For the case of the electron gas, for
example, which is still one of the most intensely studied of
all quantum many-body systems, the CCM results [12] for
the correlation energy agree over the entire metallic density
range to within less than one millihartree per electron (i.e.,
better than 1%) with the essentially exact Green’s function
Monte Carlo results available for this system [16]. More
recently and more relevantly for the present discussion, the
CCM has also been very successfully applied to systems on a
discrete spatial lattice, such as spin-lattice models of quantum
magnetism [17–29].

One of the features of the CCM, in which it differs from
many other techniques for dealing with quantum many-body
systems, is that, if required, it deals from the outset with infinite
systems. Thus, one never needs to take explicitly the limit
N → ∞, where N is the number of interacting particles or
the number of lattice sites. On the other hand, of course,
the method does require us to make approximations for its
implementation. These typically involve making selections
for which terms to include in the cluster expansions for the
correlation operators that are intrinsic to the way the method
parametrizes the many-body wave functions, as we describe
more fully in Sec. II below.

We and our collaborators have developed previously several
efficient and systematic approximation schemes for the CCM

that are specifically geared to use with lattice systems
[18,30–33]. The most widely used and the most successful
such CCM approximation schemes for spin-lattice systems
up to now have been the so-called LSUBm and SUBn-m
schemes discussed in detail below in Sec. IV. The LSUBm

scheme in particular has been demonstrated on many occasions
to be highly accurate in practice for a wide variety of
strongly correlated spin systems. Of special importance is
the fact that the scheme seems to be equally applicable to
both frustrated and unfrustrated systems, with comparable
levels of accuracy attained in both cases. Nevertheless, a
disadvantage of the LSUBm scheme is that the number of
spin configurations retained at a given level in describing
the many-body correlations present in the wave functions
rises very rapidly (and typically superexponentially) with the
truncation index m. Since we typically then have to take
the limit m → ∞ numerically to obtain estimates for exact
physical properties of the system, it is desirable to have
calculations at as many values of the truncation index m as
possible.

This one drawback of the prevailing LSUBm scheme has
led us recently to develop an alternative scheme, the so-called
DSUBm scheme [33]. A primary aim of any such scheme
should be that in practical applications of it one is able to
implement more levels of approximation (i.e., to use more
values of the index m) than in the corresponding LSUBm

scheme for the same problem. In this way one thus has more
data points available for the necessary m → ∞ extrapolations,
for calculated physical quantities, to the exact limit where
all spin configurations are retained in the many-body wave
functions. A second very desirable feature of any such scheme
is that it also captures the physically most important multispin
configurations in the system wave functions at relatively low
orders in the index m, so that physical properties converge
more rapidly as m is increased.

Although the recently developed DSUBm scheme [33]
partially met the above criteria, there is no doubt that users of
the CCM would still welcome more choices of approximation
schemes. In that context the principal aim of the present work
is to outline a further such scheme that we now denote as the
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LPSUBm scheme, and which is also specifically designed for
use with lattice systems. The scheme is motivated on physical
grounds, and its merits are illustrated by applications to some
stereotypical models that have been well studied previously
by other techniques, including the CCM itself but with other
approximation schemes.

The general formalism of the CCM is first briefly outlined
in Sec. II, after which we discuss its specific applications
to systems confined to the sites of a regular spatial lattice
in Sec. III. In Sec. IV we first describe the existing CCM
truncation schemes for spin-lattice systems, and then motivate
and describe the LPSUBm scheme. The accuracy of this
scheme in practice is then illustrated by applying it to two well-
studied antiferromagnetic spin-lattice models [20,22], namely,
the spin-half XXZ and XY models on the two-dimensional
(2D) square lattice. Both models contain a free parameter in the
Hamiltonian which, as it is varied, carries the zero-temperature
models through a quantum phase transition at some critical
value of this parameter. Both models have previously been
the subject of CCM studies, using the LSUBm and DSUBm

truncation schemes, to calculate the ground-state (gs) energy
and gs order parameter (which, in the present cases, is the
sublattice magnetization).

We note that all microscopic techniques applied to infinite
spin-lattice problems need to be extrapolated in terms of
some appropriate parameter. For example, for such main
alternative methods to the CCM as the exact diagonalization
of small clusters and quantum Monte Carlo simulations of
larger clusters, the extrapolation parameter is the number
of lattice sites N . As previously noted, one huge advantage
of the CCM is that it exactly preserves the Goldstone linked-
cluster theorem, and hence size extensivity, at all levels of
approximation. Hence we may (and do) work in the limit of
infinite lattice size (N → ∞) from the very beginning. By
contrast, the extrapolations for the CCM are done in terms
of some truncation index m, where in the limit m → ∞ we
retain all possible spin configurations in the wave functions
of the system, and the calculations become formally exact.
The extrapolation schemes used in practice [22,31,34–36]
are themselves also first described in Sec. V. The LPSUBm

scheme is then applied to the spin-half XXZ model and the
spin-half XY model, both on the 2D square lattice, in Secs. VI
and VII, respectively. Results are compared critically with
those from corresponding CCM studies using the alternative
LSUBm and DSUBm schemes, as well as with the best results
from other methods. We conclude in Sec. VIII with a summary
and discussion of our main findings.

II. REVIEW OF THE CCM FORMALISM

We first briefly describe the CCM formalism. The interested
reader is referred, for example, to Refs. [8,9] for further
details. In any application of the CCM a first step is to
choose a normalized model (or reference) state |�〉 that can
act as a cyclic vector with respect to a complete set of
mutually commuting multi-configurational creation operators
C+

I ≡ (C−
I )†. The index I here is a set index that labels and

uniquely identifies the many-particle configuration created in
the state C+

I |�〉. The exact ket and bra gs energy eigenstates

|�〉 and 〈�̃| of the many-body system are then parametrized
in the CCM form as

|�〉 = eS |�〉, S =
∑
I �=0

SIC
+
I , (1)

〈�̃| = 〈�|S̃e−S, S̃ = 1 +
∑
I �=0

S̃IC
−
I , (2)

where

H |�〉 = E|�〉, 〈�̃|H = E〈�̃|, (3)

where we have defined C+
0 ≡ 1 ≡ C−

0 . The requirements on
the multi-configurational creation operators are that any many-
particle state can be written exactly and uniquely as a linear
combination of the states {C+

