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Symmetry breaking and multipeaked solitons in inhomogeneous gain landscapes
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We address one-dimensional soliton formation in a cubic nonlinear medium with two-photon absorption and
transversally inhomogeneous gain landscape consisting of a single or several amplifying channels. Existence
of the solitons requires certain threshold gain while the properties of solitons strongly depend on whether the
number of the amplifying channels is odd or even. In the former case, an increase of the gain leads to symmetry
breaking, which occurs through the pitchfork bifurcation, and to emergence of a single or several coexisting
stable asymmetric modes. In the case of an even number of amplifying channels, we have found only asymmetric
stable states.
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The emergence of localized nonlinear patterns supported by
localized gain has recently attracted increasing attention. There
have been reported stable one-dimensional (1D) structures in
media described by the cubic complex Guinzburg-Landau
equation with linear losses and either one [1] or two [2]
highly localized “hot spots.” Stable solitons were also found
in periodic lattices with active channels and nonlinear two-
photon absorption [3] and at the surface of a periodic medium
[4]. Stable patterns may exist even in two-dimensional (2D)
settings, in layered structures of the planar waveguides [5],
and in 2D lattices [6].

Localized gain significantly changes the physics of emer-
gent nonlinear patterns. In addition to standard constraints
imposed by the balance between the dissipation and gain,
it introduces a new spatial scale—the width of the gain
domain. This suggests a possibility of existence of more
sophisticated structures than the simplest symmetric and/or
antisymmetric dissipative solitons. In particular, it is of
fundamental interest to exploit the phenomenon of symmetry
breaking, which is known to be generic for conservative
nonlinear systems possessing a characteristic spatial scale.
These are, for example, systems governed by the nonlinear
Schrödinger equation with a symmetric double-well potential
[8,9]. Self-trapping in one of the two identical channels has
already been observed experimentally in nonlinear optics [10]
and in a Bose-Einstein condensate [11]. Symmetry breaking
in a dual-core dissipative fiber with parametric gain and linear
losses, which occurs through the interplay of the nonlinearity
and coupling between two cores defined by the modulation of
the linear refractive index, was reported in [7]. Asymmetric
dissipative solitons were reported only in 2D systems, e.g.,
in the cubic-quintic Ginzburg-Landau equation [12] and in
media with saturable gain and absorption [13]. Here we report
a principally different scenario of symmetry breaking. It occurs
in a medium without any conservative potential or modulation
of the refractive index, but having nonlinear dissipation and
localized gain.

Our setting is related to dissipative solitons, observed at
a wavelength 1319 nm in self-focusing electrically pumped

waveguides fabricated on an InP substrate [14]. In such
structures the two-photon absorption usually ranges from 10−1

to 10−2 cm/GW while localized gain can be implemented
by using segmented striplike electrodes or spatially localized
optical pumping. Solitons can be excited in 0.6-µm-thick
planar guiding layers with a length of several millimeters
by input beams with typical waists of a few micrometers at
gain levels of about 70 cm−1 [14]. The considered model is
also relevant for a description of Bose-Einstein condensates of
quasiparticles in the presence of nonresonant pumping [15].

We consider the propagation of laser radiation in a focusing
cubic medium with strong two-photon absorption and transver-
sally inhomogeneous gain described by the equation for the
dimensionless light field amplitude q:

i
∂q

∂ξ
= −1

2

∂2q

∂η2
+ ipiR(η)q − |q|2q − iα|q|2q, (1)

where ξ and η are the normalized longitudinal and trans-
verse coordinates, respectively; pi > 0 is the gain parameter;
R(η) describes the transverse gain profile (with amplitude
normalized to one); and α > 0 is the strength of two-photon
absorption. We consider gain landscapes containing an integer
number n of periods of cos2 η. For example, to model a
gain with an odd number of amplifying channels we set
R(η) = cos2 η for |η| � ηn, where ηn = nπ/2, and R(η) = 0
for |η| > ηn, and we vary pi , α, and n. Assuming the
characteristic transverse scale to be 3 µm, we estimate the
longitudinal scale (the diffraction length) to be ∼170 µm at a
wavelength of 1.32 µm. Then pi = 1 corresponds to the linear
gain ∼60 cm−1 and α = 1 corresponds to the two-photon
absorption coefficient ≈ 0.017 cm/GW. The linear absorption
is supposed to be compensated by the gain for |η| > ηn.

