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Characterization of decoherence from an environmental perspective
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For the case of phase damping (pure decoherence) we investigate the extent to which environmental traits are
imprinted on an open quantum system. The dynamics is described using the quantum channel approach. We study
what the knowledge of the channel may reveal about the nature of its underlying dynamics and, conversely, what
the dynamics tell us about how to consistently model the environment. We find that, for a Markov phase-damping
channel(i.e., a channel compatible with a time-continuous Markovian evolution), the environment may adequately
be represented by a mixture of only a few coherent states. For arbitrary Hilbert space dimension N � 4 we refine
the idea of quantum phase damping, for which we show a means of identification. Symmetry considerations are
used to identify decoherence-free subspaces of the system.
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I. INTRODUCTION

Decoherence describes the loss of characteristic traits
of quantum theory. For the success of emerging quantum
technologies a detailed understanding of decoherence is of
great relevance. Schemes to avoid and counter its effects
need to be developed. Besides, decoherence offers insight into
the much-debated quantum-to-classical transition [1–3]. The
microscopic dynamics leading to decoherence might be based
on very diverse grounds, reaching from purely classical phase
kicks to a quantum mechanical formulation based on coupling
the system of interest to some quantum environment. Hence, a
further characterization of different microscopic mechanisms
leading to decoherence is desirable.

Phase damping (or dephasing) denotes the case of pure
decoherence, corroding the coherences of a quantum state
while leaving the probabilities (i.e., the diagonal elements of
the density matrix) intact. The dissipationless transition of
a pure state into a classical mixture, when described in the
basis of energy eigenstates, may serve as an example. Despite
its simple nature, phase damping is enough to completely
disentangle quantum states [4].

For weak system-environment coupling and short environ-
mental correlation times decoherence may be modelled in
terms of Markovian dynamics [5]. Here, the future evolution
depends solely on the system’s present state, rather than on
anterior times. Yet, there are of course instances where this
approximation is not valid. Given the dynamics of a quantum
system it would be valuable to have a means of deciding
whether the dynamics is Markovian or not. This point has
been studied lately both in a continuous approach based on the
information flow between system and environment [6], as well
as from a snapshot point of view [7,8] where the continuous
dynamics is unavailable by construction. Rather, the state of
the quantum system is known only at separate times.

Another interesting question is whether the phase damping
is due to coupling to a “real” quantum-mechanical environ-
ment, or whether it can equally be explained in terms of
stochastically fluctuating classical fields [9,10]. The latter is a
convex combination of unitary transformations; that is, random
unitary (RU) dynamics. While phase damping of a single qubit

or qutrit may always be described as RU dynamics, in Hilbert
spaces of dimension N � 4 one cannot always find such a
representation [11–13].

In the article at hand we study the characteristics of phase
damping from an environmental point of view. Phase damping
is described utilizing the overlap of dynamical vectors relative
to the phase damping basis. The nature of the dynamics is
reflected by the set of dynamical vectors or, conversely, the
properties of the dynamical vectors determine the dynamics
to a certain extent. In this context, we show that, in the case
of Markovian phase damping, the dynamical vectors can be
identified with coherent states. Likewise, we give instructions
for a physical model of “quantum phase damping” for arbitrary
Hilbert space dimension N � 4; that is, phase damping which
does not allow for an RU representation.

The article is structured as follows. Section II overviews
the theoretical background and serves as an introduction to
the formal notation. In Sec. III we study phase damping on a
single qubit, where all characteristics introduced so far actually
coincide. Sections IV and V address the Markovianity and
the possibility of finding an RU representation, respectively.
In Sec. VI we discuss the appearance of decoherence-free
subspaces due to symmetries in our formalism.

