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It is demonstrated that the statistics for a joint measurement of two conjugate variables in quantum mechanics
are expressed through an equation identical to the classical one, provided that joint classical probabilities are
replaced by Wigner functions and that the interaction between the system and the detectors is accounted for. This
constitutes an extension of Ehrenfest’s correspondence principle and is thereby dubbed the strong correspondence
principle. Furthermore, it is proved that the detectors provide an additive term to all the cumulants and that if
they are prepared in a Gaussian state they contribute only to the first and second cumulants.
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I. INTRODUCTION

Simultaneous knowledge of two conjugate observables
is a discriminating feature between classical and quantum
mechanics: In the former it is possible with arbitrary precision,
at least in principle, while in the latter it is limited by the
uncertainty relation. In particular, the question of whether it is
possible to attribute a joint reality to position and momentum,
independently of measurement, gave rise to the Einstein-Bohr
debate and would later culminate in the Einstein-Podolsky-
Rosen argument [1], from which the concept of entanglement
arose. The measurement proposed in Ref. [1] is indeed a
joint measurement of position and momentum, but it applies
only to the particular entangled state considered therein. In
a pioneering work, Arthurs and Kelly [2] demonstrated that
a scheme exists for joint measurement of the position and
momentum of a particle prepared in an arbitrary state, albeit
at the cost of sacrificing the precision of both measurements.
In Ref. [2] specific hypotheses were made about the initial
preparation of the detectors. Later on it was shown that
under these assumptions there is a connection between the
joint probability and the Husimi Q function [3]; however, the
hypotheses were relaxed in order to obtain the most general
expression of the statistics [4,5]. Recently, the Arthurs-Kelly
scheme was extended to arbitrary time-dependent coupling [6].

A gedanken experiment for the joint determination of
Q and P based on time-of-flight measurements was also
proposed [7]. However, the momentum would be inferred from
Newtonian mechanics and not actually measured. The joint
measurability of position and momentum was also investigated
with no explicit reference to a detector, but considering only
positive-operator measures [8,9]. In this context the connection
of the joint measurement to the Neumark (or Naimark)
embedding was demonstrated [10]; that is, by having a system
interact with two detectors, the noncommuting operators Q̂

and P̂ in a Hilbert space H are associated with two commuting
operators ÎQ and ÎP in an extended Hilbert space. A rigorous
formalization and characterization of the joint measurement
can be found in Ref. [11].

Remarkably, joint measurements of conjugate variables
have been done in optics. The conjugate pair was realized
through the amplitude and phase of light. Multiport techniques
[12] or homodyne detection [13] were used to perform the
measurement.

Furthermore, it was demonstrated [14] that in the joint
measurement the product of the uncertainty of the conjugate
variables is not less than h̄. This is twice as much as
the limit established by the uncertainty principle, which
applies to separate measurements of position and momentum,
not to joint ones. This result sparked much discussion
about the interpretation of the uncertainty relations, starting
from the 1990s [15] up to recent years [16]. On another
front, the conditional state of the system after the measurement,
already considered in Ref. [2], was studied from a more general
viewpoint in Ref. [17] by assuming that the statistics are fully
determined by the observed values and the associated spreads.
From this hypothesis a Gaussian function was constructed
according to the principle of maximum entropy [18]. This
assumption is generally incorrect since the statistics of the
outcomes are not always Gaussian and higher-order cumulants
are needed to characterize it.

In the present work, it shall be proved that the formula
giving the probability density for the output of the detectors
is identical to the one obtained in the classical case provided
that joint probabilities for the system observables and for the
detectors observables are replaced by the Wigner quasiproba-
bility functions. This result goes beyond Ehrenfest’s theorem,
which applies only to average values. A remarkably simple
expression for the characteristic function is presented, thereby
allowing us to draw general conclusions about the influence
of the detectors on cumulants of any order. Furthermore, it is
demonstrated that, by considering the conditional state of the
system given the outcomes, the formula that expresses such a
state in terms of Wigner functions is identical to the classical
equation as well. Finally, a more general expression for the
conditional state of the system is derived and it is found to
differ from the one surmised in Ref. [17].

