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Quantum mechanics of hyperbolic orbits in the Kepler problem
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The problem of deriving macroscopic properties from the Hamiltonian of the hydrogen atom is resumed by
extending previous results in the literature, which predicted elliptic orbits, into the region of hyperbolic orbits.
As a main tool, coherent states of the harmonic oscillator are used which are continued to imaginary frequencies.
The Kustaanheimo-Stiefel (KS) map is applied to transform the original configuration space into the product
space of four harmonic oscillators with a constraint. The relation derived between real time and oscillator
(pseudo) time includes quantum corrections. In the limit h̄ → 0, the time-dependent mean values of position
and velocity describe the classical motion on a hyperbola and a circular hodograph, respectively. Moreover, the
connection between pseudotime and real time comes out in analogy to Kepler’s equation for elliptic orbits. The
mean-square-root deviations of position and velocity components behave similarly in time to the corresponding
ones of a spreading Gaussian wave packet in free space. To check the approximate treatment of the constraint, its
contribution to the mean energy is determined with the result that it is negligible except for energy values close
to the parabolic orbit with eccentricity equal to 1. It is inevitable to introduce a suitable scalar product in R4

which makes both the transformed Hamiltonian and the velocity operators Hermitian. An elementary necessary
criterion is given for the energy interval where the constraint can be approximated by averaging.
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I. INTRODUCTION

The prediction of Schrödinger “that in quite a similar
way as for the harmonic oscillator, with certainty, one will
construct wave groups which turn around high-quantized
Kepler ellipses” [1] took about half a century to be realized. A
major achievement is due to Nauenberg [2], who constructed
coherent states that have minimal quantum fluctuations in
the noncommuting components of the Runge-Lenz vector;
he applied the theory, in particular, to a Rydberg state
with principal quantum number n= 40. Three years before,
Gerry [3] presented a different approach which, in the limit
h̄ → 0, led to the classical equation of motion. He used
coherent states of the harmonic oscillator which minimize the
uncertainty product of position and momentum; the original
three-dimensional configuration space was connected with
the product space of four harmonic oscillators by means of
the Kustaanheimo-Stiefel (KS) transformation [4]. The KS
map requires one to identify the subspace of R4 where the
transformation is one-to-one. The latter amounts to introducing
a projection operator (constraint) which, when strictly imple-
mented, unfortunately, prevents one from working with simple
states formed by the product of coherent oscillator states.
In [3], the constraint was taken into account in the mean, which
allowed expectation values to be determined analytically with
the classical equation of motion emerging in the form

µ〈r̈〉 = − κ

|〈r〉|3 〈r〉,

where µ and κ denote the reduced mass and the coupling
constant of the two-body problem, respectively.

As compared to previous investigations [2,3], which pertain
to bound classical orbits with negative energy, in the present
work we consider positive values of energy which correspond

*alexander.rauh@uni-oldenburg.de

to hyperbolic orbits. As compared to [3], we address the fol-
lowing additional tasks: (i) calculation of the mean-square-root
deviations from the classical orbit, i.e., considering quantum
corrections to mean position and velocity; (ii) determination
of the mean constraint contribution to the energy, HX; and
(iii) modification of the connection between (pseudo) time in
oscillator space and real time. In order to achieve analytical
results, we keep the wave function simple by taking into
account the constraint in the mean only, as was done in [3].
However, we check the consistency of this assumption, point
(ii), by examining the expectation value of HX in comparison
with the mean energy of the transformed Hamiltonian Hu. The
latter comes out with the reciprocal distance operator, 1/r ,
in front of the four-dimensional Laplacian, in addition to the
potential energy and the constraint part HX, which would be
zero in the correct subspace of the oscillator spaceR4. We infer
a suitable volume element in R4 from the original one in R3.
Within the modified metric, both the transformed Hamiltonian
Hu and the velocity operator are Hermitian. Expectation values
are calculated inR4 with the aid of the modified scalar product.

In part of the literature, there appears to be some confusion
in transferring pseudotime σ of the KS harmonic oscillator
to real time t . Fictitious, or pseudo, time was introduced in
the path integral treatment of the hydrogen atom in [5] (see
also [6]) by parametrizing time as t → σ along a given path
with σ (t) = ∫ t

dt ′/rpath(t ′). Occasionally, this gave rise to the
ill-defined transformation rule dt/dσ = r(t) which makes t an
operator rather than a scalar parameter. Indeed, the function
t → σ is different for different paths, in general. In Sec. III,
we define the map by comparing the expectation values
of commutators of the position operator and two different
Hamiltonians. In the limit h̄ → 0, we recover the function
t → σ , as proposed in [3].

Coherent states for the harmonic oscillator were first
proposed in [1]. They have the structure

ψ(x,σ ) = C(σ ) exp[a(σ )x − �x2],
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where x and σ denote the space variable and time parameter,
respectively. After the KS transformation, the harmonic
oscillator Hamiltonian emerges in the form

Hos = − h̄2

8µ

∂2

∂u2
− Eu2, − E = ω2

2µ
.

Here, E denotes the orbit energy, and u2 has the dimension
of a length rather than the square of it. As a consequence, the
fictitious time σ has dimension s/m. For bound orbits, E is
negative and leads to the real oscillator frequency ω. Positive
values of the orbit energy, E > 0, on the other hand, produce
imaginary values of the frequency. The usual construction of
coherent states, e.g., by means of creation and annihilation
operators [7], will then no longer work. However, as is shown in
Sec. III, one succeeds by assuming the localization parameter
� to be time dependent and complex. With respect to the
configuration variables, the new coherent states have the same
structure as those for elliptic orbits, and, thus, the efforts to
calculate expectation values are about the same.

In the present theory, the mean-square-root deviations
(msrd) from the classical orbit vanish in the limit h̄ → 0;
i.e., they are of quantum nature. Hyperbolic orbits give
rise to position msrd which increase linearly with time in
the asymptotic limit, in much the same way as it is found for the
spreading of a Gaussian wave packet in free space. One may be
tempted to speculate whether in realistic situations quantum
fluctuations of position could become comparable with the
geometrical dimension of a space vehicle, such as to modify
cross sections with respect to radiation pressure or with respect
to collision with rest particles in space, for example. We found
that such effects are illusionary in macroscopic situations, at
least in the energy range where our method should give reliable
results. Our method does not cover a small energy interval
around a parabolic orbit where the classical orbit energy
amounts to E = 0 with eccentricity e = 1. Here, the effect
of the constraint becomes relevant beyond the mean value
approximation adopted. There may be a chance to examine the
parabolic energy interval, or part of it, by methods which do not
rely on the KS constraint, such as the method of [2], which is
restricted to negative values of orbit energy, or the construction
of coherent states based on irreducible representations of Lie
groups [8,9].

This work contributes to verifing that the Schrödinger
equation of the hydrogen atom can be extended to the macro-
scopic Kepler problem which, with respect to a dimensionless
quantum parameter of this article, scales by about 80 decimal
powers as compared to the ground state of the H atom.

II. KS TRANSFORMATION

The Kustaanheimo-Stiefel (KS) transformation was intro-
duced in [4], in order to remove the collision singularity of
the two-body problem of celestial mechanics. It was applied
to the quantum mechanics of the H atom, e.g., in [3,10–12]. In
what follows, we supplement these applications by deriving a
suitable scalar product which ensures hermiticity of the trans-
formed Hamiltonian and the velocity operator. Furthermore,
by considering the transformation of the Schrödinger equation,
including the wave function, we get an elementary understand-
ing of the origin of the constraint, which, e.g., in [10] and [11]

is group theoretically founded: as a superselection rule under
the transformation of a one-parametric subgroup of O(4).

By the convention of [3], the KS transformation from the
space u ∈ R4 to the original space x ∈ R3 reads

x1 = 2(u1u3 − u2u4), x2 = 2(u1u4 + u2u3),
(1)

x3 = u2
1 + u2

2 − u2
3 − u2

4.

The transformation implies the following properties, see [4],

r ≡ u2
1 + u2

2 + u2
3 + u2

4 =
√

x2
1 + x2

2 + x2
3 , (2)

and any rotation u′ = T(�)u, with 0 � � < 2π , lets x1, x2,
and x3 invariant:

T(�) =

⎛
⎜⎝

cos(�), sin(�), 0, 0
− sin(�), cos(�), 0, 0

0, 0, cos(�), − sin(�)
0, 0, sin(�), cos(�)

⎞
⎟⎠ . (3)

By interpreting � as the forth variable in x space, x4 = �, and
using the polar coordinate representation x1 = r sin(θ ) cos(ϕ),
x2 = r sin(θ ) sin(ϕ), and x3 = r cos(θ ), one obtains the 1-1
map (u1,u2,u3,u4) ↔ (r,θ,ϕ,�) with r � 0, 0 � θ � π , 0 �
ϕ, and � < 2π , where

u1 = √
r cos(θ/2) cos(ϕ − �),

u2 = √
r cos(θ/2) sin(ϕ − �), (4)

u3 = √
r sin(θ/2) cos(�), u4 = √

r sin(θ/2) sin(�).

The corresponding functional determinant reads

du1du2du3du4 = ∂(u1,u2,u3,u4)

∂(r,θ,ϕ,�)
drdθdϕd�

= 1

8
r sin(θ )drdθdϕd� = 1

8r
dx1dx2dx3d�,

(5)

which implies the connection between volume elements

1

2π

∫ 2π

0
d�

∫
dx1dx2dx3 f (x1,x2,x3)

≡
∫

dx1dx2dx3f (x1,x2,x3)

= 4

π

∫
r(u) du1du2du3du4f (x1(u),x2(u),x3(u)). (6)

This suggests to introduce the metric factor r(u) into the
four-dimensional scalar product with the factor 4/π consumed
in the normalization of the wave function. Indeed, the
transformed Hamiltonian Hu and the velocity operator, derived
below, will be Hermitian in such a metric.