II. QUANTUM CHANNELS

Based on the fundamental assumption of no initial corre-
lations between the system � and its environment, the most
general quantum evolution is given by a completely positive
map E : � �→ E(�). In a Hilbert space of dimension N , these
maps (or “quantum channels”) can always be written in terms
of at most N2 Kraus operators Ki such that

� �→ �′ = E(�) =
∑

i

Ki�K
†
i (1)

(here and in the following we denote the initial state by � and
its map by �′). It is usually assumed that the map is trace-
preserving,

∑
i K

†
i Ki = E1, so as to preserve probability. If,

in addition, the completely mixed state is mapped onto itself
(i.e.,

∑
i KiK

†
i = E1), the channel is said to be unital or doubly
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stochastic [14]. Throughout this article we will assume that �

and �′ live in the same Hilbert space; that is, the channel E
maps the set of states on a Hilbert space of dimension N onto
itself.

When considering a quantum channel of form (1), no
particular assumptions are made about the nature of the
underlying continuous dynamics. Rather, only a snapshot of
the quantum system at a given time is revealed. Nevertheless, in
some cases it is possible to gather information about the nature
of the physical processes involved. In the remainder of this
section, we want to discuss how certain additional assumptions
about the structure of the channel may set restrictions on the
underlying dynamics or vice versa.

A. Markovian channels

A quantum channel E is said to be Markovian if there exists
a generator L of a quantum dynamical semigroup and a time
t > 0 such that

E(�) = eLt � (2)

[7,8]. That is, the channel may be understood as a snapshot of
a time-continuous Markovian evolution. The generator L may
be written in Lindblad form [5]:

L(�) = −i[H,�] + 1

2

r∑
i=1

{[Li�,L
†
i ] + [Li,�L

†
i ]}. (3)

Note that we consider explicitly the case of a one-parameter
semigroup, as was done in Ref. [7], meaning that the Lindblad
generators are time-independent. In general, of course, the
Lindblad operators themselves may depend on time.

The Markov property of a channel is closely related to
the notion of infinite divisibility [7,15]. A channel E is
called infinitely divisible if, for all ν ∈ EN , there exists a
channel Eν with (Eν)ν = E . Surely, a Markov channel E is
infinitely divisible: for any given ν ∈ EN it can be written as a
ν-fold concatenation of the channels Eν = eLt/ν . The converse
statement, however, is not true in general [15].

B. RU channels

One of the standard approaches to the quantum channel
formalism is based on the reduced dynamics of a system
interacting with its environment [10]. In this context, deco-
herence of an open quantum system is inevitably linked to
growing entanglement between system and environment [2].
Yet, there are instances of irreversible dynamics that may be
modeled entirely without invoking a quantum environment at
all. An important example is given by RU dynamics, where
the quantum channel may be written as a convex combination
of unitary transformations:

E(�) =
∑

i

piUi�U
†
i ,

(
pi > 0,

∑
i

pi = 1

)
.

The dynamics may thus be thought of as originating from
classical fluctuations, hence they are also termed “random
external fields” [9,10]. It is known, for example, that for
a single qubit all doubly stochastic channels are of RU
type [11]. These RU channels gain some significance in the

field of environment-assisted quantum error correction: using
information obtained from a measurement on the environment
they are the only type of error that may be undone completely
[16]. More recently they have also been applied to quantum
networks [17].

C. Phase-damping channels

Phase-damping channels are among the simplest conceiv-
able quantum channels. They are defined by the requirement
that in a given basis {|n〉}—the phase-damping basis—no
population transfer takes place. The only effect of the “environ-
ment” is thus to change coherences 〈n|�|m〉 with n �= m and to
leave all 〈n|�|n〉 with n = 1, . . . ,N untouched. In other words,
the projectors are constants of motion: E(|n〉〈n|) = |n〉〈n| for
all n.