II. THE PROBLEM

Let us consider detection of two conjugate variables,
denoted Q̂ and K̂ , with units such that [Q̂,K̂] = i. The
interaction between the detectors and the system is written

Hint = −δ(t − t0)
∑

A=Q,K

λAφ̂AÂ, (1)

with φ̂A an operator in the Ath-detector Hilbert space, Â

the observables of the system, λA coupling constants, and t0
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the time of the measurement. This coupling corresponds to the
standard von Neumann detection scheme [19], duplicated to
allow joint measurement of noncommuting observables, and
as such it is known as the Arthurs-Kelly scheme [2].

A. Measurement of a single observable

For a single coupling (e.g., λK = 0), in order to have an
ideal measurement, the following requirements must be met:
(i) Initially, the density matrix of the detector and the system is
ρ = ρS ⊗ ρA and (ii) the detector is prepared in a sharp state
ρA(IA,I ′

A) = |IA = 0〉〈IA = 0|, which peaks around IA = 0.
Indeed, under assumptions (i) and (ii), after the interaction
with the system given in Eq. (1), the probability distribution
for the variable IA is

�(IA|Â) =
∫

dµ(a)δ(IA − λAa)〈a|ρ̂S(t−0 )|a〉, (2)

with a and |a〉 respectively, the eigenvalues and eigenstates,
of Â, and µ(a) a measure. Equation (2) implies that in
any single measurement IA will be found to have one of
the values λAa. Hypothesis (ii) can be replaced by a more
realistic condition, requiring that (ii′) initially the detector is
prepared in a state ρA(IA,I ′

A), with �(IA) ≡ ρA(IA,IA), which
peaks around IA = 0. If the range over which the off-diagonal
elements of ρA(IA,I ′

A) vanish exceeds the scale λAδa , with δa

the minimum distance between the eigenvalues of Â, then the
measurement is a weak one [20,21]. Under assumption (ii′),
Eq. (2) becomes the convolution

�(IA|Â) =
∫

dµ(a)�A(IA − λAa)〈a|ρS(t−0 )|a〉. (3)

In terms of characteristic functions,

ZA(χA; t+0 ) = ZS(χA; t−0 )ZA(χA; t−0 ). (4)

The procedure above can be generalized to a nondemolition
measurement [22]. One can consider a finite duration measure-
ment, i.e., replace the δ function with a regular function g(t),
vanishing outside a finite-time window, under the following
additional assumptions: (iii) The Hamiltonian of the detector
depends only on ÎA, the variables conjugated to φ̂A, so that
[φ̂A,ÎB] = δABih̄, and (iv) the observable Â is conserved
during the free evolution of the system (at least approximately).
Since here we are interested in measuring noncommuting
observables, the only Hamiltonian conserving Q̂ and K̂

simultaneously would be the trivial constant Hamiltonian;
thus we keep the instantaneous interaction and make use of
assumptions (i) and (ii′) throughout the rest of this paper.
(In the case of a joint measurement of spin components, any
spin-independent Hamiltonian conserves all spin components
simultaneously and then one could consider a finite duration
measurement.)