I |�〉}, which hence fulfill the
completeness relation∑

I

C+
I |�〉〈�|C−

I = 1 = |�〉〈�| +
∑
I �=0

C+
I |�〉〈�|C−

I , (4)

together with the conditions

C−
I |�〉 = 0 = 〈�|C+

I , ∀I �= 0, (5)

[C+
I ,C+

J ] = 0 = [C−
I ,C−

J ]. (6)

In practice approximations are necessary to restrict the
label set I to some finite (e.g., LSUBm) or infinite (e.g.,
SUBn) subset, as described more fully below. The correlation
operator S is a linked-cluster operator and is decomposed in
terms of a complete set of creation operators C+

I . When acting
on the model state it creates excitations that are correlated
cluster states. Although the manifest Hermiticity, (〈�̃|)† ≡
|�〉/〈�|�〉, is lost, the normalization conditions 〈�̃|�〉 =
〈�|�〉 = 〈�|�〉 ≡ 1 are preserved. The CCM Schrödinger
Eqs. (3) are thus written as

HeS |�〉 = EeS |�〉, 〈�|S̃e−SH = E〈�|S̃e−S, (7)

and their equivalent similarity-transformed forms become

e−SHeS |�〉 = E|�〉, 〈�|S̃e−SHeS = E〈�|S̃. (8)

The static gs CCM correlation operators S and S̃ contain
the real c-number correlation coefficients SI and S̃I that need
to be calculated. Clearly, once the coefficients {SI ,S̃I } are
known, all other gs properties of the many-body system can
be derived from them. Thus, the gs expectation value of an
arbitrary operator A, for example, can be expressed as

Ā ≡ 〈A〉 ≡ 〈�̃|A|�〉 = 〈�|S̃e−SAeS |�〉 ≡ A(SI ,S̃I ). (9)

The gs correlation coefficients {SI ,S̃I } are now found by
simply inserting the parametrizations of Eqs. (1) and (2) into
the similarity-transformed Schrödinger Eqs. (8) and projecting
onto the complete sets of states {〈�|C−

I } and {C+
I |�〉},

respectively,

〈�|C−
I e−SHeS |�〉 = 0, ∀I �= 0, (10)

〈�|S̃(e−SHeS − E)C+
I |�〉 = 0, ∀I �= 0. (11)

By pre-multiplying the ket-state Eqs. (8) with the state 〈�|S̃C+
I

and using the commutation relation (6) it is easy to show that
Eq. (11) may be rewritten in the form

〈�|S̃e−S[H,C+
I ]eS |�〉 = 0, ∀I �= 0. (12)
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Equations (10)–(12) may be equivalently derived by requir-
ing that the gs energy expectation value, H̄ ≡ 〈�̃|H |�〉 =
〈�|S̃e−SHeS |�〉, is minimized with respect to the entire set
{SI ,S̃I }. In practice we thus need to solve Eqs. (10) and (12)
for the set {SI ,S̃I }. We note that Eqs. (9) and (10) show that
the gs energy at the stationary point has the simple form

E ≡ E(SI ) = 〈�|e−SHeS |�〉, (13)

which also follows immediately from the ket-state Eq. (8) by
projecting it onto the state 〈�|. It is important to note, however,
that this (bi-)variational formulation does not necessarily lead
to an upper bound for E when the summations over the index
set {I } for S and S̃ in Eqs. (1) and (2) are truncated, due to
the lack of manifest Hermiticity when such approximations
are made. Nevertheless, as we have pointed out above, one
can prove [9] that the important Hellmann-Feynman theorem
is preserved in all such approximations.

Equations (10) now represents a coupled set of multinomial
equations for the c-number correlation coefficients {SI }. The
well-known nested commutator expansion of the similarity-
transformed Hamiltonian,

e−SHeS = H + [H,S] + 1

2!
[[H,S],S] + · · · , (14)

and the fact that all of the individual components of S in
the decomposition of Eq. (1) commute with one another by
construction [and see Eq. (6)] together imply that each element
of S in Eq. (1) is linked directly to the Hamiltonian in each
of the terms in Eq. (14). Thus, each of the coupled Eqs. (10)
is of Goldstone linked-cluster type, thereby also guaranteeing
that all extensive variables, such as the energy, scale linearly
with particle number N . Thus, at any level of approximation
obtained by truncation in the summations on the index I in the
parametrizations of Eqs. (1) and (2), we may (and, in practice,
do) work from the outset in the limit N → ∞ of an infinite
system.

It is now also important for practical applications to note
that each of the seemingly infinite-order (in S) linked-cluster
Eqs. (10) will actually be of finite length when expanded using
Eq. (14). The reason for this is that the otherwise infinite
series in Eq. (14) will actually terminate at a finite order,
provided only (as is usually the case, including those for
the Hamiltonians considered in this paper) that each term
in the Hamiltonian H contains a finite number of single-
particle destruction operators defined with respect to the refer-
ence (or generalized vacuum) state |�〉. In this way the CCM
parametrization naturally leads to a workable scheme, that
can be implemented computationally in an efficient manner,
to evaluate the set of configuration coefficients {SI ,S̃I } by
solving the coupled sets of Eqs. (10) and (12), once we
have devised practical and systematic truncation hierarchies
for limiting the set of multi-configurational set indices {I } to
some suitable finite or infinite subset. We turn our attention
to such truncation schemes in Sec. IV after first reviewing the
application of the method (described in general terms above)
to the specific case of spin-lattice systems.

III. REVIEW OF THE CCM FOR SPIN-LATTICE SYSTEMS

We now briefly describe how the general CCM formalism
outlined in Sec. II is implemented for spin-lattice problems
in practice. As we have already asserted is the case for any
application of the CCM to a general quantum many-body
system, a first step is to choose a suitable reference state |�〉 in
which the state of the spin (viz., in practice, its projection onto
a specific quantization axis in spin space) on every lattice site
k is characterized. The choice of |�〉 will clearly depend on
both the system being studied and, more importantly, which of
its possible phases is being considered. We describe examples
of such choices later for the particular models that we utilize
here as test cases for our truncation scheme.