Dissipative solitons of Eq. (1) can be searched for in the
form ψ = w(η)eibξ , where b is the propagation constant and
w(η) = wr + iwi = u(η)eiθ(η) is a complex amplitude, with
real, wr , and imaginary, wi , parts. The modulus u and phase θ

solve the equations

bu = uηη

2
+ u3 − j 2

2u3
, jη = 2piR(η)u2 − 2αu4, (2)
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where j (η) ≡ θηu
2 can be referred to as a current density. We

are interested in localized solutions with u,j → 0 at |η| → ∞,
which can be obtained for b > 0 (more specifically with the
exponentially decaying asymptotics u ∼ exp[−(2b)1/2|η|] and
j ∼ exp[−4(2b)1/2|η|]).

Localized modes of the system (2) form if a focusing
nonlinearity counterbalances diffractive broadening, i.e., when
the equation

bU = −1

2

∫
u2

ηdη −
∫

j 2

u2
dη +

∫
u4dη, (3)

where U = ∫
u2dη is the energy flow, is satisfied and when

the nonlinear losses integrally compensate the spatially inho-
mogeneous gain, i.e., when

pi

∫
R(η)u2dη = α

∫
u4dη. (4)

The above formulas allow one to argue for the possible
existence of two different types of modes at the same param-
eters of the system. Consider the limit of high amplification,
pi → ∞. Assuming that the solution amplitude A = max{u}
grows and the width � decreases, the relation (4) suggests the
scaling A ∼ 1/� ∼ √

pi/α. This allows us to deduce from (4)
the estimate U ≈ (α/pi)

∫
u4dη ∼ √

pi/α, valid subject to
the assumption that the soliton’s maximum is placed exactly
at η = 0 where the pump has the maximal value, i.e., valid for
a symmetric mode. For a crude guess of the proportionality
coefficient in this estimate we use the ansatz u ≈ ν/cosh(νη)
[which corresponds to neglecting the current j in the first
of Eq. (2), which strictly speaking can be done only in the
vicinity of η = 0]. This allows us to obtain from (4) for the
symmetric mode ν = √

3pi/2α and thus U ∼ 2ν = √
6pi/α

and b ∼ ν2/2 = 3pi/4α.
However, constraint (4) admits yet another scaling where a

solution width grows with pi . Then for wide solutions, i.e., at
� � η0 = π , from Eq. (4) the relation pi ∼ αA2� follows. On
the other hand, now U ∼ A2�, i.e., U ∼ pi/α. Thus, unlike
in the previous estimate, now we are restricted neither by the
position of the maximum of the mode nor by the symmetry
of its shape. Moreover, in the corresponding solution, the
diffraction term uηη ∼ A/�2 cannot be compensated by the
Kerr nonlinearity u3 ∼ A3 alone, and the role of the current
distribution, i.e., of j 2/u3, becomes crucial (reducing the
impact of the Kerr nonlinearity). Notice that the major
influence of the current occurs not at the origin (where for the
symmetric solutions it is exactly zero) but at some intermediate
point η∗ defined by the condition jη(η∗) = 0. Thus if a solution
with the suggested scaling exists, it should have asymmetric
shape, with the maximum located in the vicinity of the point
η∗ (at least in the limit pi → ∞).