B. Measurement of two observables

Let us now consider a simultaneous interaction with both
detectors, i.e., λA �= 0, with A = Q and K . In the following
the operators are rescaled to eliminate the coupling constants
and Planck’s constant: λAφ̂A/h̄ → φ̂A and ÎA/λA → ÎA. This
way IQ and �K have the same dimensions as Q, while

IK and �Q have the same dimensions as K . We shall also
indicate for brevity (but not always) with I , without indexes,
the pair {IK,IQ}, and define analogously � = {�K,�Q} and
χ = {χK,χQ}. The notation χ · I is taken to mean

∑
A χAIA,

etc. The formalism of quantum mechanics allows us to derive
the probability density for IQ and IK . Indeed, by applying
Born’s rule to the time evolution of the total density matrix,

�(I ) = TrS〈I |eiφ̂·Âρ−e−iφ̂·Â|I 〉, (5)

with TrS the trace over the system degrees of freedom and
ρ− ≡ ρS ⊗ ρdet the density matrix of the system and the
detectors evaluated at time t−0 = t0 − ε. After introducing
twice the identity over the detector Hilbert space in terms
of the eigenstates of φ̂A, the probability density is

�(I ) =
∫ (∏

A

dχA

2π

)
exp [−iχ · I ]Z(χ ), (6)

where the generating function is

Z(χ ) =
∫ (∏

A

dχA

2π

)
N (�,χ )ρdet(� + χ/2,� − χ/2),

(7)

with the kernel

N (�,χ ) = TrS
{
V̂+ρS V̂

†
−
}
,

V̂± ≡ exp

[
i
∑
A

(
�A ± χA

2

)
Â

]
. (8)

Since the operators Q̂ and K̂ do not commute with each
other, the kernel in Eq. (7) generally will not be a function
of only χ . Equations (5)–(8) actually apply to an arbitrary
number of joint measurements. In the following, we consider
the case of only two variables.

For general Q̂ and K̂ with a nonconstant commutator, it is
not possible to obtain analytical results from Eqs. (7) and (8).
For instance, if Q̂ and K̂ represented spin components, the
integrals in Eq. (7) can only be done numerically.

The problem can be handled analytically when [Q̂,K̂] =
i. In this case, Eq. (8) can be rewritten, after applying the
Baker-Campbell-Hausdorff formula,

N = ei(�KχQ+χK�Q)/2 TrS(V̂Q+V̂K+ρSV̂
†
K−V̂

†
Q−), (9)

where the functional dependence was omitted for brevity and
we define V̂A± ≡ exp [i(�A ± χA/2)Â].

The position eigenstates can be used to express the trace,
giving

N (�,χ ) = ei(χK�Q−�KχQ)/2ZW
S (χ ), (10)

with

ZW
S (q,k) ≡ �̃W

S (q, − k) =
∫

dQeikQρS(Q+ q/2,Q− q/2)

(11)

the Fourier transform of the Wigner quasiprobability
�W

S (K,Q). The sign of the second variable has been changed
so that ZW

S (0,χQ) is the generating function for the probability
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�S(Q) = 〈Q|ρS |Q〉 and ZW
S (χK,0) is the generating func-

tion for the probability �̌S(K) = 〈K|ρS |K〉. If the Wigner
quasiprobability were positive definite, ZW

S (χK,χQ) would
be the corresponding characteristic function. Since this is
generally not the case, ZW

S will be called a quasicharacteristic
function.

III. RESULTS

It follows readily from Eqs. (7) and (10) that the character-
istic function is

Z(χK,χQ) = ZW
S (χK,χQ)ZW

det

(
χK, − χQ

2
; χQ,

χK

2

)
, (12)

where

ZW
det(χK,jK ; χQ,jQ) ≡ �̃W

det(χK, − jK ; χQ, − jQ)

=
∫

d2� ei�·j ρdet

(
� + χ

2
,� − χ

2

)
(13)

is the quasicharacteristic function of the detectors. Equation
(12) should be contrasted with the case when first a measure-
ment of K is made and shortly thereafter Q is observed

Z<(χK,χQ) = ZW
S (χK,χQ)ZW

det(χK, − χQ; χQ,0), (14)

or vice versa

Z>(χK,χQ) = ZW
S (χK,χQ)ZW

det(χK,0; χQ,χK ). (15)

An important conclusion that can be drawn from Eq. (12)
is that the contribution of the detectors to all the cumulants
(defined as logarithmic derivatives of Z calculated at χQ = 0
and χK = 0) is simply an additive term. In particular, if the
initial density matrix of the detectors is Gaussian, so is Zdet

and thus the contribution of the detectors to cumulants higher
than the second one vanishes.