We note first that, whatever choice for |�〉 is made, it
is very convenient to treat the spins on every lattice site in
an arbitrarily given model state |�〉 as being equivalent, in
order to create as universal a methodology as possible. A
suitably simple way of doing so is to introduce a different
local quantization axis and a correspondingly different set
of spin coordinates on each lattice site k, so that all spins,
whatever their original orientation in |�〉 in the original global
spin-coordinate system, align along the same direction (which,
in order to be definite, we henceforth choose as the negative
z direction) in these local spin-coordinate frames. In practice
this can always be done by defining a suitable rotation in spin
space of the global spin coordinates at each lattice site k. Such
rotations are canonical transformations that leave unchanged
the fundamental spin commutation relations,

[s+
k ,s−

k′ ] = 2sz
kδkk′,

[
sz
k ,s

±
k′
] = ±s±

k δkk′, (15)

s±
k ≡ sx

k ± is
y

k , (16)

among the usual SU(2) spin operators sk ≡ (sx
k ,s

y

k ,sz
k ) on lattice

site k. Each spin has a total spin quantum number sk , where
s2
k = sk(sk + 1) is the SU(2) Casimir operator. For the models

considered here, sk = s = 1
2 , at every lattice site k.

It is clear that after the local spin axes have been chosen
as described above, the model state thus has all spins pointing
downward (i.e., in the negative z direction, where z is the
quantization axis),

|�〉 =
N⊗

k=1

|↓〉k, in the local spin axes, (17)

here |↓〉 ≡ |s, − s〉 in the usual |s,ms〉 notation for single spin
states.

The configuration indices I now simply become a set of
lattice site indices, I → (k1,k2, . . . ,km), and in the local spin
frames defined above the corresponding generalized multi-
configurational creation operators C+

I thus become simple
products of single spin-raising operators, C+

I → s+
k1

s+
k2

· · · s+
km

.
Thus, for example, the ket-state CCM correlation operator is
expressed as

S =
N∑

m=1

∑
k1k2···km

Sk1k2···km
s+
k1

s+
k2

· · · s+
km

, (18)

and S̃ is similarly defined in terms of the spin-lowering
operators s−

k . Since the operator S acts on the state |�〉, in
which all spins point along the negative z-axis in the local
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spin-coordinate frames, every lattice site ki in Eq. (18) can be
repeated up to no more than 2s times in each term where it is
allowed, since a spin s has only (2s + 1) possible projections
along the quantization axis.

The allowed configurations are often further constrained
in practical applications by symmetries in the problem and
by conservation laws. An example of the latter is provided
by the XXZ model considered below in Sec. VI, for which
we can easily show that the total z-component of spin,
sT
z = ∑N

k=1 sz
k , in the original global spin coordinates, is a

good quantum number since [sz
T ,H ] = 0 in this case. Finally,

for the quasiclassical magnetically ordered states that we
calculate here for the models in both Secs. VI and VII, the
order parameter is the sublattice magnetization M , which is
given within the local spin coordinates defined above as

M ≡ − 1

N
〈�̃|

N∑
k=1

sz
k |�〉 = − 1

N

N∑
k=1

〈�|S̃e−Ssz
ke

S |�〉. (19)

The similarity-transformed Hamiltonian H̄ ≡ e−SHe−S ,
and all of the corresponding matrix elements in Eqs. (9)–(13)
and (19), for example, may then be evaluated in the local spin
coordinate frames by using the nested commutator expansion
of Eq. (14), the commutator relations of Eq. (15), and the
simple universal relations

s−
k |�〉 = 0 , ∀k, (20)

sz
k |�〉 = − 1

2 |�〉 , ∀k, (21)

that hold at all lattice sites in the local spin frames.

IV. CCM APPROXIMATION SCHEMES

When all many-body configurations I are included in the
S and S̃ operators in Eqs. (1) and (2) the CCM formalism is
exact. In practice, however, it is necessary to use approximation
schemes to truncate the correlation operators. The main
approximation scheme used to date for continuous systems
is the so-called SUBn scheme described below. For systems
defined on a regular periodic spatial lattice, we have a further
set of approximation schemes which are based on the discrete
nature of the lattice, such as the SUBn-m, LSUBm, and
DSUBm schemes described below. The various schemes and
their definitions for spin-lattice systems are as follows:

(1) the SUBn scheme, in which only the correlations
involving n or fewer spin-raising operators for S are retained,
but with no further restrictions on the spatial separations of the
spins involved in the configurations;

(2) the SUBn-m scheme which includes only the subset
of all n-spin-flip configurations in the SUBn scheme that are
defined over all lattice animals of size �m, where a lattice
animal is defined as a set of contiguous lattice sites, each of
which is nearest neighbor to at least one other in the set; and

(3) the LSUBm scheme, which includes all possible multi-
spin-flip configurations defined over all lattice animals of size
�m. The LSUBm scheme is thus equivalent to the SUBn-m
scheme with n = 2sm, for particles of spin quantum number
s. For example, for spin- 1

2 systems, for which no more than
one spin-raising operator, s+

k , can be applied at each site k,
LSUBm ≡ SUBm-m.

(4) the DSUBm scheme, which is defined to include in
the correlation operator S all possible configurations of spins
involving spin-raising operators where the maximum length
or distance of any two spins apart is defined by Lm, where Lm

is a vector joining sites on the lattice and the index m labels
lattice vectors in order of size. Hence DSUB1 includes only
nearest-neighbor pairs, etc.

We now turn our attention to the LPSUBm scheme that
uses real paths on the lattice to determine the fundamental
spin configurations. For the LPSUBm scheme, we measure
distances Pm along the sides of the lattice, rather than the
distance Lm used in the DSUBm scheme. For example, for a
square lattice, we restrict the size of the square-lattice plaquette
(i.e., the size of the array) by the longest path (Pm) between
particles in the array,

Pm = k + l, m ≡ k + l, (22)

where k and l are the sides of the lattice plaquette in the
x and y directions. Table I illustrates the formulation of the
spin-array configurations retained in the LPSUBm scheme at
the mth level of approximation for a 2D square lattice. Similar
tables can be constructed for an arbitrary regular lattice in
any number of dimensions. It shows, for example, that the
LPSUB5 approximation on a 2D square lattice involves all
clusters of spins (and their associated spin-raising operators)
for which the real path distance between any two spins is less
than or equal to 5 (lattice spacings). Clearly the LPSUBm and
the DSUBm schemes both order the multispin configurations

TABLE I. Illustration of the formulation of the spin-array configurations retained in the LPSUBm

scheme on a square lattice at the mth level of approximation, in terms of lattice increments k and l along
the two sides of the square lattice [note that the number of spins on plaquette k × l is (k + 1) × (l + 1)].