In terms of the components x1, x2, x3, and �, the inverse
transformation reads

u1 = x1 cos(�) + x2 sin(�)√
2(r − x3)

, u2 = x2 cos(�) − x1 sin(�)√
2(r − x3)

,

u3 = 1

2

√
2(r − x3) cos(�), u4 = 1

2

√
2(r − x3) sin(�),

r =
√

x2
1 + x2

2 + x2
3 . (7)
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As a check, when (4) is used and inserted on the right-hand side
of (1), then the polar representation of x1, x2, x3 is reproduced,
independently of �. From (7), one infers immediately

∂u1

∂�
= u2,

∂u2

∂�
= −u1,

∂u3

∂�
= −u4,

∂u4

∂�
= u3, (8)

which, in consistency with (1), implies the properties

∂

∂�
xk(u) = 0, k = 1,2,3;

∂

∂�
r(u) = 0. (9)

To transform the Laplacian �x of the one-particle Hamil-
tonian into u space, we restrict ourselves, at first, to functions
which depend via (1) on the u components, briefly called xu

space:

F (u) := f (x1(u),x2(u),x3(u)), f ∈ C2. (10)

Then, the following relation applies:

�uF (u)≡
[

∂2

∂u2
1

+ ∂2

∂u2
2

+ ∂2

∂u2
3

+ ∂2

∂u2
4

]
F (u) = 4r�xf (x).

(11)

Such a property is an immediate consequence of (1) which
implies

�u[xi(u)] = 0, and
4∑

j=1

∂xi(u)

∂uj

∂xk(u)

∂uj

= 4rδik,

i,k = 1,2,3, (12)

where δ is the Kronecker symbol.
We write the stationary Schrödinger equation in configura-

tion space x ∈ R3 as

Hxψ(x) = Eψ(x), with Hx = − h̄2

2µ
�x − κ

r
. (13)

The coupling constant is specified as κ = GmM and κ =
q2

e /(4πε0) in the case of two gravitational masses, m and M ,
and the hydrogen problem, respectively; µ denotes the reduced
mass. Transforming (13) into xu space, using (12), we obtain

Hxu�(x(u))=E�(x(u)), with Hxu = − h̄2

2µ

1

4r
�u − κ

r
.

(14)

After multiplying (14) with r ≡ u2, we get

Hos�(u) = κ�(u), Hos = − h̄2

8µ
�u − Eu2. (15)

Thus, one has transformed the original Hamiltonian into the
sum of four harmonic oscillators. However, the oscillators are
coupled in xu space with �(u) = ψ(x(u), which implies that
�(u) does not separate into a product of four independent
eigenfunctions of the harmonic oscillator, in general.

In the following, we turn to the standard method of the
transformation Hx → Hu with ψ(u) being unrestricted. To
this end a fourth differential δx4 is introduced in addition to
the complete differentials dx1, dx2, and dx3, see, e.g., [12]:⎛
⎜⎝

dx1

dx2

dx3

δx4

⎞
⎟⎠≡A

⎛
⎜⎝

du1

du2

du3

du4

⎞
⎟⎠ , A=

⎛
⎜⎝

2u3, −2u4, 2u1, −2u2

2u4, 2u3, 2u2, 2u1

2u1, 2u2, −2u3, −2u4

u2, −u1, −u4, u3

⎞
⎟⎠ .

(16)

The mutual orthogonality of the row vectors of the matrix A

leads to the following transformed Laplacian and Hamiltonian
Hu [the prefactor of X in [3] is corrected here from 1/(4r) to
1/(4r2)]:

�x → 1

4r
�u − 1

4r2
X2;

(17)

X = u2
∂

∂u1
− u1

∂

∂u2
− u4

∂

∂u3
+ u3

∂

∂u4
;

Hu = − h̄2

2µ

{
1

4r
�u − 1

4r2
X2

}
− κ

r
;

(18)
r = u2

1 + u2
2 + u2

3 + u2
4.

The KS transformation (1) implies for all functions f ∈ C1

the following property of the constraint operator X:

Xf (x1(u),x2(u), x3(u)) ≡ 0. (19)

This follows from

X xi(u) ≡ 0, i = 1,2,3, (20)

which is an immediate consequence of transformation (1).
Property (19) represents the constraint operator in a form
which is alternative to representations used in [3,10–12].

In order to guarantee hermiticity of Hos and Hu and related
observables, respectively, we adopt the two scalar products

1 = 〈ψ |ψ〉os ≡ C2
os

∫
du1du2du3du4ψ

∗
0 ψ0,

(21)
1 = 〈ψ |ψ〉u ≡ C2

u

∫
du1du2du3du4r(u)ψ∗

0 ψ0.

III. COHERENT STATES FOR IMAGINARY
OSCILLATOR FREQUENCY

We are looking for coherent states of the harmonic oscillator
in the case of imaginary values of the oscillator frequency
which correspond to positive values of the orbit energy
E. To this end, we extend the usual coherent states with
real frequency, see, e.g., [7], by assuming the localization
parameter � to be time dependent and complex: �(σ ) =
�R(σ ) + i �I (σ ). To solve the Schrödinger equation,

−h̄

i

∂ψ

∂σ
= Hosψ, Hos = − h̄2

8µ

∂2

∂u2
− E u2, E > 0, (22)

we make the following ansatz:

ψ(u,σ ) = C0 exp[β(σ ) + a(σ )u − �(σ )u2/2],
(23)

u ∈ R, σ � 0.

Equation (22) will be fulfilled if the parameters obey the
following differential equations:

�′(σ ) = −2
i

h̄

[
E + h̄2

8µ
�2

]
; (24)

a′(σ ) = −2
i

h̄

h̄2

8µ
�(σ )a(σ ); (25)

β ′(σ ) = − i

h̄

h̄2

8µ
[−a2(σ ) + �(σ )]. (26)
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We introduce the two constants

�2 = E

2µ
> 0, �� = 4µ�

h̄
> 0, (27)

and the scaled functions α and γ ,

α(σ ) = a(σ )/
√

��, γ (σ ) = �(σ )/��, (28)

to write

γ ′(σ ) = −i�[1 + γ 2(σ )]; α′(σ ) = −i�γ (σ )α(σ );
(29)

β ′(σ ) = i
�

2
[α2(σ ) − γ (σ )].

Integration is straightforward going consecutively from the
first equation in (29) to the third one. With the abbreviations
α0 = α(0), γ0 = γ (0), and ϒ = 2 �σ , the solutions read

γ (σ ) = −i tanh(ϒ/2 + iC1), ϒ = 2 �σ ; (30)

α(σ ) = C2
1

cosh(ϒ/2 + iC1)
; (31)

β(σ ) = C3 − 1

2
ln[cosh(ϒ/2 + iC1)]

+ i

2
C2

2 tanh(ϒ/2 + iC1); (32)

C1 = arctan(γ0), C2 = α0√
1 + γ 2

0

, C3 = − 1

2γ0

α2
0

1 + γ 2
0

.

(33)

The (time-independent) normalization constant C0 turns out
as

C2
0 =

√
γ0

π��

(
1 + γ 2

0

) . (34)

We partly work out the real and imaginary parts and replace α

by a:

γ (σ ) = 1

cosh2(ϒ/2) + γ 2
0 sinh2(ϒ/2)

×
[
γ0 − i

2

(
1 + γ 2

0

)
sinh(2ϒ)

]
; (35)

a(σ ) = a(0)

cosh2(ϒ/2) + γ 2
0 sinh2(ϒ/2)

× [cosh(ϒ/2) − iγ0 sinh(ϒ/2)] ; (36)

exp[β(σ )] = 1√
cosh(ϒ/2 + iC1)

× exp

[
C3 − α2

0

2
(
1 + γ 2

0

)γ (σ )

]
. (37)

If the initial parameter γ0 > 0, then the real part of γ (σ ),
obviously, is larger than zero for all time values σ , and, thus,

the state (23) is normalizable. Clearly, if ψ obeys the time-
dependent Schrödinger equation (22), then its norm remains
constant for all time values:

d

dσ
〈ψ |ψ〉os = 〈ψ̇ |ψ〉os + 〈ψ |ψ̇〉os

= i

h̄
[〈Hosψ |ψ〉os − 〈ψ |Hosψ〉os] = 0. (38)

An explicit normalization check of the solutions (30) to (34)
is sketched in Appendix A.

We extend the coherent state (23) to four dimensions

ψ = Cψ0, ψ0 = exp[a · u − �u2/2], u ∈ R4, (39)

where

a(σ ) = a(0)√
1 + γ 2

0

1

cosh(ϒ/2 + iC1)
, �(σ ) = �� γ (σ );

(40)

C(σ ) = (�R)2

π2
exp

[
− A2

4�R

]
, A2 =

4∑
k=1

(ak + a∗
k )2. (41)

Further below, we set the disposable localization parameter
γ0 = 1, for simplicity.

It should be noticed that, also for negative values of the
energy E, coherent states of type (23) can be found which have
a time-dependent complex localization parameter. However,
the corresponding uncertainty product is minimal only for a
constant value � = �R:

�u�pu = h̄

2

√(
1 + �2

I

/
�2

R

)
, E < 0. (42)

This product is minimal, if �I = 0, which is possible for all
time values only if �R = � = 4µ |�|/h̄.