The probability density is obtained by Fourier transforming
Eq. (12); it consists of a convolution of the Wigner quasiprob-
ability densities:

�(I ) =
∫

d2I ′d2�′�W
det(I

′
K,�′

K ; I ′
Q,�′

Q)

×�W
S

(
IK − I ′

K − �′
Q

2
,IQ − I ′

Q + �′
K

2

)
. (16)

A priori, it is not obvious that the convolution of the two
arbitrary quasiprobability functions presented in Eq. (16) is
positive definite. However, �(IK,IQ) is positive by construc-
tion, thus an interesting mathematical corollary follows from
the derivation presented above: Given any two quasiprobability
functions, their convolution as defined in Eq. (16) gives a
proper probability distribution. In particular, one can consider
the detectors to be initially independent of one another so that

�(I ) =
∫

d2I ′d2�′�W
K (I ′

K,�′
K )�W

Q (I ′
Q,�′

Q)

×�W
S

(
IK − I ′

K − �′
Q

2
,IQ − I ′

Q + �′
K

2

)
(17)

is positive definite for any three Wigner functions.

IV. COMPARISON WITH CLASSICAL MECHANICS

Equation (16) would have a simple interpretation if the
Wigner quasiprobabilities were positive definite: Before the
interaction the observables of the detector A possess the values
I ′
A and �′

A with probability �W
det(I

′
K,�′

K ; I ′
Q,�′

Q) and the K

and Q variables of the system have the values K ′ and Q′
with probability �W

S (K ′,Q′). Due to the interaction, the value
of IK is shifted deterministically by K ′ + �′

Q/2 and that of
IQ is shifted by Q′ − �′

K/2. It is interesting to note that
this is indeed the result one would obtain in the classical
case if the interaction term is given by Eq. (1). Solving
the classical Hamiltonian equations yields the values of IK

and IQ immediately after the interaction, which are (primed
quantities are calculated at t−0 = t0 − ε and unprimed ones at
t+0 = t0 + ε)

IK = K ′ + I ′
K + �′

Q/2, K = K ′ + �′
Q, (18a)

IQ = Q′ + I ′
Q − �′

K/2, Q = Q′ − �′
K, (18b)

from which Eq. (16) readily follows.
From Eq. (12) we can derive the average,

〈IK〉 = 〈K〉S + 〈IK〉det + 〈�Q〉det/2, (19a)

〈IQ〉 = 〈Q〉S + 〈IQ〉det − 〈�K〉det/2, (19b)

and the spread of the measurements

〈

I 2

K

〉 = 〈
K̂2〉S + 〈

Î 2

K

〉
det + 1

4

〈

�̂2

Q

〉
det + 〈
ÎK
�̂Q〉det,〈


I 2
Q

〉 = 〈
Q̂2〉S + 〈

Î 2

Q

〉
det + 1

4

〈

�̂2

K

〉
det + 〈
ÎQ
�̂K〉det,

where the indexed brackets indicate averaging over the
density matrices of the system and the detectors before
the interaction, while the unindexed ones indicate aver-
aging over the probability �(IK,IQ) given in Eq. (16).
Equations (18) are identical in form to Eqs. (19). This
is a consequence of Ehrenfest’s theorem, which implies
that, for quadratic Hamiltonians, the equations of motion
for the average values of an observable are identical to
the corresponding classical equations. The formal identity
of Eq. (16) in the classical and quantum cases, how-
ever, is a result that goes well beyond Ehrenfest’s the-
orem. Herein this result is called the strong correspon-
dence principle. It amounts to the following prescription:
(i) Solve the classical equations of motion for the interaction
between the detectors and the system, (ii) assume an ini-
tial joint probability distribution �(IK,�K ; IQ,�Q) for the
detectors and �(K,Q) for the system, (iii) find the joint
probability of observing outcomes IK and IQ in terms
of the initial probabilities, and (iv) substitute the classical
probability distributions with the Wigner quasiprobability
ones.