Size of Square-Lattice Rectangular Plaquette or Size of Array Maximum No.
LPSUBm k × l (with Pm = k + l) of Spins

LPSUB1 1 × 0 2
LPSUB2 LPSUB1 + 1 × 1 4
LPSUB3 LPSUB2 + 3 × 0 + 2 × 1 6
LPSUB4 LPSUB3 + 4 × 0 + 3 × 1 + 2 × 2 9
LPSUB5 LPSUB4 + 5 × 0 + 4 × 1 + 3 × 2 12
LPSUB6 LPSUB5 + 6 × 0 + 5 × 1 + 4 × 2 + 3 × 3 16
LPSUB7 LPSUB6 + 7 × 0 + 6 × 1 + 5 × 2 + 4 × 3 20
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in terms, roughly, of their compactness, whereas the LSUBm

scheme orders them, roughly, according to the overall size of
the lattice animals (or polyominoes), defined as the number of
contiguous lattice sites involved.

V. CCM EXTRAPOLATION SCHEMES

Each of the above truncated approximations clearly be-
comes exact when all possible multispin cluster configurations
are retained, i.e., in the limit as n → ∞ and/or m → ∞. We
have considerable experience, for example, with the appro-
priate extrapolations for the LSUBm scheme [22,31,34–36],
which shows that the gs energy behaves in the large-m limit as a
power series in 1/m2, whereas the order parameter M behaves
as a power series in 1/m (at least for relatively unfrustrated
systems). Initial experience with the new LPSUBm scheme
shows that it behaves similarly with the scaling laws

E/N = a0 + a1

(
1

m2

)
+ a2

(
1

m2

)2

, (23)

for the gs energy (E/N), and

M = b0 + b1

(
1

m

)
+ b2

(
1

m

)2

, (24)

for the staggered magnetization (M), respectively, as we show
in more detail below for the two examples of the spin- 1

2 XXZ

and XY models on the 2D square lattice.
In order to fit well to any fitting formula that contains n

unknown parameters, one should always have at least (n + 1)
data points for a robust and stable fit, and in all our CCM
calculations in practice we try our best to obey this primary
edict, in so far as it is possible to do so with the available
computing power. In so far as is possible we also try to
avoid using the least approximate data points (e.g., LSUBm,
SUBm-m, DSUBm points with m � 2) since these low-m data
points are rather far from the corresponding large-m limits.
In the ensuing discussion we refer to this as our secondary
edict. Nevertheless, we do include such points if it is necessary
to do so to preserve our above primary edict. In these latter
cases, however, we are always careful to do some other careful
consistency checks on the robustness and accuracy of our
results.

In the next two sections we now illustrate the use and power
of the LPSUBm scheme by applying it to two prototypical
spin-half models defined on the 2D square lattice, namely, the
XXZ model in Sec. VI and the XY model in Sec. VII.

VI. THE SPIN- 1
2 ANTIFERROMAGNETIC X X Z MODEL
ON THE SQUARE LATTICE

As an illustration of the use of the LPSUBm scheme we
first consider its application to the spin- 1

2 XXZ model on the
infinite square lattice. The Hamiltonian of the XXZ model, in
global spin coordinates, is written as

HXXZ =
∑
〈i,j〉

[
sx
i sx

j + s
y

i s
y

j + �sz
i s

z
j

]
, (25)

where the sum on 〈i,j 〉 runs over all nearest-neighbor pairs
of sites on the lattice and counts each pair only once.
Since the square lattice is bipartite, we consider N to be
even, so that each sublattice contains 1

2N spins, and we
consider only the case where N → ∞. The Néel state is
the ground state (GS) in the trivial Ising limit � → ∞,
and a phase transition occurs at � = 1. Indeed, the classical
GS demonstrates perfect Néel order in the z direction for
� > 1, and a similar perfectly ordered x-y planar Néel
phase for −1 < � < 1. For � < −1 the classical GS is a
ferromagnet.

The case � = 1 is equivalent to the isotropic Heisenberg
model, whereas � = 0 is equivalent to the isotropic version
of the XY model considered in Sec. VII below. The z

component of total spin, sz
T , is a good quantum number as

it commutes with the Hamiltonian of Eq. (25). Thus one
may readily check that [sz

T ,HXXZ] = 0. Our interest here is
in those values of � for which the GS is an antiferromag-
net.

The CCM treatment of any spin system is initiated by choos-
ing an appropriate model state |�〉 (for a particular regime), so
that a linear combination of products of spin-raising operators
can be applied to this state and all possible spin configurations
are determined. There is never a unique choice of model state
|�〉. Clearly our choice should be guided by any physical
insight that we can bring to bear on the system or, more specifi-
cally, to that particular phase of it that is under consideration. In
the absence of any other insight into the quantum many-body
system it is common to be guided by the behavior of the
corresponding classical system (i.e., equivalently, the system
when the spin quantum number s → ∞). The XXZ model
under consideration provides just such an illustrative example.
Thus, for � > 1 the classical Hamiltonian of Eq. (25) on
the 2D square lattice (and, indeed, on any bipartite lattice) is
minimized by a perfectly antiferromagnetically Néel-ordered
state in the spin z direction. However, the classical gs energy is
minimized by a Néel-ordered state with spins pointing along
any direction in the spin x-y plane (say, along the spin x

direction) for −1 < � < 1. Either of these states could be
used as a CCM model state |�〉 and both are likely to be of
value in different regimes of � appropriate to the particular
quantum phases that mimic the corresponding classical phases.
For present illustrative purposes we restrict ourselves to the z-
aligned Néel state as our choice for |�〉, written schematically
as |�〉 = | · · · ↓↑↓↑ · · ·〉, in the global spin axes, where |↑〉 ≡
| 1

2 , + 1
2 〉 and |↓〉 ≡ | 1

2 , − 1
2 〉 in the usual |s,ms〉 notation.

Such a state is, clearly, likely to be a good starting point
for all � > 1, down to the expected phase transition at
� = 1 from a z-aligned Néel phase to an x-y planar Néel
phase.

As indicated in Sec. III it is now convenient to per-
form a rotation of the axes for the up-pointing spins
(i.e., those on the sublattice with spins in the positive
z direction) by 180◦ about the spin y-axis, so that |�〉
takes the form given by Eq. (17). Under this rotation, the
spin operators on the original up sublattice are transformed
as

sx → −sx, sy → sy, sz → −sz. (26)
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+ (6)        + +(7)

FIG. 1. The fundamental configurations for the LPSUBm scheme
with m = {1,2,3} for the spin- 1

2 XXZ model on a square lattice in
two dimensions. The filled circles mark the relative positions of the
sites of the square lattice on which the spins are flipped with respect
to the model state. The unfilled circles represent unflipped sites.