The coherent states for elliptic orbits with negative E, which
corresponds to (39), can be readily written down by means of
the formula for the one-dimensional harmonic oscillator (see,
e.g., [7]):

ψ(u,σ ) = �

π
exp[−iωσ/2 − a2(σ )/(4�)]

× exp[a(σ ) · u − �u2/2]; (43)

a(σ ) = a(0) exp[−iωσ ];

� = 4µω/h̄; ω2 = (−E)/(2µ); E < 0.

Wave function (43) is equivalent to the second quantization
form given in [3].

IV. PSEUDOTIME AND REAL TIME

The time parameter in the Schrödinger equation (23), σ ,
and the pseudofrequency � have dimensions s/m and m/s,
respectively. Real time t , on the other hand, is connected
with the Hamiltonian Hu, the transformed version of the
Hamiltonian of the Kepler problem. To transfer pseudotime
to real time, different schemes can be found in the literature.
In [3], one finds the recipe t = 〈r〉 σ , which gives the desired
classical mean values, but somehow comes out as deus ex
machina. In the following, we choose the velocity operator as
observable.
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We define time propagation of the position operator
by means of the commutator with the Hamiltonian. Thus,
pseudotime σ and real time t are defined through

wi ≡ dxi

dσ
= i

h̄
[Hos,xi(u)],

(44)

vi ≡ dxi

dt
= i

h̄
[Hu,xi(u)], i = 1,2,3.

Evaluating the commutators, one obtains the velocity operators
in the form

w1 = −i
h̄

2µ

[
u3

∂

∂u1
− u4

∂

∂u2
+ u1

∂

∂u3
− u2

∂

∂u4

]
;

w2 = −i
h̄

2µ

[
u4

∂

∂u1
+ u3

∂

∂u2
+ u2

∂

∂u3
+ u1

∂

∂u4

]
; (45)

w3 = −i
h̄

2µ

[
u1

∂

∂u1
+ u2

∂

∂u2
− u3

∂

∂u3
− u4

∂

∂u4

]
;

vi = 1

r
wi, r = u2

1 + u2
2 + u2

3 + u2
4, (46)

where, for the latter equation, we applied (20) which im-
plies that the commutators [xi,X] vanish. As is observed,
the velocity operator v does not depend on the constraint
operator X.

With the aid of (21), we easily find the normalization
constants of the coherent state (39) for the two metrics

C2
os = �2

R

π2
exp[−A2/(4�R)] and

(47)

C2
u = 4�4

R

π2

exp[−A2/(4�R)]

A2 + 8�R

.

Clearly, the velocity operators wi and vi are Hermitian in
the corresponding metrics. The expectation values 〈wi〉os and
〈vi〉u amount to the same integrals which differ only by the
normalization constants

〈vi〉u = 1

S
〈wi〉os ; S =

(
Cos

Cu

)2

= A2 + 8�R

4�2
R

. (48)

Through A2 as defined in (41) and (40), and through �R(σ ) ≡
�� γR(σ ), the scalar function S becomes σ dependent and
has the dimension of a length. Thus, we obtain the following
connection between σ and t :

dt = S(σ ) dσ. (49)

V. IMPLEMENTING INITIAL CONDITIONS

We have in mind an orbit in the [x1,x2] plane with 〈x3〉 = 0.
The eight real parameters µk, νk , defined through ak(0) =
µk + i νk , k = 1, . . . 4, will be determined by identifying,
at zero time, the mean values of position and velocity with
the initial point r0 = {r0,0,0}, v0 = {0,v0,0}. Anticipating
hyperbolic orbits, the above point is a vertex and implies
that our coordinate axes coincide with the principal ones of
a hyperbola branch. The mean values are practically sharp in
the case of a macroscopic two-body system, see Sec. VIII.
As an additional condition, we require, as was done in [3],
that the mean value of the constraint operator X vanishes at

time σ = t = 0. Altogether, this poses seven conditions for
the eight real parameters. As a matter of fact, the complex
parameters of the state (39) will be fixed up to a KS phase �

defined in (3). As it turns out, the mean orbit will stay in the
[x1,x2] plane for all time values, and also, if 〈X〉 = 0 at zero
time, then this will transfer to all time values. Furthermore, as
is proved in Appendix B, Sec. III, the mean angular momentum
is constant in time. A dimensionless, time-dependent, function
g = 4�R/A2 will emerge, see (56) below, which characterizes
the quantum corrections to the classical orbit.

The calculation of mean values is based on parameter
differentiation and integration. Factors ui , r , and 1/r are
replaced in the integrand as

ui → ∂

∂ai

G(A2,�R), r →
(

− ∂

∂�R

G(A2,�R)

)
,

1

r
→

∫ ∞

�R

dsG(A2,s), (50)

where

G(A2,�R) =
∫

du1du2du3du4ψ
∗
0 ψ0 ≡ 1/C2

os. (51)

For example,

〈x1〉u = 2C2
u

∫
du1du2du3du4r(u)(u2u3 − u2u4)ψ∗

0 ψ0

= 2C2
u

(
− ∂

∂�R

)(
∂

∂a1

∂

∂a3
− ∂

∂a2

∂

∂a4

)
G(A2,�R).

(52)

We used MATHEMATICA [13] to support the partially involved
algebraic manipulations. In Appendix B we give more details.

We find the following for the mean values of position and
velocity:

〈x1〉u = ξ [(a1 + a∗
1 )(a3 + a∗

3 ) − (a2 + a∗
2 )(a4 + a∗

4 )],

〈x2〉u = ξ [(a1 + a∗
1 )(a4 + a∗

4 ) + (a2 + a∗
2 )(a3 + a∗

3 )], (53)

〈x3〉u = 1
2ξ [(a1 + a∗

1 )2 + (a2 + a∗
2 )2 − (a3 + a∗

3 )2

−(a4 + a∗
4 )2],

〈v1〉u = −iη{[a1a3 − a∗
1a

∗
3 − a2a4 + a∗

2a
∗
4 ]�R

−i[(a1 + a∗
1 )(a3 + a∗

3 ) − (a2 + a∗
2 )(a4 + a∗

4 )]�I },
〈v2〉u = −iη{[a2a3 − a∗

2a
∗
3 + a1a4 − a∗

1a
∗
4 ]�R

−i[(a2 + a∗
2 )(a3 + a∗

3 ) + (a1 + a∗
1 )(a4 + a∗

4 )]�I },
〈v3〉u = −i

1

2
η{[a2

1 − (a∗
1 )2 + a2

2 − (a∗
2 )2 − a2

3 + (a∗
3 )2

−a2
4 + (a∗

4 )2]�R − i[(a1 + a∗
1 )2 + (a2 + a∗

2 )2

−(a3 + a∗
3 )2 − (a4 + a∗

4 )2]�I }, (54)

〈X〉os = 1

2�R

[a1a
∗
2 − a∗

1a2 + a∗
3a4 − a3a

∗
4 ], (55)

where

ξ = 1

2�2
R

1 + 4g

1 + 2g
, η = h̄

µA2(1 + 2g)
, g = 4�R

A2
. (56)

The dimensionless function g characterizes the quantum
fluctuations of the classical orbit. This is seen from the
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probability density of the coherent state (39) which is localized
at um = (a + a∗)/(2�R) with a mean spread �u of the order
of

√
1/�R . Thus, the distance operator r = u2 is localized at

rm = A2/(4�2
R) with a spread of the order 1/�R , which tells us

that g = 1/(rm�R) is the mean spread in units of rm. It follows
from (28) and (35) with γ0 = 1 that 1/�R = cosh(ϒ)/��,
which, by definition (27), is proportional to h̄ and vanishes in
the classical limit h̄ → 0.

At time σ = 0, the imaginary and real parts of � amount to
�I (0) = 0 and �R(0) = ��, respectively. The initial parame-
ters µi and νi , with ai(0) = µi + iνi , are conveniently written
in terms of plane polar coordinates as follows:

µ1 = ρ12 cos(ϕ12), µ2 = ρ12 sin(ϕ12),

µ3 = ρ34 cos(ϕ34), µ4 = ρ34 sin(ϕ34),
(57)

ν1 = R12 cos(φ12), ν2 = R12 sin(φ12),

ν3 = R34 cos(φ34), ν4 = R34 sin(φ34).

Inserting (57) into (53) to (55), we obtain at time σ = t = 0

r0 = 〈x1(0)〉u = 4ξ0ρ12ρ34 cos(ϕ12 + ϕ34),

0 = 〈x2(0)〉u = 4ξ0ρ12ρ34 sin(ϕ12 + ϕ34),

0 = 〈x3(0)〉u = 4ξ0
(
ρ2

12 − ρ2
34

)
/2,

0 = 〈v1(0)〉u = 2η0[ρ12R34 cos(ϕ12

+φ34) + ρ34R12 cos(ϕ34 + φ12)],

v0 = 〈v2(0)〉u = 2η0[ρ12R34 sin(ϕ12 + φ34) (58)

+ ρ34R12 sin(ϕ34 + φ12)],

0 = 〈v3(0)〉u = 2η0[ρ12R12 cos(ϕ12 − φ12)

− ρ34R34 cos(ϕ34 − φ34)],

0 = 〈X(0)〉os = − i

�
[R12ρ12 sin(φ12 − ϕ12)

−R34ρ34 sin(φ34 − ϕ34)],

where ξ0 = ξ (σ = 0) and η0 = η(σ = 0).
Since 〈x(0)3〉u = 0, we infer from (58) that

ρ12 = ρ34 ≡ ρ0. (59)

Furthermore, 〈x(0)2〉u = 0 and r0 ≡ 〈x(0)1〉u > 0 imply ϕ34 =
−ϕ12. And 〈v(0)1〉 = 〈v(0)3〉 = 〈X(0)〉 = 0, together with the
assumption v0 > 0, gives rise to the unique conditions

R34 = R12 ≡ ν ρ0, φ34 = −ϕ12 + π/2,
(60)

φ12 = ϕ12 + π/2, ϕ34 = −ϕ12,

where, instead of R12, we introduce the dimensionless param-
eter ν > 0, which will turn out to be related to the eccentricity
e. Therewith, the right-hand side expressions of (58) imply the
relations

〈r(0)〉u = (r0,0,0), r0 = 4ξ0ρ
2
0 ,

(61)
〈v(0)〉u ≡ (0,v0,0), v0 = 4η0νρ

2
0 .