We conclude that the Kraus operators have to be diagonal in
this basis, Ki = diag(ai1,ai2, . . . ,aiN ) and, correspondingly,
the whole map E is diagonal, too. We find

�′
mn = 〈an|am〉�mn, (4)

with {an = (a1n,a2n, . . . ,arn)} being any set of N normalized
complex vectors. It is then sometimes convenient to introduce
the matrix D with Dmn = 〈an|am〉 to write the phase-damping
channel in the short form �′ = D � �, where � is the Hadamard
product; that is, the entry-wise product of matrices of the same
size: �′

mn = Dmn�mn [18]. From these considerations it is clear
that phase-damping channels are among the doubly stochastic
channels.

If the quantum channel E is defined via the system’s
coupling to a quantum mechanical environment, the vectors
|an〉 may be seen as relative states of the environment; that is,
relative to the states of the distinguished basis. This arises from
the fact that the robustness of the phase-damping basis ensures
the controlled-unitary form [19] of the unitary evolution of the
total state:

U =
N∑

n=1

|n〉〈n| ⊗ Ũn, (5)

where Ũn := 〈n| U |n〉. The total initial state � ⊗ |a(0)〉〈a(0)|
evolves according to

� ⊗ |a(0)〉〈a(0)| �→
N∑

m,n=1

�mn|m〉〈n| ⊗ Ũm|a(0)〉〈a(0)|Ũ †
n.

After performing the trace over the environmental degrees
of freedom one arrives at the form of Eq. (4) with |an〉 :=
Ũn |a(0)〉. The overlap 〈an|am〉, seen as a function of time,
may be related to studies of fidelity decay [20]. However, this
relative state picture need not hold in general: the case of RU
dynamics shows that, in certain circumstances, decoherence
may be attributed to stochastic, fluctuating “classical” fields.

In many situations the dynamical vectors |an〉 are of course
unknown a priori. In particular this holds true in an experimen-
tal setup where the matrix D is acquired via quantum process
tomography [10]. One way of obtaining dynamical vectors
|an〉 from D is by using the Cholesky factorization [21]. Given
the nonnegative matrix D, the Cholesky factorization gives
D = MM†, with M being a lower triangular matrix (M is in

042103-2



CHARACTERIZATION OF DECOHERENCE FROM AN . . . PHYSICAL REVIEW A 83, 042103 (2011)

general not unique). The nth row of M may then be identified
with a complex vector |an〉 ∈ ECd such that Dmn = 〈an|am〉. If
D is a positive semidefinite matrix of rank r < d, there exists a
unique M with columns r + 1 through d identical to zero [21].
That is, the vectors |an〉 may be chosen as elements of ECr .
Moreover, the Cholesky factorization allows the construction
of a quantum model in the form of (5); that is, unitaries Ũn

as well as an adequate environmental initial state |a(0)〉 may
be constructed using the matrix M . In the following sections
we will study what the dynamical vectors |an〉 reveal about the
nature of the underlying dynamics.

III. THE SINGLE-QUBIT CASE

Without revealing too much about the details we want to
state some results of the following sections. The case of a
single qubit stands out due to the fact that a phase-damping
channel is always Markovian (i.e., a snapshot of Markovian
dynamics) and is of RU type. These findings of course do not
allow for generalization to higher-dimensional systems, yet
they have some potential for building intuition. For a more
rigorous approach as well as some missing definitions see
Secs. IV and V.

For a single qubit the phase-damping map is defined by the
matrix

D =
(

1 〈a2|a1〉
〈a1|a2〉 1

)
. (6)

Thus, a single complex number 〈a2|a1〉 =: c with modulus
less than one determines the most general single-qubit phase-
damping channel. Infinite divisibility of a phase-damping
channel has to be formulated in terms of the Hadamard
product (see also Sec. IV); that is, the matrix Dν with
(Dν)mn = (Dmn)1/ν has to be checked with regard to its
positivity. It is quite straightforward to see that the matrix
D in Eq. (6) passes this test, which lets us conclude that a
single-qubit phase-damping channel is always Markovian (see
also Sec. IV).