The Hamiltonian of Eq. (25) may thus be rewritten in these
local spin coordinate axes as

HXXZ = −1

2

∑
〈i,j〉

[
s+
i s+

j + s−
i s−

j + 2�sz
i s

z
j

]
. (27)

As in any application of the CCM to spin-lattice systems,
we now include in our approximations at any given order
only those fundamental configurations that are distinct under
the point and space group symmetries of both the lattice
and the Hamiltonian. The number Nf of such fundamental
configurations at any level of approximation may be further
restricted whenever additional conservation laws come into
play. For example, in our present case, the XXZ Hamiltonian
of Eq. (25) commutes with the total uniform magnetization,
sz
T = ∑N

k=1 sz
k , in the global spin coordinates, where k runs

over all lattice sites. The GS is known to lie in the sz
T = 0

subspace, and hence we exclude configurations with an odd
number of spins or with unequal numbers of spins on the two
equivalent sublattices of the bipartite square lattice. We show
in Fig. 1 the fundamental configurations that are accordingly
allowed for the LPSUBm approximations for this spin- 1

2 XXZ

model on the 2D square lattice, with 1 � m � 3. We see, for
example, that Nf = 9 at the LPSUB3 level of approximation.

The LPSUBm approximations can readily be implemented
for the present spin- 1

2 XXZ model on the 2D square lattice for
all values m � 6 with reasonably modest computing power.
By comparison, the LSUBm and DSUBm schemes can both
be implemented with comparable computing resources for all
values m � 9. Numerical results for the gs energy per spin
and the sublattice magnetization are shown in Table II at the
isotropic point � = 1 at various levels of approximation, and
corresponding results for the same quantities are displayed
graphically in Figs. 2 and 3 as functions of the anisotropy
parameter �.

We also show in Table II for the isotropic Heisenberg
Hamiltonian (� = 1) the results for the gs energy and
sublattice magnetization using the (quadratic) extrapolation
schemes of Eqs. (23) and (24), respectively, of the LPSUBm

0.6 0.8 1 1.2 1.4
∆

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

E
/N

LPSUB1
LPSUB2
LPSUB3
LPSUB4
LPSUB5
LPSUB6
LPSUB∞

termination point at ∆
inflexion point in M at ∆

c

i

FIG. 2. (Color online) CCM results for the ground-state energy
per spin, E/N , as a function of the anisotropy parameter �, of
the spin- 1

2 XXZ model on the 2D square lattice, using various
LPSUBm approximations based on the z-aligned Néel model state.
The LPSUBm results with m = {2,4,6} are extrapolated using the
quadratic fit of Eq. (23) and shown as the curve LPSUB∞. �i ≡
magnetization point of inflexion, described in the text.

data, employing various subsets of results. Comparison is
also made with corresponding LSUBm [37,38] and DSUBm

[33] extrapolation schemes for the same model. The results
are generally observed to agree very well with each other.
Excellent agreement of all the CCM extrapolations is also
obtained with the results from the best of the alternative
methods for this model, including third-order spin-wave theory
(SWT) [39], linked-cluster series expansion (SE) techniques
[40], the extrapolations to infinite lattice size (N → ∞) from
the exact diagonalization (ED) of small lattices [41], and
quantum Monte Carlo (QMC) calculations for larger lattices

0.6 0.8 1 1.2 1.4
∆

0

0.1

0.2

0.3

0.4

0.5

M

LPSUB1
LPSUB2
LPSUB3
LPSUB4
LPSUB5
LPSUB6
LPSUB∞

←

←

Arrow indicates ∆  positioni

FIG. 3. (Color online) CCM results for the ground-state sublattice
magnetization, M , as a function of the anisotropy parameter �,
of the spin- 1

2 XXZ model on the 2D square lattice, using various
LPSUBm approximations based on the z-aligned Néel model state.
The LPSUBm results with m = {2,4,6} are extrapolated using the
quadratic fit of Eq. (24) and shown as the curve LPSUB∞. �i ≡
point of inflexion in the curve, shown by arrows in the figure.
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TABLE II. The ground-state energy per spin (E/N ) and sublattice magnetization (M) for the spin- 1
2 XXZ model on the 2D square lattice,

obtained using the CCM LPSUBm approximation scheme with 1 � m � 6 at � = 1. Nf is the number of fundamental configurations at a
given LPSUBm, LSUBm, or DSUBm level of approximation. �i ≡ LPSUBm sublattice magnetization point of inflexion. The LPSUBm

results for odd values of m, even values of m, and the whole series of m are extrapolated separately. These results are compared to
calculations using third-order spin-wave theory (SWT) [39], series expansions (SE) [40], exact diagonalization (ED) [41], quantum Monte
Carlo (QMC) [42], LSUB∞ extrapolations of the CCM LSUBm approximations [22,37,38], and the DSUB∞ extrapolations of the CCM
DSUBm approximations [33].

E/N M Max. No.
Method Nf (� = 1) (� = 1) �i �c of Spins

LPSUB1 1 −0.64833 0.421 2
LPSUB2 2 −0.65311 0.410 0.258 4
LPSUB3 9 −0.66442 0.379 0.579 6
LPSUB4 35 −0.66565 0.372 0.586 8
LPSUB5 265 −0.66761 0.358 0.766 12
LPSUB6 2852 −0.66807 0.354 0.735 16
LSUB8 1287 −0.66817 0.352 0.844 8
LSUB10 29605 −0.66870 0.345 10
SWT −0.66999 0.3069
SE −0.66930 0.307
ED −0.67000 0.317
QMC −0.669437(5) 0.3070(3)

Extrapolation Based on

LPSUB∞ −0.66953 0.320 m = {1,3,5}
LPSUB∞ −0.67004 0.308 1.093 m = {2,4,6}
LPSUB∞ −0.66867 0.328 2 � m � 6
LPSUB∞ −0.67107 0.288 3 � m � 6
DSUB∞ −0.67082 0.308 1.009 m = {6,8,10}
LSUB∞ −0.67029 0.304 m = {3,5,7,9}
LSUB∞ −0.66966 0.310 m = {4,6,8,10}
LSUB∞ −0.66962 0.308 m = {6,8,10}

[42]. Interestingly, these high-precision QMC data have been
used by Löw [43] in connection with exact inequalities of
Kennedy, Lieb, and Shastry [44] to prove rigorously the
existence of Néel order for this 2D Heisenberg model.