From the mean initial condition we infer, in particular,

ρ2
0 = r0γ

2
0 �2

�

2

1 + 2g0

1 + 4g0
, g0 = g(σ = 0). (62)

With the notation � = ϕ12, the parameters µi and νi , as given
in (57), attain the special form

µ1 = ρ0 cos(�), µ2 = ρ0 sin(�), µ3 = ρ0 cos(�),

µ4 = −ρ0 sin(�); ν1 = −νρ0 sin(�), (63)

ν2 = νρ0 cos(�), ν3 = νρ0 sin(�), ν4 = νρ0 cos(�).

We combine (63), ak(0) = µk + iνk , and (36) for the time-
dependent coefficients ak(σ ) in order to write

a1(σ ) = ρ0[cos(�) − iν sin(�)]

cosh(ϒ/2) + iγ0 sinh(ϒ/2)
,

a2(σ ) = ρ0[sin(�) + iν cos(�)]

cosh(ϒ/2) + iγ0 sinh(ϒ/2)
,

(64)

a3(σ ) = ρ0[cos(�) + iν sin(�)]

cosh(ϒ/2) + iγ0 sinh(ϒ/2)
,

a4(σ ) = ρ0[− sin(�) + iν cos(�)]

cosh(ϒ/2) + iγ0 sinh(ϒ/2)
.

The open phase � is related to the rotation invariance (3)
of the KS transformation. This can be seen by considering the
relevant exponent of the wave function (39), a(�) · u. Inserting
(64) for a and applying the KS rotation u = T(−�)u′ one
observes that

a(�) · u = a(�) · [T(−�)u′] = a(0) · u′. (65)

As a consequence, the mean values of operators consisting of
x(u) or v(u) and taken with the state (39) do not depend on the
KS phase.

When the time-dependent parameters ak(σ ), see (64), are
assigned to the mean values (53) to (55), it turns out that the
orbit is confined to the (x1,x2) plane for all time values with

〈x3(σ )〉 = 〈v3(σ )〉 = 0 for σ � 0, (66)

and also the mean constraint operator reads 〈X(σ )〉os = 0 for
σ � 0. Setting now the arbitrary parameter γ0 = 1, and with
the aid of the abbreviations

ξ1 ≡ ξ1(σ ) = (1 + 4 g(σ ))(1 + 2 g0)

(1 + 2 g(σ ))(1 + 4 g0)
,

(67)

η1 ≡ η1(σ ) = h̄

µ[1 + 2 g(σ )]
, γ0 = 1,

we obtain after straightforward simplifications

x(σ ) ≡ 〈x1(σ )〉u = ξ1

2
r0[1 + ν2 + (1 − ν2) cosh(ϒ)],

x(0) = r0; y(σ ) ≡ 〈x2(σ )〉u = ξ1r0ν sinh(ϒ), (68)

y(0) = 0; z(σ ) ≡ 〈x3(σ )〉u = 0;

vx(σ ) ≡ 〈v1(σ )〉u = ��

2
η1

(1 − ν2) sinh(ϒ)

1 − ν2 + (1 + ν2) cosh(ϒ)
,

vx(0) = 0; vy(σ ) ≡ 〈v2(σ )〉u (69)

= ��η1
ν cosh(ϒ)

1 − ν2 + (1 + ν2) cosh(ϒ)
, vy(0) = v0;

vz(σ ) ≡ 〈v3(σ )〉u = 0.
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We list further mean values needed below:

S−1 =
〈

1

r

〉
u

= r0Z(ϒ)(1 + 2 g)
1 + 2g0

1 + 4g0
, (70)

Z(ϒ) = 1
2 [1 − ν2 + (1 + ν2) cosh(ϒ)], (71)

〈r〉u = S
1 + 6g + 6g2

(1 + 2g)2
, (72)

g = 4�R

A2
= g0

cosh(ϒ)

Z(ϒ)
, g0 = 1

r0��

1 + 4g0

1 + 2g0
. (73)

Obviously,

S = 〈r〉u[1 + O(g)] and g0 = θ

r0��

, 1 � θ � 2, (74)

which in the limit of vanishing quantum corrections, g0 → 0,
supports the recipe dt = 〈r〉 dσ as was proposed in [3].

VI. ELEMENTS OF HYPERBOLIC ORBIT

In this section, we anticipate a hyperbolic orbit and work
out its elements, including quantum corrections. Moreover,
a kind of Kepler equation is derived from the connection
between pseudotime and real time. From the explicit mean
values of the velocity components, in Sec. VI D, the hodograph
is established and related to recent discussions [14] concerning
one of Feynman’s “Lost Lectures.” Strictly, the orbit is
hyperbolic only in the macroscopic limit h̄ → 0. With the
quantum parameter g �= 0, we actually describe the orbit by a
family of osculating hyperbolas.

A. Semimajor axis and eccentricity

We show that the mean coordinates x and y, defined by (67)
and (68), lie on a hyperbola with axes a and b. This is true
even with quantum corrections and also applies for parameters
γ0 �= 1 which is not shown. However, the axes depend on the
quantum correction g, which means, they are time dependent,
in principle. We compare the results (68) with the parametric
representation of a hyperbolic orbit as given on p. 43 of [15],
with notation ξ → ϒ ,

x = a[e − cosh(ϒ)],
(75)

y = a
√

e2 − 1 sinh(ϒ), ϒ ∈ R,

and readily connect our parameters ν and r0 with the
eccentricity e > 1 and the semimajor axis a of the hyperbola
[the origin of the coordinates (x,y) is the center of the heavy
mass, the focus of the given hyperbola branch]. From the above
x coordinate, one finds

ν2 = e + 1

e − 1
and r0 = a(e − 1)/ξ1, e > 1. (76)

When this is inserted into the expression of y in (68), one
verifies the second equation of (75). Clearly, (75) implies the
canonical equation for a hyperbola,

X2

a2
− Y 2

b2
= 1, with X = x − e a, Y = y,

(77)
b2 = a2(e2 − 1),

which also contains the right-hand side branch:

x = a[e + cosh(ϒ)],
(78)

y = a
√

e2 − 1 sinh(ϒ), ϒ ∈ R.

With respect to the Cartesian system (X,Y ), the vertices of the
two branches lie at ±a, and the two focal points at F1,2 = ∓e a.

By the definition in (60), the parameter ν is constant in
time and, thus, is the eccentricity e. The axes a and b, on the
other hand, depend on the function ξ1(σ ) defined in (67). Since
g and 1/ξ1 monotonically decrease with increasing σ and g,
respectively, the semimajor axis is monotonically decreasing
from a(0) = r0/(e − 1) to an asymptotic value as follows:

a(0) � lim
σ→∞ a(σ ) = a(0)

1 + 2g∞
1 + 4g∞

1 + 4 g0

1 + 2 g0
� a(0)

1 + 2g0

1 + 4g0
,

(79)

g∞ = g0
e − 1

e
.

If the quantum parameter g0 is small, then the axis a,
practically, is constant; quantum corrections are quantitatively
discussed in Sec. VIII.

B. Choosing the energy parameter E

The parameter E is an energy eigenvalue of the stationary
Schrödinger equation (13). We choose it in such a way that
µ/2(v2

x + v2
y) − κ〈1/r〉u is constant in time, up to quantum

corrections of order g. We remark that v2
x + v2

y = 〈v2
1 +

v2
2〉u[1 + O(g0)], see (B16) and (B18). Using (67), (69), (70),

(71), (76), and (27), one obtains

Ekin = 1

2
µ
(
v2

x + v2
y

) = �2
�η2

1
1 + e cosh(ϒ)

8[e cosh(ϒ) − 1]

= E
1 + e cosh(ϒ)

e cosh(ϒ) − 1

1

(1 + 2g)2
; Epot = −κ〈1/r〉u

= −κ
e − 1

r0[e cosh(ϒ) − 1]

1 + 4g0

(1 + 2g)(1 + 2g0)
. (80)

We set

E = (e − 1)
κ

2r0
(81)

and obtain

Ekin + Epot = E + �E,

�E (82)

= −4E
g0(1 + 2g) + g(1 + 2g0)[−g + e(1 + g) cosh(ϒ)]

(1 + 2g)2(1 + 2g0)[e cosh(ϒ) − 1]
.

It is seen that �E/E is of the order of g, and the setting (81)
for E does not depend on time, as required. For negligible g,
one obtains E = κ/(2a), which is a well-known formula in
the Kepler problem, see p. 87 of [16].

The contribution of the constraint operator in Hu, see (18),
is calculated in Appendix C with the result

〈HX〉u ≡ h̄2

8µ

〈
1

r2
X2

〉
u

= −g0E
e(e − 1)

[e cosh(ϒ) − 1]2
K(g),

K(g) = 1 − g + g exp[−1/g]

1 + 2g
. (83)

042101-7
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This tells that the relative correction of the constraint to the
energy, HX/E, is of order g0 for small g. The function K(g),
g � 0, is monotonically decreasing, when g increases with
K(g) � K(0) = 1 and the asymptotic behavior amounts to

K(g)
g→∞−→ 1/(4g2).