Another remarkable feature of single-qubit phase
damping—which we will later show to be intimately connected
to Markovianity—is that the dynamical vectors in (4) may
be chosen from the set of coherent states {|α〉 |α ∈ EC} of a
harmonic oscillator. These are eigenstates of the annihilation
operator, a |α〉 = α |α〉, and may be seen as displaced vacuum
states: |α〉 = eαa†−α∗a |0〉 [22]. In order to see this, note that,
for c �= 0, we may simply let

c =: e−2γ−iω, (7)

with γ ∈ R+ and ω ∈ [0,2π ). We then define the two-mode
coherent states |αn〉 := e−iωn

∣∣√γ ln
〉
, where l1 = (1,1),l2 =

(1, − 1), and ω1 = −ω2 = ω/2. It is easy to see that these
states give the correct overlap; that is, 〈α2|α1〉 = c. In this vein
we can thus always define the channel in terms of coherent
states |αn〉 ,n = 1,2, leading to Markovian dynamics. Written
in Lindblad form the master equation attains its well-known
form

L(�) = −i
ω

2
[σz,�] − γ

2
[σz,[σz,�]], (8)

where channel (6) with c from (7) is obtained as a snapshot
for t = 1.

Alternatively, we may choose to write the overlap of states
in the form 〈a2|a1〉 = (2p − 1)e−iθ with 0 � p � 1, obtaining
the common quantum channel representation [10]

E(�) = e−i θ
2 σz (p� + (1 − p)σz�σz) ei θ

2 σz . (9)

In this notation it is rather obvious, hence, that the channel is
RU, which is always true for a single qubit or qutrit [11,12].

IV. PHASE-DAMPING MARKOV PROCESSES AND
COHERENT STATES

As introduced in Sec. II, the mapping of a quantum state
subject to phase damping may be written using the Hadamard
product. Infinite divisibility is equivalent to positivity of the
matrices Dν , where (Dν)ν = Dν � · · · � Dν = D, ν ∈ N; that
is, (Dν)mn = (Dmn)1/ν . While it is clear that every Markov
channel is infinitely divisible, note that the converse also holds
in case of phase damping (when all Dmn �= 0).

The argument is based on a theorem by Denisov [15],
which states that an infinitely divisible channel E is of the
form E = eLE, where E is an idempotence with ELE = LE

[7,15]. In the case of phase damping, however, the diagonal
character of the map together with the relation EE = EeLE =
eLE = E implies E = 1 already, whenever all Dmn �= 0. Thus,
Markovianity follows directly from infinite divisibility in this
case. Recall that this is certainly not true for channels in
general.

From Sec. III we already know that any single-qubit
phase-damping channel (with c �= 0) is infinitely divisible
and hence Markovian; but what about higher dimensions?
A simple example shows that, already for a 3-dimensional
quantum system, positivity may be violated: Let a 3-state
phase-damping channel be given by

D =

⎛
⎜⎝

1 iα −iα

−iα 1 α

iα α 1

⎞
⎟⎠ ,

with real α. Then, for 1
3 < α � 1

2 , the matrix D is positive, but
all (Hadamard) square roots D1/2 have one negative eigenvalue
equal to 1 − √

3α. We have thus found a single-qutrit phase-
damping channel which may not be identified as a snapshot of
Markovian evolution.

The notion of infinite divisibility in this section implicitly
assumes all fractional powers of the initial channel to be phase
damping and therefore diagonal. This excludes the rather
peculiar case where some dynamics are phase damping for
a particular time t only, but may well change populations
at other times. Consider, for example, the unitary one-qubit
map E(�) = U�U † with U = exp(−iπσxt), which is trivially
phase damping for t = 1,2,3, . . . .