As discussed in Sec. V we always prefer to have at least 4
LPSUBm calculations with different values of the truncation
index m, to fit to the three unknown parameters of the
quadratic fitting expressions for E/N and M in Eqs. (23)
and (24). This primary edict is not violated if we extrapolate
the LPSUBm data using both odd and even values of m in the
range 2 � m � 6 or 3 � m � 6. We note, however, that if we
extrapolate using only the three even values m = {2,4,6} or
using the three odd values m = {1,3,5} then we violate both the
primary and secondary edicts discussed above. Nevertheless,
the extrapolated results using the even set m = {2,4,6} are
seen to be in good agreement with those from the alternative
methods shown in Table II.

It has been observed and well documented in the past
(and see e.g., Ref. [37]) that the CCM LSUBm results for
this model (and many others) for both the gs energy E

and the sublattice magnetization M show a distinct period-2
“staggering” effect with index m, according to whether m is
even or odd. As a consequence the LSUBm data for both E

and M converge differently for the even-m and the odd-m
sequences. This is very similar to what is also observed very

frequently in perturbation theory in corresponding even and
odd orders [45]. As a rule, therefore, the LSUBm data are
generally extrapolated separately for even m and for odd
values of m, since the staggering makes extrapolations using
both odd and even values together rather difficult. We show
in Fig. 4 our LPSUBm results for the gs energy per spin
and the sublattice magnetization plotted against 1/m2 and
1/m, respectively, for the case � = 1. The higher odd and
even m values taken together clearly cluster well in both
cases on straight lines, thereby justifying a posteriori our
heuristic extrapolation fits of Eqs. (23) and (24). Just as in the
LSUBm case a small but definite “odd-even staggering” effect
is observed in the LPSUBm data for both the energy and the
sublattice magnetization, although it is less pronounced than
for the corresponding DSUBm [33] and LSUBm data [37] for
this model.

Before discussing our LPSUBm results further for this
model we note that the comparable LSUBm solutions actually
terminate at a critical value �c = �c(m), which itself depends
on the truncation index m [32]. Such LSUBm termination
points are very common for many spin-lattice systems. They
have been very well documented and their origin is clearly
understood (and see e.g., Ref. [32]). Thus, in all such cases a
termination point always arises due to the solution of the CCM
equations becoming complex at this point, beyond which there
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FIG. 4. (Color online) Illustration of the odd-even staggered
nature with respect to the truncation parameter m of the LPSUBm

scheme results for (a) the ground-state energy per spin, E/N , and
(b) the sublattice magnetization, M , for the spin- 1

2 antiferromagnetic
XXZ model on the 2D square lattice, for the isotropic limiting
case � = 1. The LPSUBm data are plotted against 1/m2 for E/N

and against 1/m for M . The results clearly justify the heuristic
extrapolation schemes of Eqs. (23) and (24).

exist two branches of entirely unphysical complex conjugate
solutions [32]. In the region where the solution reflecting the
true physical solution is real there actually also exists another
(unstable) real solution. However, only the (shown) upper
branch of these two solutions reflects the true (stable) physical
GS, whereas the lower branch does not. The physical branch is
usually easily identified in practice as the one which becomes
exact in some known (e.g., perturbative) limit. This physical
branch then meets the corresponding unphysical branch at
the corresponding termination point, beyond which no real
solutions exist. The LSUBm termination points are themselves
also reflections of the quantum phase transitions in the real
system, and may hence be used to estimate the position of the
phase boundary [32].

We note that when the LPSUBm approximations are applied
to the XXZ model, only the odd LPSUBm levels with m � 3
terminate in the same way as do the corresponding LSUBm

approximations, as shown in Figs. 2 and 3. The LPSUBm

solutions with even values m = {2,4,6} do not terminate. We

have no convincing explanation for this difference in behavior
for two apparently similar schemes applied to the same model.
Nevertheless, it is still possible to use our LPSUBm data to
extract an estimate for the physical phase transition point
at which the z-aligned Néel phase terminates. As has been
justified and utilized elsewhere [20], a point of inflexion at
� = �i in the sublattice magnetization M as a function of
� also indicates the onset of an instability in the system.
Such inflexion points �i = �i(m) occur for the even values
of the LPSUBm approximations, as indicated in Table II
and Fig. 3. The LPSUBm approximations are thus expected
to be unphysical for � < �i(m), and we hence show the
corresponding results for the gs energy per spin in Fig. 2 only
for values �i > �i(m). Heuristically, we find that the magne-
tization inflexion points �i(m) scale linearly with (1/m) in the
large m limit, and the extrapolated results shown in Table II
have been performed with �i = c0 + c1(1/m) + c2(1/m)2,
commensurate with the corresponding fits in 1/m2 and 1/m for
the gs energy per spin and sublattice magnetization of Eqs. (23)
and (24), respectively. The extrapolated values from both the
LPSUBm and DSUBm schemes are in excellent agreement
with the expected phase transition point at �c ≡ 1 between
two quasiclassical Néel-ordered phases aligned along the spin
z axis (for � > 1) and in some arbitrary direction in the spin
x-y plane (for |�| < 1).

Although we do not do so here, the x-y planar Néel
phase could itself also easily be investigated by another CCM
LPSUBm series of calculations based on a model state |�〉 with
perfect Néel ordering in, say, the x direction. Nevertheless,
from our results so far we observe that the LPSUBm scheme
has, at least partially, fulfilled the expectations placed on it
for the present model. Accordingly, we now apply it to the
second test model of the spin- 1

2 XY model on the 2D square
lattice.

VII. THE SPIN- 1
2 XY MODEL ON THE SQUARE LATTICE

The Hamiltonian of the XY model [20] in global spin
coordinates is written as

HXY =
∑
〈i,j〉

[
(1 + �)sx

i sx
j + (1 − �)sy

i s
y

j

]
, − 1 � � � 1,

(28)

where the sum on 〈i,j 〉 again runs over all nearest-neighbor
pairs of lattice sites and counts each pair only once. We again
consider the case of spin- 1

2 particles on each site of an infinite
2D square lattice.