One can show, with some effort, that the mean-square
deviation of the energy is of order g: (�Hu)2/E2 = O(g).

We conclude this subsection by deriving from the previous
results a further standard-type relation between eccentricity,
angular momentum L = µ r0 v0, and energy parameter E,

e =
√

1 + 2EL2

µκ2
(1 + 2g0)2, (84)

which for g0 → 0 corresponds to the result on p. 41 of [15].
To prove this, we use (27), (67), (69), and (76) and express the
initial speed v0 = vy(σ = 0) as follows:

v0 = ��η1(0)ν/2 = 2�ν/(1 + 2g0). (85)

After squaring, introducing L = µr0v0, and setting r0 =
(e − 1)κ/(2E) from (81), we obtain

v2
0 ≡ L2

µ2r2
0

= 4L2E2

µ2κ2(e − 1)2

!= 4�2ν2 1

(1 + 2g0)2

= 2
E

µ

e + 1

e − 1

1

(1 + 2g0)2
, (86)

which amounts to the following relation which is equivalent
to (84):

e2 − 1 = 2EL2

µκ2
(1 + 2g0)2. (87)

C. Kepler’s equation in the hyperbolic case

According to (48) and (49), the connection between
pseudotime σ and real time t is mediated by the function
S. With the aid of (70), (71), (73), and (76), we can write

dt = S(σ )dσ

= r0
1 + 2g0

1 + 4g0

[
e cosh(ϒ) − 1

e − 1
+ 2g0 cosh(ϒ)

]
dσ. (88)

Integration, with t = σ = 0, leads to

t = r0

2(e − 1)�
{−ϒ + [e + 2g0(e − 1)] sinh(ϒ)}1 + 2g0

1 + 4g0
.

(89)

In the limit g0 → 0, we get

2�

a
t = [−ϒ + e sinh(ϒ)], ϒ = 2�σ, (90)

which is consistent with [15] (see p. 43). Equation (90) is
analogous to Kepler’s equation in the case of elliptic orbits,

M = ϒ − e sin(ϒ), e < 1, (91)

where M and ϒ denote the mean and eccentric anomaly,
respectively. The inversion of (90) for ϒ = ϒ(t) encounters
similar difficulties as the elliptic case, because of the “hetero-
geneous nature of arc and sinus” as Kepler remarks [17].

F1 F2

P

H

Z

FIG. 1. Hodograph of a hyperbolic orbit. The hodograph of the
given hyperbola branch covers only part of the circle (solid curve). F1

is the center of the heavy mass in the Kepler problem, F2 is the second
focus point, P indicates an arbitrary location of the “planet,” and
the corresponding (rotated) velocity is indicated by the arrow

−→
F1H ,

which is vertical to the true velocity at P , in analogy to Maxwell’s
construction of the hodograph for an elliptic orbit [18]. The dashed

line PZ is tangent at P and the bisecting normal to
−→

F1H . The dashed
lines through the circle center are parallel to the asymptotes of the
hyperbola.

D. Hodograph

The hodograph is the curve traced out by the end points
of the velocity vectors when drawn from a fixed origin. As
was shown by Maxwell in [18], the hodograph of the Kepler
motion is a circle. By relating the hodograph to the elliptic
orbit by means of Kepler’s laws, Maxwell derived the law
of gravitation. Later on, Feynman apparently used Maxwell’s
design, Fig. 16 in [18], in one of his “Lost Lectures,” in order to
construct the elliptic orbit from the hodograph in an elementary
geometric way [14]. As was shown in [19–21], the hodograph
of a hyperbolic orbit is a circle too.

In the following, we prepare our results for drawing the
hodograph in Fig. 1. In the expressions of the velocity
components (69), we insert �� from (27), η1 from (67), and
ν2 from (76) and obtain, neglecting quantum corrections,

vx = − 2� sinh(ϒ)

e cosh(ϒ) − 1
; vy = 2�

√
e2 − 1 cosh(ϒ)

e cosh(ϒ) − 1
. (92)

It is elementary to show that

v2
x + (vy − v0)2 = 4�2

e2 − 1
, v0 = 2e�√

e2 − 1
. (93)

This proves that the hodograph is a circle, or part of it. In
his Fig. 16, Maxwell [18] combined the hodograph and the
orbit. To this end, he mapped the velocities to space vectors,
v → R, by scaling with the constant of motion f , which here
in the hyperbolic case is given as

v = f R; f = �

a
√

e2 − 1
. (94)

The equation for the hodograph now attains the form

R2
x + (Ry − R0)2 = (2a)2, R0 = 2ea. (95)
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We are still free to orient the scaled velocity space with
respect to orbit space. We rotate the vectors R clockwise
by π/2: {R1,R2} → {R2, −R1}, so that the rotated vector
is perpendicular to the velocity; simultaneously, we have to
shift {0,R0} → {R0,0}. As a consequence, the center of the
hodograph, with radius 2a, falls into the focus F2 at (0,ea).
This is in full analogy to Maxwell’s method in the case of
elliptic orbits [18].

To find the speed at an orbit point P , one draws a line from
P to the focus F2, which intersects the circle at point H (see

Fig. 1). The vector
−→

F1H is normal to the tangent at P , and
is, therefore, the (scaled) velocity vector we are looking for;
by construction, it is normal to the true velocity. To see that
−→

F1H is normal to the tangent, one proves that the triangles
F1ZP and ZHP are congruent: (1) they have in common
the side PZ; (2) they have equal angles � F1PZ = � ZPH ,
since the tangent bisects the focus lines (see, e.g., [22]); (3)
the lengths PH = PF1. The latter follows from the hyperbola
property that the difference of the distance between P and
the two focus points PF2 − PF1 = 2a. Now, by construction,
F2H = 2a and, therefore, PF2 = 2a + PH = 2a + PF1.

By applying elementary geometry, one can construct the
hyperbola from the hodograph, see also [14]. According to
Fig. 1, one carries out the following steps: (1) draw a circle
with radius 2a around some point, F2; (2) choose a second
point F1 at distance 2ea > 2a from F2; (3) draw a line through
F2 and some arbitrary point H on the circle; (4) draw the line
F1H with midpoint Z; then, the normal in Z and the line F2H

intersect each other in a hyperbola point P .

VII. PARABOLIC LIMIT

The limit of eccentricity e → 1 leads to a parabolic
orbit, which constitutes a separatrix between elliptic and
hyperbolic orbits and is expected to be particularly sensitive
to fluctuations. As it turns out, g diverges for e → 1 and leads
to nonphysical velocity components vx and vy , together with
a singular relation between pseudotime and real time. As a
matter of fact, the constraint contribution to the energy, HX, is
not negligible in the parabolic limit, indicating the limitation
of our wave function (39) which fulfills the constraint in the
mean only. In the next section we discuss a necessary condition
which is consistent with our approximate treatment of the
constraint. By (27) and (81), with e → 1, the energy parameter
E vanishes as does the pseudofrequency �:

E = κ

2r0
(e − 1); � ≡

√
E

2µ
= 1

2

√
κ

r0µ

√
e − 1, (96)

which implies, since ϒ = 2�σ ,

cosh(ϒ) = 1 + κσ 2

2r0µ
(e − 1)[1 + O(e − 1)];

(97)

sinh(ϒ) = σ

√
κ

r0µ

√
e − 1[1 + O(e − 1)].

Furthermore, one infers from (71) and (73) that g gets infinite
in the parabolic limit:

g = g0
1

1 + κ1σ 2
[1 + O(e − 1)],

(98)

g0
e→1−→ 2

r0��

= κ2√
e − 1

,

where

κ1 = κ

2r0µ
, κ2 = h̄√

r0µκ
. (99)

The above limits lead to the following asymptotic coefficients
of the position and velocitiy components [see (67)]:

ξ1
e→1−→ 1, η1

e→1−→ h̄

2µg
, ��η1

e→1−→ κ

h̄
(1 + κ1σ

2)(e − 1).

(100)

In view of (97) and (100), the coordinates x and y, defined
in (68), attain the following forms in the parabolic limit:

x = r0 − κ

2µ
σ 2, y =

√
2κr0

µ
σ, (101)

which implies the standard parabola equation x = x(y) with

x = r0

[
1 − 1

4r2
0

y2

]
. (102)

This result holds true with the inclusion of quantum correc-
tions.

The parabolic limit of “Kepler’s” equation (90), which
includes quantum corrections, at first leads to

t = r0

[
1 + 4g2

0

1 + 4g0

]
σ + κ

6µ

1 + 2g0

1 + 4g0
σ 3. (103)

Without quantum corrections, with g0 = 0, one would obtain
the classical result (see p. 45 of [15], or p. 91 of [23]), where
scaled parameters are used instead of σ . However, since g0

diverges for e → 1, the time relation gets singular in the linear
term of σ .

In the case of the velocity components, defined in (69), one
obtains in the parabolic limit

vx → 2κ1σ

1 + κ1σ 2

1

1 + 2g
, vy → 2

√
κ1

1 + κ1σ 2

1

1 + 2g
. (104)

Now, by (98) the function g diverges proportional to 1/
√

e − 1
which causes vx,y to vanish. A further nonphysical limit occurs
in the relation (87), where the right-hand side, due to the factor
(2 + 2g0)2, converges to a finite value in the limit e → 1,
whereas the left-hand side vanishes. Indeed, the parabolic limit
signals that the constraint becomes effective beyond the mean
value approximation adopted.