From these considerations it is clear that the underlying
generator L of the Markov dynamics is diagonal: L(|m〉〈n|) =
zmn|m〉〈n|. This, in turn, assures the diagonal character of
both the Hamiltonian H =:

∑
n wn|n〉〈n| and the Lindblad
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operators Li =:
∑

n l(i)
n |n〉〈n| (see Appendix A), thereby lead-

ing to the relation

zmn = −i(ωm − ωn) + 〈ln|lm〉 − 1
2 (‖lm‖2 + ‖ln‖2), (10)

where ln := (l(1)
n , . . . ,l(r)

n ) with r being the number of Lindblad
operators in (3).

An M-mode coherent state may be written as a displace-
ment of the vacuum:

|α〉 = e−‖α‖2/2eα1a
†
1 ⊗ · · · ⊗ eαMa

†
M |0〉1 ⊗ · · · ⊗ |0〉M ,

with bosonic creation operators a
†
i [22]. For two coherent states

|α〉 and |β〉 this leads to an overlap:

〈β|α〉 = e〈β,α〉− 1
2 (‖α‖2+‖β‖2), (11)

where 〈·,·〉 denotes the standard scalar product in CM and
‖α‖2 = 〈α,α〉.

Based on a comparison of Eqs. (10) and (11) we define the
r-mode coherent states in the following form:

|αn(t)〉 = e−iωnt |ln
√

t〉, n = 1, . . . ,N,

and find that, for Markovian phase damping, we may define
the channel in terms of coherent states such that

Dmn = ezmnt |t=1 = 〈αn(t)|αm(t)〉|t=1 .

Any Markovian phase-damping channel E may therefore be
obtained as the reduced dynamics of the system interacting
with an environment of a finite number of harmonic oscillators,
all in coherent states. At first sight, the time dependence
of the coherent states |αn(t)〉 = e−iωnt |√t ln〉 may seem quite
queer. Yet, this should not be too surprising given that a finite
reservoir would normally lead to memory effects. In order to
preserve Markovianity the dynamics thus have to be strongly
driven, so as to prevent the back-flow of information from the
environment to the system [6]. These considerations lead to
an alternative construction of a unitary model in the Markov
case. Using the vacuum state as initial state of the environment,
the unitaries in Eq. (5) are simply given by the appropriate
displacement operators for the coherent states.

As a final remark we add that the
√

t dependence of
the centroid of the environmental coherent states reflects the
fundamental relevance of standard Brownian motion for all
(continuous) Markov processes.

V. RU VERSUS QUANTUM PHASE DAMPING

We have seen in the previous section that for qutrits—
or larger systems—phase-damping channels need not be
Markovian. In a similar spirit, one may ask whether RU
representations exist for any dimension: can all phase-damping
processes be written as a convex sum of unitary maps? For
a qubit, as for the question of Markovianity, the answer is
affirmative. In general, however, the answer is no, as can be
found in [11]. For a two-qubit system; that is N = 4, a physical
model for such a non-RU (or quantum) phase-damping channel
is described in Ref. [13].

Our aim here is to offer a method to construct non-RU
phase-damping channels in arbitrary dimensions, extending
earlier work. These serve as specific examples; it is an entirely
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FIG. 1. (Color online) Construction of an extremal phase-
damping channel is based on a bipartite system of qudits A and
B, locally coupling (via κA and κB) to a qudit reservoir R.

different and challenging matter to test a given phase-damping
channel for the RU property.

Our method of identification of such a quantum phase-
damping channel rests on extremality with respect to the
convex set of doubly stochastic channels. Due to a result by
Landau and Streater it is known that there exist nonunitary,
extremal maps in the convex set of diagonal doubly stochastic
maps [11]. Extremality is guaranteed for channels where
the projectors |an〉〈an| obtained from the dynamical vectors
{|a1〉 , . . . , |aN 〉} ⊂ Cr in Eq. (4) form a (possibly overcom-
plete) operator basis on Cr . Note that extremality requires
r2 � N [remember that r denotes the number of operators
used in Eq. (1) or, likewise, the dimensionality of the vectors
|an〉, where N is the dimension of the quantum system].