Further information about the maximal field amplitude A
can be obtained from Eq. (2). Indeed, for η > ηn the current
is decaying, jη = −2αu4 < 0, and is directed outward from
the gain domain: j > 0 (since j tends to zero as η → ∞).
This means that the maxima of |j | are achieved at some
points located inside the gain domain, i.e., |η∗| < ηn. In such
points the amplitude of the field is given by u2

∗ = piR(η∗)/α
(where notice that η∗ itself depends on the gain coefficient).
Considering the symmetric one-peak mode in the case of one
gain channel [i.e., when functions u(η) and j (η) feature only

FIG. 1. (Color online) Profiles of symmetric (a) and asym-
metric (b) one-peak solitons at n = 1, pi = 3.5, α = 1.2 and of
(c) symmetric and (d) asymmetric two-peak solitons at n = 2,
pi = 2.5, α = 1.8. The modes in panels (a) and (b) correspond to
circles in Figs. 3(a) and 3(b). Hereafter all quantities are plotted in
arbitrary dimensionless units.

a single maximum], one has the two maxima of jη at ±η∗ and
hence jη > 0 in the interval |η| < η∗. Therefore the amplitude
of the field is bounded by the interval u2

∗ � A2 � piR/α.
The above prediction of symmetric and asymmetric modes

was confirmed in simulations (Fig. 1). We observed that while
the growth of zero background is suppressed at large η, the light
concentrates inside the amplifying channels. Strictly speaking
this feature is typical for symmetric modes. A maximum of an
asymmetric mode is shifted from the gain peak and the width of
the mode grows with pi , according to the estimates presented
above. This broadening of the soliton leads to the situation
where an appreciable part of the light energy concentrates
outside the gain channel for large pi .

The observed asymmetry in the field modulus remains
relatively small for all considered pi (which is most clearly
visible in wr,i distributions), but it becomes more pronounced
in systems with a larger number of channels (see Fig. 2). The
number of peaks of stable solitons coincides with the number
of amplifying channels. In Fig. 2 we show the symmetric
and two coexisting asymmetric modes for the case of three
amplifying channels (and we obtained similar solitons in
landscapes with n up to 20).

Asymmetric states in a system where gain landscape
is symmetric and all other parameters are uniform, i.e.,
symmetry breaking, is an unexpected result. Indeed, unlike in
conservative systems, the understanding of the phenomenon
cannot be related to energetic arguments. Our system also
does not allow for reduction to a simpler discrete model, as
happens, say, in the case of a double-well potential. Moreover,
in our case the symmetry breaking occurs even for a single
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FIG. 2. (Color online) (a) Profiles of a symmetric three-peak
soliton at n = 3, pi = 2.5 [corresponding to the circle in Fig. 3(c)] and
(b) and (c) two coexisting asymmetric three-peak solitons at n = 3,
pi = 4.0. (d) One-peak soliton at n = 3, pi = 4.0. The dashed line
schematically shows the gain landscape. In all cases α = 1.8.

gain channel, in contrast to conservative systems (where at
least two potential minima are required).

We performed a numerical study of the whole branches of
the solutions and studied their stability (Fig. 3). In Figs. 3(a)
and 3(b) for n = 1 we observe two branches of the solutions
(noting that the propagation constant b is not a free parameter):
One branch corresponds to symmetric solitons, while the
other branch that bifurcates from the symmetric branch at
a certain value pi = pcr

i corresponds to asymmetric solutions
(having smaller amplitudes and larger widths as compared
to the symmetric ones). The dependencies U (pi) and b(pi)
for both branches well reproduce the estimates presented
above. A linear stability analysis of the modes is performed by
plugging the perturbed field q = (w + veδξ )eibξ into Eq. (1)
and performing a linearization around w.

For odd numbers of amplifying channels, exactly at the
bifurcation point pcr

i the branch of symmetric solutions loses
its stability, while the stable asymmetric branch emerges [see
the dashed lines in Figs. 3(a) and 3(b)]. Since the asymmetric
modes appear in pairs (corresponding to the left and right
shifts of the maximum from the origin) at the point where the
symmetric mode becomes unstable we deal with the pitchfork
bifurcation.