For the classical model described by Eq. (28), it is clear
that the GS is a Néel state in the x direction for 0 < � � 1
and a Néel state in the y direction for −1 � � < 0. Hence,
since we only consider the case 0 � � � 1, we choose as our
CCM model state |�〉 for the quantum XY model a Néel state
aligned along the x direction, written schematically as |�〉 =
| · · · ←→←→ · · ·〉, in the global spin axes. Clearly the case
−1 � � < 0 is readily obtained from the case 0 < � � 1 by
interchange of the x and y axes.

As in Sec. VI we now perform our usual rotation of the spin
axes on each lattice site so that |�〉 takes the form given by
Eq. (17) in the rotated local spin coordinate frames. Thus, for
the spins on the sublattice where they point in the negative x
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direction in the global spin axes (i.e., the left-pointing spins)
we perform a rotation of the spin axes by +90◦ about the spin
y axis. Similarly, for the spins on the other sublattice where
they point in the positive x direction in the global spin axes
(i.e., the right-pointing spins) we perform a rotation of the
spin axes by −90◦ about the spin y axis. Under these rota-
tions the spin operators are transformed for the left-pointing
spins as

sx → sz, sy → sy, sz → −sx, (29)

and for the right-pointing spins as

sx → −sz, sy → sy, sz → sx. (30)

The Hamiltonian of Eq. (28) may thus be rewritten in the local
spin coordinate axes defined above as

HXY =
∑
〈i,j〉

[
− (1 + �)sz

i s
z
j − 1

4
(1 − �)(s+

i s+
j + s−

i s−
j )

+ 1

4
(1 − �)(s+

i s−
j + s−

i s+)

]
. (31)

Exactly as in the previous application, we now have to
evaluate the fundamental configurations that are retained in
the CCM correlation operators S and S̃ at each LPSUBm

level of approximation. Although the point and space group
symmetries of the square lattice (common to both the XXZ

and XY models considered here) and the two Hamiltonians
of Eqs. (27) and (31) are identical, the numbers Nf of
fundamental configurations for a given LPSUBm level are now
larger (except for the case m = 1) for the XY model than for
the XXZ model, since the uniform magnetization is no longer
a good quantum number for the XY model, [HXY ,sz

T ] �= 0.
Nevertheless, we note from the form of Eq. (31), in which
the spin-raising and spin-lowering operators appear only in
combinations that either raise or lower the number of spin flips
by two (viz., the s+

i s+
j and s−

i s−
j combinations, respectively) or

leave them unchanged (viz., the s+
i s−

j and s−
i s+

j combinations),
it is only necessary for the sz

T = 0 GS to consider fundamental
configurations that contain an even number of spins. Thus, the
main difference for the XY model over the XXZ model is
that we must now also consider fundamental configurations in
which we drop the restriction for the former case of having
an equal number of spins on the two equivalent sublattices
of the bipartite square lattice that was appropriate for the
latter case. We show in Fig. 5 the fundamental configurations
that are allowed for the spin- 1

2 XY model on the square
lattice for the LPSUBm approximation with 1 � m � 3, and
we invite the reader to compare with the corresponding

TABLE III. The ground-state energy per spin (E/N ) and sublattice magnetization (M) for the spin- 1
2 XY model on the 2D square lattice,

obtained using the CCM LPSUBm approximation scheme with 1 � m � 6 at � = 0. Nf is the number of fundamental configurations at
a given level of LPSUBm, LSUBm, or DSUBm approximation. �c ≡ LPSUBm termination point. The LPSUBm results for odd values
of m, even values of m, and the whole series of m are extrapolated separately. These results are compared to calculations using series
expansions (SE) [46], the quantum Monte Carlo (QMC) method [47], LSUB∞ extrapolations of the CCM LSUBm approximations [20],
and the DSUB∞ extrapolations of the CCM DSUBm approximations [33].

E/N M Max. No.
Method Nf (� = 0) (� = 0) �c of Spins

LPSUB1 1 −0.54031 0.475 a 2
LPSUB2 4 −0.54548 0.464 −0.401 4
LPSUB3 13 −0.54747 0.457 −0.178 6
LPSUB4 72 −0.54812 0.453 −0.107 8
LPSUB5 557 −0.54842 0.450 −0.072 12
LPSUB6 7410 −0.54857 0.448 b 16
LSUB6 131 −0.54833 0.451 −0.073 6
LSUB8 2793 −0.54862 0.447 −0.04 8
SE −0.5488 0.436 0.0
QMC −0.54882(2) 0.437(2)

Extrapolation Based on

LPSUB∞ −0.54894 0.437 −0.017 2 � m � 5
LPSUB∞ −0.54897 0.435 −0.006 3 � m � 5
LPSUB∞ −0.54893 0.436 b 2 � m � 6
LPSUB∞ −0.54894 0.435 b 3 � m � 6
LPSUB∞ −0.54888 0.436 b 4 � m � 6
LPSUB∞ −0.54899 0.437 a m = {1,3,5}
LPSUB∞ −0.54893 0.436 b m = {2,4,6}
LSUB∞ −0.54892 0.435 0.00 m = {4,6,8}
DSUB∞ −0.54950 0.436 m = {3,5,7,9}
DSUB∞ −0.54923 0.437 0.011 m = {5,7,9}
aThe LPSUB1 approximation does not terminate.
bThe spin-flip configurations for the LPSUB6 approximation are sufficiently complicated and large in number that calculations have only
been calculated at present for � = 0 for the LPSUB6 case.
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FIG. 5. The fundamental configurations for the LPSUBm scheme
with m = {1,2,3} for the spin- 1

2 XY model on a square lattice in two
dimensions. The filled circles mark the relative positions of the sites
of the square lattice on which the spins are flipped with respect to the
model state. The unfilled circles represent unflipped sites.

fundamental configurations for the spin- 1
2 XXZ model on

the same square lattice shown in Fig. 1. The corresponding
numbers Nf of fundamental configurations for the XY model
are also shown in Table III for the LPSUBm approximations
with m � 6.