The construction of the channel rests on a Hamiltonian H

locally coupling two qudits (d-dimensional quantum systems)
to a single-qudit environment (cf. Fig. 1). Then, by construc-
tion, r2 = d2 = N . In the usual notation we set

H = HS + HI + HR, (12)

where HS and HR denote the Hamiltonian that describes the
system and reservoir, respectively. The local coupling of qudits
A and B to the reservoir R may be set to

HI =
∑
i,j

(
κA

ij σA
i ⊗ σR

j + κB
ij σ

B
i ⊗ σR

j

)
.

In order to invoke a phase-damping channel on the system we
have to require HS as well as all operators σA

i and σB
i to be

diagonal (the σ operators will be specified below).
For any given time t and assuming the usual product

initial state, � ⊗ σ , these dynamics lead to the phase-damping
channel

Et (�) : = �′ = trR(e−iH t (� ⊗ σ ) eiHt )

= trR(U (� ⊗ σ )U †). (13)

Due to the restriction to a diagonal system Hamiltonian and
diagonal coupling, the unitary map U allows for a diagonaliza-
tion in the phase-damping basis {|n〉}. The interaction may thus
be expressed in the fashion of the controlled-unitary operation:

U =
d2∑

n=1

|n〉〈n| ⊗ Ũn.
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Assuming the initial state of the reservoir to be pure; that
is, σ = |ψ0〉〈ψ0|, we obtain the phase-damping channel

�′
mn = 〈ψn|ψm〉�mn (14)

in terms of the dynamical vectors |ψn〉 := Ũn |ψ0〉, n =
1, . . . ,d2.

The properties of the phase-damping channel are now
encoded in these relative environment states |ψn〉. In particular,
the extremality of the channel is equivalent to {|ψn〉〈ψn|}
being an operator basis. A constructive way of testing is
to use the Bloch representation. Recall that, to a given
normalized complex vector |ψn〉 ∈ Cd , we can assign a corre-
sponding generalized real Bloch vector bn ∈ Rd2−1 [14]. Let
σ1, . . . ,σd2−1 be orthogonal generators of SU(d); that is, the
σi are Hermitian, traceless operators obeying tr σiσj = 2δij .
Together with the identity operator 1 these form an orthogonal
basis of all linear operators in d dimensions, and we arrive
at the Bloch representation by defining |ψn〉〈ψn| =: Bn · σ ,
where Bn = 1

2 ( 2
d
,bn) ∈ Rd2

and σ = (1,σ1, . . . ,σr2−1). For a

set of d2 projectors {|ψn〉〈ψn|} forming an operator basis, { Bn}
is a linear independent set spanning Rd2

.
We thus arrive at the following equivalence (see

Appendix. B):

The channel defined via the dynamical vectors

{|ψ1〉 , . . . , |ψd2〉} is an extremal channel

⇔
Vol(b1, . . . ,bd2 ) �= 0. (15)

We are thus able to link the extremality of the phase-
damping channel to the volume Vol(b1, . . . ,bd2 ) := 1/(d2 −
1)! det[ (b2 − b1) (b3 − b1) · · · (bd2 − b1) ] spanned by the

real vectors b1, . . . ,bd2 . In this geometric picture we can infer
that the channel is extremal iff the Bloch vectors bn do not
point to the same hyperplane in Rd2−1 or, equivalently, iff the
d2 − 1 dimensional volume V spanned by the Bloch vectors
is different from zero.

While still not a general test for the RU property, we
would like to note that, nonetheless, criterion (15) may be
used to give a constructive test of a channel’s extremality.
Given an arbitrary phase-damping channel D, the Cholesky
factorization gives, as introduced in Sec. II, a set of dynamical
vectors |an〉 ∈ Cr . Recall that r denotes the rank of the matrix
D. Any r2-dimensional subset of the corresponding Bloch
vectors bn has now to be checked for linear independence. If
linear independence is found in any subset, then—following
the equivalence in (15)—we may conclude upon extremality
of the channel. For r �= 1 this immediately excludes the RU
property.