VIII. QUANTUM CORRECTIONS AND CONSTRAINT

The relevance of the constraint in the parabolic limit can
be directly seen by examining the contribution 〈HX〉u of
the constraint to the energy. As stated in (83), the relative
contribution can be written as

hX ≡ 〈HX〉u/E = −g0J (ϒ)K(g),
(105)

J (ϒ) = e(e − 1)/[e cosh(ϒ) − 1]2.
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At zero time, with ϒ = 0, one derives the following limiting
behavior for e → 1:

J (ϒ) → 1/(e − 1), K(g0) → 1/
(
4g2

0

) → const. (e − 1),

(106)

which implies that the product JK stays finite for e → 1.
As a consequence, |hX| diverges with g0, i.e., proportional
to 1/

√
e − 1. The smallness of |hX|, however, is a necessary

condition underlying our calculations.
It is convenient to express g0 in terms of the energy E. By

using the definition of g0 in (74) and of �� in (27), and taking
into account that the elliptic case with E � 0 leads to the same
quantum parameter g0 with E → −E, see [24], we write

g0 = θE

2

√
Eh̄

|E| , Eh̄ = h̄2

2r2
0 µ

, 1 � θE � 2, E ∈ R.

(107)

The constant Eh̄, clearly, is a microscopic parameter. As an
example, consider a space vehicle which after engine stop
starts its flight at a distance r0 = 107 m from the Earth center
with mass µ = 103 kg, then Eh̄ ≈ 10−86 J. This appears to be
small beyond physical imagination: an electron which would
be shifted by 1 Å in the Earth field at the distance r0 would
cause a change in potential energy �E ≈ 10−40 J, which
practically is infinitely larger than Eh̄. However, as is discussed
below, the smallness of g0 does not imply negligible |hX|.

On the other hand, in the case of the hydrogen atom being in
a state with principle quantum number n, the distance amounts
to r0 = n2aB (distance between position of maximal radial
probability density and origin), where aB is the Bohr radius.
With the electron mass µ, one gets Eh̄ = 3.40/n4 eV, and
E = En = −13.6/n2 eV. This gives rise to g0 = 0.50θn/n,
where the indeterminacy parameter θn can be easily obtained
by solving the third equation of (73) for g0. For n = 1, one
finds g0 = 0.81, and for the experimentally accessible Rydberg
state with n = 72, see [25], g0 = 0.007.

In the following, we derive a criterion for the smallness
of |hX|. By definition (105), and since K(g) � 1, we have
the upper bound hmax := g0e/(e − 1) � |hX|. We express the
eccentricity e by the energy E using (81) and (107) to obtain

hmax =
√

Eh̄

E

(
1 + EP

E

)
, EP = κ

2r0
> 0, E > 0. (108)

To estimate a lower limit Emin which corresponds to hmax = 1,
we set Emin = ε EP and solve for ε:

1√
ε

(
1 + 1

ε

)
=

√
EP

Eh̄

. (109)

Assuming EP /Eh̄ � 1, we get ε → (Eh̄/EP )1/3, and, thus,
the following criterion for the smallness of |hX|:

E � Emin =
(

Eh̄

EP

)1/3

EP . (110)

For the above example of the space vehicle, we find Emin ≈
2 × 10−3 eV ≈ 3 × 10−22 J. We note that, when |hX| is small,
also the relative energy deviation |�E|/E < in (82) has a
small magnitude, and, on the other hand, the latter diverges
together with hX.

In the case of elliptic orbits with E < 0 and e < 1,
the corresponding constraint contribution is |hX| = (1 − e)
g0K(g)/(1 + 2 g)/[1 − e cos(ϒ)]2 [24] (without the addi-
tional factor e in the numerator). We get the same expression
for Emin as in (110), and the criterion |E| � Emin. Obviously,
if |E| � Emin, then we also have |E| � Eh̄ and, therefore, the
quantum parameter |g| is much smaller than 1, too.

In the case of the hydrogen atom in a state with principal
quantum number n, one finds Emin = 13.6 n−8/3 eV. This tells
us that the criterion (110), certainly, is not fulfilled in the
ground state with n = 1. For general quantum number n, the
condition |En| � Emin amounts to n2/3 � 1. For the Rydberg
state considered in [2] with n = 40, one gets 402/3 ≈ 11.7,
which is not impressively larger than 1. Thus, the present
theory, which deals approximately with the constraint, cannot
be safely applied to this state. Nauenberg’s theory [2] of
Rydberg states, from the outset, is confined to the original
configuration’s space x ∈ R3 and, thus, is free of a constraint.

There are, of course, manifold perturbations to the Kepler
orbit of a near-Earth artificial satellite, such as, e.g., oblateness
of the Earth, higher terms of the Earth’s gravitational field,
atmospheric drag, radiation pressure, and gravitational force of
the Moon and Sun (see [26]). These effects undermine a sharp
definition of the energy E defined in (81). In praxis, we may
define the fuzziness of E by the uncertainty of measuring the
position and velocity of a satellite. For near-Earth satellites one
has δr ≈ 1 m and δv ≈ 0.5 × 10−4 m/s [27]. If we suppose an
exact parabolic orbit in the case of our space vehicle example,
we find a measurement uncertainty of the energy δE ≈ 4 ×
103 J, which is far above Emin ≈ 10−22 J.

IX. FLUCTUATIONS AND UNCERTAINTY PRODUCTS

In this section, we discuss the msrd of position and velocity
components, which are calculated in Appendix B, together
with the position-momentum uncertainty products. As it turns
out, the results are similar to the corresponding ones of a
propagating Gaussian wave packet in free space, insofar as
the msrd of the velocity components stay finite in the limit
t → ∞, whereas the msrd of the space components increase
linearly at sufficiently large time. However, as will be seen,
the scaling factors behave differently.

In view of (B6) and (B9) we have for all three space
components the following result:

(�xi)
2 = 2g0r

2
0 f0(ϒ),

(111)

f0 = cosh(ϒ)
e cosh(ϒ) − 1

e − 1
[1 + O(g0)].

For large ϒ > 0, the function f0(ϒ) is conveniently expressed
in terms of the real time t . To this end, we make use of the
property sinh(ϒ) = cosh(ϒ)[1 + O(exp(−2ϒ))]. Then, using
“Kepler’s” equation (90), we can write for large ϒ

cosh[ϒ] ≈ sin[ϒ] ≈ 2(e − 1)�

er0
t, (112)

which leads to (neglecting g0 as compared to 1)

f0 = 2

e
τ [2(e − 1)τ − 1] ≈ 4

e − 1

e
τ 2, τ = �

r0
t � 1.

(113)
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Thus, for sufficiently large time, we obtain using (107)

�xi = 2r0

√
e − 1

e

√
Eh̄

E
τ, E > 0, τ � 1. (114)

And in view of (27), we can also write

�xi = r0

√
e − 1

e

h̄

µr2
0

t. (115)

For comparison, in the case of a spreading Gaussian wave
packet in free space, one finds in textbooks

(�xi)Gauss = d
√

1 + �2 ≈ d�, � = h̄

2µd2
t � 1, (116)

where d denotes the initial localization length of the wave
packet. Thus, the two expressions have the same structure with
the initial localization length d of the Gaussian case replaced
by the initial distance r0; we remind that the initial localization
length of a hyperbolic orbit is given by 1/�� = h̄/

√
8µE.

In the example of the space vehicle mentioned above, in
addition to µ = 103 kg and r0 = 107 m, we assume eccentricity
e = 2 and obtain, with the aid of (81), the energy E ≈
2 × 1010 J. Then, the condition τ � 1 is fulfilled for t � 1
h. On the other hand, in order that �x = 1 m, the travel time
should be about 1036 a, which precludes the observation of a
quantum effect in the given example.

The mean-square deviations of the velocity components are
stated in (B16), (B19), and (B21) in the form

(�vi)
2 = 2E

µ
g0 fi(ϒ)[1 + O(g0) + O(exp(−1/g0))],

i = 1,2,3. (117)

The functions fi , defined in Appendix B, are bounded
functions of ϒ , and, thus, of time t . The initial and asymptotic
values are

f1(0) = (19e − 18)/(e − 1), f2(0) = 4(3e − 1)/(e − 1),

f3(0) = e/(e − 1); (118)

f1(∞) = 4(e − 1)(e2 + 1)

e3
, f2(∞) = 4(e − 1)(3e2 − 1)

e3
,

f3(∞) = 2(e − 1)

e
. (119)

For the above example, the asymptotic values of �v are of the
order of 10−20 m/s.

For the uncertainty product, we use the relations (27), (73),
(111), and (117) to write

�πi ≡ �xi(µ�vi) = h̄
√

f0fi/2[1 + O(g0)], i = 1,2,3.

(120)

We remind that the above results are not allowed to be extended
to the parabolic limit e → 1. With the aid of (118) and with
f0(0) = 1, we find at time t = ϒ = 0, up to terms of order
O(g0),

π1 �
√

19/2h̄, π2 �
√

6h̄, π3 �
√

1/2h̄. (121)

In the limit of large eccentricities, the uncertainty product
π3(t = 0) differs from the quantum mechanical minimum, h̄/2,

only be a factor
√

2, and at e = 2, for instance, it is only by a
factor of 2 larger than the minimum.