We present results for the spin- 1
2 XY model on the square

lattice in the CCM LPSUBm approximations for all values
m � 6, all of which can be computed with reasonably modest
computing power. Comparable computing power enables the
corresponding LSUBm scheme to be implemented for all
m � 8. Numerical results for the gs energy per spin and
sublattice magnetization are shown in Table III at the isotropic
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termination point at ∆c

FIG. 6. (Color online) CCM results for the ground-state energy
per spin, E/N , as a function of the anisotropy parameter �, of
the spin- 1

2 XY model on the 2D square lattice obtained using the
LPSUBm approximation based on the Néel state aligned along any
axis in the x-y plane. The LPSUBm results with m = {1,3,5} are
extrapolated using Eq. (23) to give the curve labeled LPSUB∞.
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FIG. 7. (Color online) CCM results for the ground-state sublattice
magnetization, M , as a function of the anisotropy parameter �, of
the spin- 1

2 XY model on the 2D square lattice obtained using various
LPSUBm approximations based on the Néel state aligned along any
axis in the x-y plane. The LPSUBm results with m = {1,3,5} are
extrapolated using Eq. (24) to give the curve labeled LPSUB∞.

point at � = 0 at various levels of approximation, and
corresponding results for the same gs quantities are shown
graphically in Figs. 6 and 7 as functions of the anisotropy
parameter �.

We also show in Table III for the isotropic XY Hamiltonian
(� = 0) the results for the gs energy and sublattice magnetiza-
tion using the (quadratic) extrapolation schemes of Eqs. (23)
and (24), respectively, of the LPSUBm data, employing various
subsets of our results, just as for the XXZ model considered
previously. We also compare in Table III the present results
with the corresponding CCM LSUBm [20] and DSUBm [33]
results for the same model. All of the CCM results are clearly in
excellent agreement both with one another and with the results
of the best of the alternative methods available for this model,
including the linked-cluster series expansion (SE) technique
[46] and a quantum Monte Carlo (QMC) method [47].

We show in Fig. 8 our LPSUBm results for the present
XY model for the gs energy per spin and the sublattice
magnetization, plotted respectively against 1/m2 and 1/m, for
the case � = 0. As previously for the XXZ model, the higher
m values cluster well on straight lines in both cases, thereby
justifying once more our heuristic choice of extrapolation fits
indicated in Eqs. (23) and (24). Figures 8(a) and 8(b) once
more show an “odd-even” staggering effect in the termination
index m for the LPSUBm data and we have again shown
separate extrapolations of our LPSUBm results in Table III for
the even-m data and the odd-m data, as well as results using all
(higher) values of m. It is interesting to note, however, that the
staggering effect for this XY model is far less pronounced than
for the similar XXZ model in Sec. VI. We have no compelling
argument to explain this difference.

It is interesting to note that for the present XY model the
CCM LPSUBm solutions (with our choice of model state as
a Néel state in the x direction) now do physically terminate
for all values of the truncation index m � 1 at a critical value
�c = �c(m), exactly as commonly occurs (as for the present
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FIG. 8. (Color online) Illustration of the odd-even staggered
nature with respect to the truncation parameter m of the LPSUBm

scheme results for (a) the ground-state energy per spin, E/N , and (b)
the sublattice magnetization, M , for the spin- 1

2 XY model on the 2D
square lattice, for the isotropic limiting case � = 0. The LPSUBm

data are plotted against 1/m2 for E/N and against 1/m for M . The
results clearly justify the heuristic extrapolation schemes of Eqs. (23)
and (24).

model) for the LSUBm calculations, as we explained above
in Sec. VI. Why such LPSUBm terminations occur for all
values m > 1 for the XY model but not for odd values of
m for the previous XXZ model is not obvious to us. The
corresponding termination points, �c = �c(m), at various
LPSUBm, LSUBm, and DSUBm levels of approximation are
shown in Table III. It has been shown previously [31] that
�c(m) scales well with (1/m)2 for the LSUBm data, and
the LSUB∞ result [20] shown in Table III was obtained
by the scaling law �c(m) = d0 + d1(1/m)2 + d2(1/m)4. We
find heuristically that the best large-m asymptotic behavior
of the LPSUBm data for �c(m) is also against (1/m)2 as
the scaling parameter. Accordingly, the LPSUB∞ values for
�c in Table III are obtained with the same (quadratic) fit,
�c(m) = d0 + d1(1/m)2 + d2(1/m)4. We see that both the
LSUB∞ and LPSUB∞ results for �c ≡ �c(∞) agree very
well with the value �c = 0 that is known to be the correct
value for the phase transition in the one-dimensional spin- 1

2

XY chain from the known exact solution [48], and which is
believed on symmetry grounds also to be the phase transition
point for higher dimensions, including the present 2D square
lattice.

VIII. CONCLUSIONS

From the two nontrivial benchmark spin-lattice problems
that we have investigated here, it is clear that the new LPSUBm

approximation scheme works well for calculating their gs
properties and phase boundaries. We have utilized here only
the simplest extrapolation schemes in the pertinent scaling
variables, and have shown that these may be chosen, for
example, as 1/m2 for the gs energy and 1/m for the order
parameter. For further use of the scheme for more complex
lattice models (e.g., those exhibiting geometric or dynamic
frustration) it will be necessary to revisit the validity of
these expansions, but a great deal of previous experience
in such cases for the LSUBm scheme should provide good
guidance.

On the basis of the test results presented here, the LPSUBm

scheme clearly does not fulfill the first of our two main
criteria for introducing it, since the number of fundamental
configurations, Nf , actually increases even more rapidly
with truncation index m than for the corresponding LSUBm

series of approximations. Nevertheless, our second criterion
of capturing the physically most important configurations
at relatively low levels of approximation does seem to be
fulfilled, according to our experience with the convergence
of the LPSUBm sequences for observable quantities. At the
very least we now have three schemes (LSUBm, DSUBm, and
LPSUBm) available to us for future investigations of more
complicated spin-lattice models, each of which has its own
merits, and which thus allows us more freedom in future
applications of the CCM to quantum magnetism.

It is particularly worth noting too that our preliminary
calculations have shown that the different schemes show
markedly varying patterns of odd-even staggering, both for
a given scheme applied to different models and for different
schemes applied to the same model. It is difficult to predict
in advance how strong or weak the effect will be for a given
scheme applied to a specific model. Nevertheless, when the
effect is weak one can confidently extrapolate the results
using both odd and even values of the truncation parameter
m simultaneously, thereby effectively doubling the number of
data points for the fit. In such cases our first criterion for an
improved scheme has effectively been realized over one where
the staggering effect is much more pronounced, even though
the number of fundamental configurations, Nf , may indeed
increase more rapidly with truncation index m for the former
(“improved”) scheme than for the latter.
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[2] J. Čı́žek, J. Chem. Phys. 45, 4256 (1966).
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