VI. SYMMETRIES AND DECOHERENCE-FREE
SUBSPACES

In qubit systems it may happen that environmental influ-
ences affect different qubits in the same way. If, for instance,
the wavelength of a fluctuating field were much larger than the
separation of the qubits, certain qubit states would accumulate
the same random phase, and coherence among such states
would be preserved. To give an example consider a classical

fluctuating magnetic field that couples identically to all qubits
via B(t)

∑
i σ

i
z =: B(t)�z. In such a case all superpositions

of states from an eigenspace of �z will not suffer from
decoherence [23]. Such decoherence-free subspaces (DFSs)
can be identified in experiments [24].

In the quantum channel formalism the DFSs appear
naturally through symmetry considerations. Assume, for sim-
plicity, an N -qubit setup where all qubits are affected by
the environment in the same way. Formally, this amounts
to the invariance of the channel under permutations of the
qubits. In turn, the set of dynamical vectors |an〉 has to be
invariant under qubit permutations. We conclude that |an〉 =
|am〉 whenever 〈n| �z |n〉 = 〈m| �z |m〉. Thus, only N + 1
different dynamical vectors |bk〉 occur with a degeneracy of

(
N

k
) (the dimension of the corresponding DFS), summing up

to the total of 2N .
To give an example, for a two-qubit system with full qubit

symmetry 1 ↔ 2, the most general phase-damping channel is
made from only three dynamical vectors: |a1〉 = |b1〉 , |a2〉 =
|a3〉 = |b2〉 , and |a4〉 = |b3〉, such that

D =

⎛
⎜⎜⎜⎝

1 〈b2|b1〉 〈b2|b1〉 〈b3|b1〉
〈b1|b2〉 1 1 〈b3|b2〉
〈b1|b2〉 1 1 〈b3|b2〉
〈b1|b3〉 〈b2|b3〉 〈b2|b3〉 1

⎞
⎟⎟⎟⎠, (16)

and the space {|01〉 , |10〉} is a DFS. These considerations can
of course be adapted to cases of partial symmetries of the
environmental influences.

VII. CONCLUSIONS AND OUTLOOK

We study phase damping (pure decoherence) from an
environmental perspective. Any given phase-damping channel
may be understood in terms of an overlap of dynamical vectors
|an〉 characterizing the channel. For a quantum environment
these are relative environmental states. We investigate how the
nature of a phase-damping process inflicts with properties of
these dynamical vectors.

For a single qubit, we infer that any possible phase-damping
channel is indeed Markovian; that is, a snapshot of some
time-continuous Markovian evolution. For a single qutrit,
we find examples of channels that are not Markovian: we
give a class of channels we show is not infinitely divisible.
Remarkably, it turns out that, in case of Markovian phase
damping in arbitrary dimensions, the dynamical vectors may
be chosen to be multimode coherent states.

For a single qubit a phase-damping channel is of RU
type. For Hilbert space dimensions N � 4 we discuss a
physical model of phase-damping dynamics that has no RU
representation. We find that, for a phase-damping channel
acting on a d2-dimensional quantum system, the RU property
may be linked to a (d2 − 1)-dimensional volume. In a previous
article, a link between this (absolute) volume and the norm
distance between the channel and the convex hull of unitary
transformations was found [13].