X. CONCLUSIONS

The continuous transition from quantum mechanics to
classical physics was corroborated for the nonrelativistic
Hamiltonian of the H atom in the case of unbounded orbits
with positive energy. We supplemented studies in the negative
energy region which were carried out some time ago (see,
e.g., [2,3]) and which for macroscopic parameters verify that
elliptical orbits of negligible quantum corrections are solutions
of the Schrödinger equation. Analogously, in this article we
found quantum states which lead to hyperbolic orbits in the
macroscopic limit, provided the orbits are not too close to
a parabolic one. Practically, for instance, in space vehicle
dynamics, the corresponding energy interval is predicted to be
unaccessibly small in view of the measurement uncertainties.

The method used, basically, was that of [3]: The Hamilto-
nian was transformed by the Kustaanheimo-Stiefel transforma-
tion into a four-dimensional configuration space, and the wave
function was built from harmonic oscillator coherent states,
which, however, had to be newly constructed for imaginary
oscillator frequencies. Moreover, it was necessary to introduce
a modified scalar product in R4, in order to determine the
contribution of the constraint operator to the mean energy, and
also in view of our method to connect pseudotime and real time.
The constraint was taken into account within an averaging
approximation. The validity of the latter was examined from
the relative effect of the constraint on the mean energy. As a
necessary criterion for its smallness, we found that the energy
E should have the property

|E| �
(

Eh̄

|EP |
)1/3

|EP |, Eh̄ = h̄2

2 r2
0 µ

,

where µ denotes the reduced mass, r0 the initial distance of the
“planet,” and EP its initial potential energy. As an unpublished
result [24], the criterion also holds for negative values of the
energy when treated with the wave function (43) and thus can
be applied, in principle, to the bound states of the H atom,
in particular to Rydberg states. If the criterion is fulfilled,
then also quantum corrections to the classical orbit, as msrd
of position and velocity, are small, and this is true for most
macroscopic situations. In some energy interval around the
parabolic orbit, where the above condition is violated, the
present theory gives nonphysical results.

Our approach to connect pseudotime and real time is based
on the the equality of the mean velocity, 〈w(σ )〉os = 〈v(t)〉u,
at t = t(σ ). This equality gives rise to the same scalar relation
(49) for all three components with an outcome which is
consistent with the classical limit for hyperbolic orbits which
are not too close to the parabolic one. The choice of the velocity
as observable appears to be natural, since the function t(σ ) is
defined in the tangent space of the orbit. The function emerges
in the form of Kepler’s equation, see (90) and (91), and is
different for different orbits analogously to the path integral
treatment [5] where the reparametrization of time, t → σ , is
path dependent.
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Ideally, the coherent state (39), ψcoh, should fulfill the
Schrödinger equation in u space:

−h̄

i

∂ψ

∂t
= Huψ.

A full discussion of the error terms, when ψcoh is inserted
for ψ , requires one to examine both diagonal and nondiagonal
matrix elements with the aid of a suitable complete set of states,
which, however, is outside the scope of this paper. Restricting
to mean values with ψcoh, we have shown in Sec. VI B.,
that the contribution of the constraint part of Hu is negligible
for sufficiently small quantum parameter g. That leaves us to
examine (we use the definition (22) of ψcoh)

−h̄

i

〈
ψcoh

∣∣∣∣ ∂

∂t
ψcoh

〉
u

≡
〈
ψcoh

∣∣∣∣dσ

dt
Hosψcoh

〉
u

?=
〈
ψcoh

∣∣∣∣ 1

r(u)
Hosψcoh

〉
u

,

which can be justified in the limit g → 0, where the operator
1/r can be replaced by the mean value 〈1/r〉u in consistency
with the definition of S−1 = dσ/dt in (49) and with (70).
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APPENDIX A: NORMALIZATION OF COHERENT STATE

As a check of the explicit solutions (30) to (34), we calculate
the norm of ψ , as given in (23), by integration with respect to
u. This is done in the oscillator metric,

〈ψ |ψ〉os = C2
0 exp[β + β∗]

√
π

�R

exp

[
(a + a∗)2

4�R

]
. (A1)

From (35) to (37), one finds with the abbreviation D =
cosh2(ϒ/2) + γ 2

0 sinh2(ϒ/2)

A1 ≡ [γ + γ ∗]−1/2 =
[

D

2γ0

]1/2

,

A2 ≡ (a + a∗)2

4�R

= α2
0

γ0

cosh2(ϒ/2)

D
,

β + β∗ ≡ 2C3 − 1

2
log(B1) + B2, (A2)

B1 ≡ cosh(ϒ/2 + iC1) cosh(ϒ/2 − iC1) = D

1 + γ 2
0

,

B2 ≡ −α2
0(γ + γ ∗)

2
(
1 + γ 2

0

) = − α2
0γ0

1 + γ 2
0

1

D
.

From this, we obtain

A1√
B1

=
√

1 + γ 2
0

2γ0
; A2 + B2 = α2

0

γ0
(
1 + γ 2

0

) . (A3)

Combining the above results we arrive at

〈ψ |ψ〉os = C2
0

√
2π��

√
1 + γ 2

0

2γ0
exp

[
2C3 + α2

0

γ0
(
1 + γ 2

0

)
]

= C2
0

√
2π��

√
1 + γ 2

0

2γ0
= 1. (A4)

APPENDIX B: MEAN VALUES

1. Mean-square deviations of position components

We start with the calculation of

〈x2
1 〉u = C2

u 4
∫

du1 . . . du4 r(u) (u1u3 − u2u4)2 |ψ0(u)|2.
(B1)

After the u polynomial has been multiplied out, the compo-
nents ui of each monomial are replaced by the first rule of (50),
the factor r is dealt with by means of the second rule. This is
done with the aid of a short MATHEMATICA [13] program. The
result is

〈
x2

1

〉
u

= 1

4(A2 + 8�R)�4
R

( − 8�2
R(A2 + 8�R) + A2{−2(a1 + a∗

1 )(a2 + a∗
2 )(a3 + a∗

3 )(a4 + a∗
4 )

+ [(a1 + a∗
1 )2 + 2�R][(a3 + a∗

3 )2 + 2�R] + [(a2 + a∗
2 )2 + 2�R][(a4 + a∗

4 )2 + 2�R]}
+ 24�R{−2(a1 + a∗

1 )(a2 + a∗
2 )(a3 + a∗

3 )(a4 + a∗
4 ) + [(a1 + a∗

1 )2 + 2�R][(a3 + a∗
3 )2 + 2�R]

+ [(a2 + a∗
2 )2 + 2�R][(a4 + a∗

4 )2 + 2�R]}). (B2)

We subtract 〈x1〉2
u using (53) and (56) and obtain after some simplifications

(�x1)2 ≡ 〈x2
1

〉
u
− 〈x1〉2

u = 1

2(A2 + 8�R)2�3
R

{(A2 + 8�R

)(
A4 + 24A2�R + 64�2

R

) − 32�R[(a1 + a∗
1 )(a3 + a∗

3 )

−(a2 + a∗
2 )(a4 + a∗

4 )]2}. (B3)

We introduce g = 4 �R/A2 and replace (a1 + a∗
1 )(a3 + a∗

3 ) − (a2 + a∗
2 )(a4 + a∗

4 ) by 2〈x1〉u�2
R(1 + 2g)/(1 + 4g) to write

(�x1)2 = �1 + �2, �1 = 2(1 + 6g + 4g2)

g(1 + 2g)�2
R

, �2 = − 4g2

(1 + 4g)2

〈
x1

〉2
u
. (B4)
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To evaluate �1, we make use of (73), (35), and (76) to write

1

(�R)2g
= g0r

2
0
e cosh(ϒ) − 1

e − 1
cosh(ϒ)

(1 + 2g0)2

(1 + 4g0)2
, (B5)

which gives rise to

(�x1)2 = �1[1 + O(g0)] = 2g0r
2
0
e cosh(ϒ) − 1

e − 1
cosh(ϒ)[1 + O(g0)], (B6)

where the term �2 could be omitted since it is by a factor of g

smaller than �1.
For the two other components, we obtain similarly

(�x2)2 = 1

2(A2 + 8�R)2�3
R

{
(A2 + 8�R)

(
A4 + 24 A2�R

+ 64�2
R

) − 32�R[(a1 + a∗
1 )(a4 + a∗

4 )

+ (a2 + a∗
2 )(a3 + a∗

3 )]2}. (B7)

(�x3)2 = 1

2(A2 + 8�R)2�3
R

{
(A2 + 8�R)

(
A4 + 24A2�R

+ 64�2
R

) − 8�R[(a1 + a∗
1 )2 + (a2 + a∗

2 )2

− (a3 + a∗
3 )2 − (a4 + a∗

4 )]2
}
. (B8)

This allows for the analogous writing as (B4) with �1 being
the same for all three components:

(�xi)
2 = �1 − 4g2

(1 + 4g)2
〈xi〉2

u, i = 1,2,3. (B9)

Thus, we have for all three components the same result (B6).

2. Mean-square deviations of velocity components

In the following we derive the mean-square deviations
(msd) up to first order in g0 as stated in (117). For the
rather involved calculations we used the computer software
MATHEMATICA [13]. We remark that 0 < g � g0, so we
consider small order O(g) being equivalent with O(g0).