V. POSTDETECTION STATE

Finally, we consider the state of the system after the
detection, conditioned on the fact that the readouts of the
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detectors were IK and IQ. Rather than working with the
density matrix, here we study, equivalently, the conditional
quasicharacteristic function and quasiprobability distribution
of the system. The unnormalized conditional quasicharateristic
function �(IK,IQ)ZW

S (q,k|IK,IQ) can be found from Eq. (7)
by replacing the kernel in Eq. (8) with

N =
∫

dQ eikQ
〈
Q + q

2

∣∣∣ V̂+ρSV̂
†
−

∣∣∣Q − q

2

〉
. (20)

This readily gives

Z(q,k|I ) =
∫

dχKdχQ

exp (−iχ · I )

�(I )

×ZW
S (q + χK,k + χQ)

×ZW
det

(
χK, − k − χQ

2
; χQ,q + χK

2

)
and the corresponding quasiprobability distribution is

�W
S (K,Q|I ) = 1

�(I )

∫
d2��W

S (K − �Q,Q + �K )�W
det

(
IK − K + �Q

2
,�K ; IQ − Q − �K

2
,�Q

)
(21)

or

�W
S (K,Q|I ) = 1

�(I )

∫
dK ′dQ′�W

S (K ′,Q′)�W
det

(
IK − K + K ′

2
,Q′ − Q; IQ − Q + Q′

2
,K − K ′

)
. (22)

Equation (21) has a simple classical interpretation:
According to Bayes’s theorem, the conditional probability
of finding the system with values K and Q, given that the
detectors gave the output IK and IQ, satisfies

�(I )�S(K,Q|I ) = �(K,Q,I ). (23)

The classical joint probability �(K,Q,I ) can be derived
from the classical equations of motion [Eqs. (18)] through the
following reasoning: For given �K and �Q, the values of the
system before the interaction must be K − �Q and Q + �K ;
this happens with probability �W

S (K − �Q,Q + �K ). The
values of IK and IQ before the interaction must have
been I ′

K = IK − K + �Q/2 and I ′
Q = IQ − Q − �K/2 with

arbitrary �K and �Q; this happens with probability �det(IK −
K + �Q/2,�K ; IQ − Q − �K/2,�Q). By integrating over
all possible values of �K and �Q we obtain Eq. (21). Thus
the strong correspondence principle has a further application:
One could derive the joint conditional probability through
classical reasoning and then replace in the formulas the
Wigner quasiprobabilities distributions of the detectors and
the system for the positive definite classical probabilities. It
should be noted that, for general preparation of the detectors,
the conditional state of the system depends on its initial state
and it is not Gaussian, contrary to what was concluded in
Ref. [17] by applying the principle of maximum entropy.

VI. CONCLUSIONS

A rich correspondence between classical and quantum
mechanics has been demonstrated herein: Not only do the
average values of an observable obey the classical equations
of motion, as established by Ehrenfest’s theorem, but the
full joint probability of the outcomes has the same expres-
sion in the classical case as in the quantum case provided
that the classical joint probabilities are replaced by the
Wigner quasiprobabilities. Due to the uncertainty relations,
the Wigner quasiprobabilities come in such combinations that
they give rise to a positive probability distribution. It was
also demonstrated that the characteristic function of the joint
outcomes has a remarkably simple expression in terms of
the quasicharacteristic function [see Eq. (12)]. From this we
can conclude that detectors contribute an additive term to the
cumulants of all orders. The strong correspondence between
the classical and quantum cases was shown to hold also for the
determination of the conditional state of the system after the
measurement.
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