Our considerations are of relevance for process tomography
[10,25] where it is a great challenge to reduce the dimensions of
the parameter space of the process. It is clear that any additional
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assumption about the nature of the process (phase damping,
RU, Markovian) leads to further constraints. Therefore, our
results allow for a characterization of the channel with a
reduced number of parameters and should help to speed up
the optimization procedures involved [26].
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APPENDIX A: DIAGONAL LINDBLAD FORM

In this Appendix we show that the diagonal form of the
generator L is enough to guarantee the Hamiltonian and the
Lindblad operators to be diagonal as well. In a given basis
{|n〉}, let the generator of the semigroup �t = eLt be diagonal;
that is, L(|m〉〈n|) = zmn|m〉〈n|. With H = ∑

mn hmn|m〉〈n| and
Li = ∑

mn l(i)
mn|m〉〈n| this implies

zmnδrmδns = −i (hrmδns − δrmhns) + 1

2

∑
i

{(
l(i)
rml(i)

ns

−
∑

k

l
(i)
rk l

(i)
kmδns

)
+

(
l(i)
rml(i)

ns −
∑

k

l
(i)
nk l

(i)
ks δrm

)}

= −i (hrmδns − δrmhns) + 〈lrm|lns〉
− 1

2

∑
k

(〈lrk|lkm〉δns + 〈lnk|lks〉δrm). (A1)

Letting m = n, r = s, and n �= s we see that ‖lmr‖2 =
0 for m �= r , so that lmr = δmr lr . Insertion into (A1) then
implies hmr = δmrωr , so that Hamiltonian and Lindblad
operators are found to be diagonal. In matrix representation,
the generator may thus be written as

zmn = −i(ωm − ωn) + 〈ln|lm〉 − 1
2 (‖lm‖2 + ‖ln‖2).

APPENDIX B: EXTREMALITY CRITERION

In order to see the equivalence in Eq. (15) we have to
perform some matrix algebra. The vectors |ψ1〉 , . . . , |ψd2〉
define projectors giving an operator basis iff the real vectors
B1, . . . , Bd2 are linearly independent, which is the case for [27]:

det( B1 · · · Bd2 ) = det

(
2
d

· · · 2
d

b1 · · · bd2

)

= det

⎛
⎜⎜⎝

(
2
d

· · · 2
d

b1 · · · bd2

) ⎛
⎜⎜⎝

1 −1 · · · −1
1

. . .
1

⎞
⎟⎟⎠

⎞
⎟⎟⎠

= 2

d
det( (b2 − b1) (b3 − b1) · · · (bd2 − b1) )

= 2(d2 − 1)!

d
Vol(b1, . . . ,bd2 )

�= 0,
where Vol(b1, . . . ,bd2 ) denotes the volume of the paral-
lelogram spanned by the real, d2 − 1 dimensional vectors
{b1, . . . ,bd2}.

[1] E. Joos et al., Decoherence and the Appearance of a Classical
World in Quantum Theory, 2nd ed. (Springer, New York,
2003).

[2] W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[3] W. T. Strunz, in Decoherence in Quantum Physics in Coherent

Evolution in Noisy Environments, edited by A. Buchleitner
and K. Hornberger (Springer Lecture Notes in Physics, Berlin,
2002), Vol 611.

[4] T. Yu and J. H. Eberly, Phys. Rev. B 68, 165322 (2003).
[5] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum

Systems (Oxford University Press, Oxford, 2002).
[6] H. P. Breuer, E. M. Laine, and J. Piilo, Phys. Rev. Lett. 103,

210401 (2009).
[7] M. M. Wolf and J. I. Cirac, Commun. Math. Phys. 279, 147

(2008).
[8] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, Phys. Rev.

Lett. 101, 150402 (2008).
[9] R. Alicki and K. Lendi, Quantum Dynamical Semigroups and

Applications (Springer, New York, 1987).
[10] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2007).

[11] L. J. Landau and R. F. Streater, Linear Algebr. Appl. 193, 107
(1993).

[12] F. Buscemi, G. Chiribella, and G. M. D’Ariano, Phys. Rev. Lett.
95, 090501 (2005).

[13] J. Helm and W. T. Strunz, Phys. Rev. A 80, 042108
(2009).
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