We start with the first component by using the operator w1

from (45), and apply partial integration

〈
v2

1

〉
u

= −C2
u

∫
du1 . . . du4r

[
1

r
w1ψ

∗
0

] [
1

r
w1ψ0

]

= h̄2

4µ
C2

u

∫
du1 . . . du4

1

r
[a∗

3u1 − a∗
4u2 + a∗

1u3

− a∗
2u4 − 2(�R − i�I )(u1u3 − u2u4)][a3u1 − a4u2

+ a1u3 − a2u4 − 2(�R + i�I )(u1u3 − u2u4)]

× |ψ0(u,�R → s)|2.
(B10)

The third rule (50) applies to |ψ0|2 only, leaving �R’s within
the square brackets untouched. After the square brackets are
multiplied out, the first rule of (50) is applied to each monomial
in u. For the factor 1/r, the integration rule of (50) is carried out.
The latter produces terms proportional to exp[−A2/(4�R)] ≡
exp[−1/g], which we omit, since we assume small quantum
corrections g. Then we subtract 〈v1〉2

u.

In the manipulations below we use the substitutions
(64) and (35) for the parameters ai and �R + i�I = ��γ ,
both with γ0 = 1. We also make use of the relations
h̄2�2

�/(8µ) = E, ρ2
0 = ��/(2g0), and (73) for g; furthermore,

we use the substitution (76) to express ν2 in terms of the
eccentricity e.

For dealing with the 1/r term by means of the third
rule (50), we order by powers of �R → s stemming
from |ψ0|2:

〈
v2

1

〉
u

=
4∑

n=1

K (1)
n , K (1)

n = Jnk
(1)
n ,

(B11)

Jn = C2
u

∫ ∞

�R

ds
1

sn+2
exp[A2/(4 s)].

The integrals are elementary, for instance, J1 can be brought
into the form

J1 = �Rg2

π2(1 + 2g)
[1 − g + g exp(−1/g)]. (B12)

Omitting the exponential terms, we find

J1 = �Rg2

π2
[1 − 3g + O(g2)], J2 = g2

π2
[1 − 4g + O(g2)],

J3 = 4g

π2A2
[1 − 5g + O(g2)], J4 = 16

π2A4
[1 − 6g + O(g2)].

(B13)

After straightforward manipulations, we obtain to the two
lowest orders

K
(1)
1 = 2E

µ
g0

e(e − 1)

[e cosh(ϒ) − 1]2
+ O

(
g2

0

)
,

K
(1)
2 = 2E

µ

1 + e2 − 2e/ cosh(ϒ)

[e cosh(ϒ) − 1]2
− 2E

µ
g0

e − 1

[e cosh(ϒ) − 1]3

×{6(1 + e2) cosh(ϒ) − e[11 + cosh(2ϒ)]} + O
(
g2

0

)
,

K
(1)
3 = −2E

µ

2(−1 + e/ cosh(ϒ))
e cosh(ϒ) − 1

+ 2E

µ
g0

e − 1

[e cosh(ϒ) − 1]2

×{−12 cosh(ϒ) + e[11 + cosh(2ϒ)]} + O
(
g2

0

)
,

K
(1)
4 = 2E

µ

(e − cosh(ϒ))2

[e cosh(ϒ) − 1]2
+ 2E

µ
g0

e − 1

[e cosh(ϒ) − 1]2

×{−12 cosh(ϒ) + e[11 + cosh(ϒ)]} + O
(
g2

0

)
.

(B14)
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For the msd we have to subtract

〈
v1

〉2
u
=2

E

µ

sinh2(ϒ)

[e cosh(ϒ) − 1]2
− 2

2E

µ
g0

e − 1

[e cosh(ϒ) − 1]3
sinh(ϒ) sinh(2ϒ)+O

(
g2

0

)
. (B15)

As it turns out, the zero order terms of K
(1)
2 + K

(1)
3 + K

(1)
4 − 〈v1〉2

u cancel, and we are left with

(�v1)2 ≡ 〈
v2

1

〉
u
− 〈v1〉2

u = 2 E

µ
g0 f1(ϒ)[1 + O(g0)],

(B16)

f1 = e − 1

[e cosh(ϒ) − 1]3
[−24e + (17 + 18e2) cosh(ϒ) − 13e cosh(2ϒ) + (1 + e2) cosh(3ϒ)].

The function f1, obviously, is bounded in time with the special values at zero and infinite time stated in (118) and (119).
The msd (�v2)2 is found analogously with the functions K

(1)
j of (B14) replaced as

K
(2)
1 = 2E

µ
g0

e − 1

[e cosh(ϒ) − 1]2
[1 + O(g0)],

K
(2)
2 = 2E

µ

e2 − 1

[e cosh(ϒ) − 1]2
− 2E

µ
g0

e − 1

[e cosh(ϒ) − 1]3
[(−2 + 6e2) cosh(ϒ) − e(3 + cosh(2ϒ)][1+O(g0)],

K
(2)
3 = 2E

µ
g0

2(e − 1) cosh(ϒ)

e cosh(ϒ) − 1
[1 + O(g0)], (B17)

K
(2)
4 = 2E

µ

(e2 − 1) sinh2(ϒ)

[e cosh(ϒ) − 1]2
+ 2E

µ
g0

2(e − 1) cosh(ϒ)

e cosh(ϒ) − 1
[1 + O(g0)].

With the expression

〈v2〉2
u = 2E

µ

(e2 − 1) cosh2(ϒ)

[e cosh(ϒ) − 1]2
− 2E

µ
g0

4(e − 1)2(e + 1) cosh3(ϒ)

[e cosh(ϒ) − 1]3
[1 + O(g0)], (B18)

the zero order terms of the msd cancel out, once more, and we obtain to next higher order

(�v2)2 = 2 E

µ
g0f2(ϒ)[1 + O(g0)],

(B19)

f2 = 2(e − 1) cosh(ϒ)

[e cosh(ϒ) − 1]3
[3(1 + e2) − 8e cosh(ϒ) + (3e2 − 1) cosh(2ϒ)].

In the case of the third velocity component, we obtain with K
(3)
4 = 0:

K
(3)
1 = 2E

µ
g0

e(e − 1)

[e cosh(ϒ) − 1]2
[1 + O(g0)], K

(3)
2 = −2E

µ
g0

2(e − 1)[e − cosh(ϒ)]

[e cosh(ϒ) − 1]2
[1 + O(g0)],

(B20)

K
(3)
3 = 2E

µ
g0

2(e − 1) cosh(ϒ)

e cosh(ϒ) − 1
[1 + O(g0)],

which, with 〈v3〉u = 0, gives rise to

(�v3)2 = 2E

µ
g0f3(ϒ)[1 + O(g0)], f3 = e(e − 1) cosh(2ϒ)

[e cosh(ϒ) − 1]2
. (B21)
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3. Mean angular momentum

The mean value of the angular momentum

L = C2
uµ

∫
du1du2du3du4r(u)ψ∗(x × v)ψ (B22)

can be written in the form

L = 〈x〉os × 〈v〉u + B, (B23)

where we used the abbreviations

B1 = i
2h̄

A2 + 8�R

[a∗
1a4 − a1a

∗
4 + a∗

2a3 − a2a
∗
3 ],

B2 = i
2h̄

A2 + 8�R

[a1a
∗
3 − a∗

1a3 + a∗
2a4 − a2a

∗
4 ], (B24)

B3 = i
2h̄

A2 + 8�R

[a1a
∗
2 − a∗

1a2 + a3a
∗
4 − a∗

3a4].

We remark that the momentum and position operators obey the canonical commutation relations in u space:

[µvi,xk]u = h̄

i
δik. (B25)

After assignment of the initial values according to (64), we find that the mean values are conserved in time:

L1(σ ) = L2(σ ) = 0; L3(σ ) = 1

2
h̄ν(r0��)

1 + 2g0

1 + 4g0
.

(B26)
APPENDIX C: CONTRIBUTION OF CONSTRAINT TO MEAN ENERGY

By (18), the constraint part of the Hamiltonian reads

HX = h̄2

8µ

X2

r2
; X = u2

∂

∂u1
− u1

∂

∂u2
− u4

∂

∂u3
+ u3

∂

∂u4
. (C1)

The operator HX is Hermitian, since X commutes with r . The mean value is taken with respect to the wave function (39). Using
partial integration, we can write

HX = h̄2/(8µ)M, M = 〈ψ |X2/r2ψ〉u = −〈X/rψ |X/rψ〉u. (C2)

One immediately obtains

M = −C2
u

〈
ψ0

∣∣∣∣ 1

r2
(a∗

2u1 − a∗
1u2 − a∗

4u3 + a∗
3u4)(a2u1 − a1u2 − a4u3 + a3u4)ψ0

〉
u

. (C3)

After the polynomial in u has been multiplied out and the first and third rule of (50) are applied, one obtains (we remind of the
metric factor r which cancels in 1/r2 one r)

M = −C2
u

∫ ∞

�R

ds
[
P 2

9 − 2P2s
]
G(A2,s), (C4)

where P2 = a · a∗ and P9 = −1/(2�R)〈X〉os. The assignments (64) make P9 ≡ 0, see (55) and (58). With this simplification,
integration of (C.4) leads to

M = − 8

1 + 2g

P2�
3
R

A4
{1 − g + g exp[−1/g]}; g = 4�R

A2
. (C5)

After the assignments (64) and (35) to P2/A
4 and �R ≡ �� γ (σ ), respectively, in addition with (62) to ρ2

0 with γ0 = 1,
we find

HX = −h̄2��

8µr0

e(e − 1)

[e cosh(ϒ) − 1]2

(1 − g + g exp[−1/g])(1 + 4g0)

(1 + 2g)(1 + 2g0)
. (C6)

This expression can be brought into a more transparent form by eliminating h̄ in terms of � and �� by means of (27), by using
�2 = E/(2 µ), and, finally, by expressing �� in terms of r0 and g0 by means of (73):

HX = −g0E
e(e − 1)

[e cosh(ϒ) − 1]2

1 − g + g exp[−1/g]

1 + 2g
. (C7)
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