For small pi symmetric solitons broaden dramatically and
may expand far beyond the region with gain (since there is
always a flow of energy outside the amplifying region). An
increase of pi results in growth of the peak amplitude and
progressive localization of the soliton inside the amplifying
domains. According to the above estimates for n = 1 and
for sufficiently small α the energy flow and propagation
constant of a symmetric soliton are monotonically increasing

FIG. 3. (Color online) Energy flow (a) and propagation constant
(b) vs pi for symmetric (s) and asymmetric (a) one-peak solitons at
n = 1, α = 1.2. Energy flow (c) and perturbation growth rate (d) vs
pi for symmetric three-peak solitons at n = 3, α = 1.8. The dashed
lines indicate the borders of stability domains pi = pcr

i for symmetric
modes.

functions of pi [Figs. 3(a) and 3(b)]. Note that while for small
values of α the symmetric one-peak solitons can be found even
for pi → 0, for moderate and high α values such solitons exist
only above a certain minimal value of the gain coefficient plow

i

[see Fig. 4(a)].
For even n the symmetric modes appear unstable in the

whole domain of existence, and the only stable modes are
asymmetric ones. In this case the dependencies U (pi) for
symmetric and asymmetric modes do not overlap and no
bifurcations occur. Except for stability, other properties of
modes supported by even and odd numbers of amplifying
channels are similar. Gain with multiple amplifying channels

FIG. 4. (Color online) The domain of existence (pi � plow
i ) and

stability domain (pcr
i � pi � plow

i ) for one-peak (a) and three-peak
(b) solitons on the plane (α,pi). For small α < 0.6 symmetric one-
peak solitons can be obtained even when pi → 0 but for moderate
and high nonlinear losses they exist only above certain minimal gain
pi = plow

i
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also supports solitons with the number of peaks smaller than
the number of channels [Fig. 2(d)].

In dissipative multipeak solitons both wr and wi change
their signs in neighboring channels with gain, while the field
amplitude u is nonzero even in the regions between the
channels. This follows from (2). Indeed, let us assume that
at some point η̃ the field is zero, i.e., u(η̃) = 0. Since u(η) is
nonnegative, in the vicinity of η̃ we have u(η) = O((η − η̃)2)
and jη = O((η − η̃)4). Expanding u(η) and j (η) in a Taylor
series in the vicinity of η̃ we find subsequently that all the
expansion coefficients are zero, which means that if u becomes
zero at some point, then u(η) ≡ 0 and j (η) ≡ 0.

The critical gain at which the bifurcation occurs increases
almost linearly with α, so that the domain of stability of sym-
metric solitons, pcr

i � pi � plow
i , expands with α [Fig. 4(a)].

In the case of symmetric multipeak solitons the energy flow
grows with pi monotonically, except for the narrow region
close to the threshold pi = plow

i , below which no multipeak
solitons can be found [Fig. 3(c)]. Multipeak solitons are stable
in the region adjacent to plow

i , but an increase of pi results
in their destabilization at pi = pcr

i [dashed line in Fig. 3(c)].
A typical dependence of perturbation growth rate δr on gain
parameter for n = 3 is shown in Fig. 3(d). The stability domain
of a symmetric three-peak soliton expands almost linearly with
increasing α [Fig. 4(b)].

Destabilization of symmetric multipeak states is accom-
panied by the appearance of several stable branches of
asymmetric multipeak solitons. Thus the stable asymmetric

modes depicted in Figs. 2(b) and 2(c) and the corresponding
symmetric unstable three-peak mode (not shown) coexist for
the same values of pi,α.

With increase of the number of the gain channels the picture
becomes even richer. When the number of channels is odd, the
number of asymmetric modes that can be simultaneously stable
for fixed pi and α values increases. This feature is indicated by
the presence of several stable attractors (multistability) in mul-
tichannel landscapes. The critical value of the gain coefficient
(i.e., the bifurcation point) pcr

i also grows with n, reaching
however a certain saturation value. In particular, for α = 1.5
this value is about 2.59 and it is reached already at n = 7.

Summarizing, we reported the symmetry breaking of a
dissipative soliton supported by a single or multiple amplifying
channels embedded in a cubic medium with nonlinear losses,
which occurs through the loss of the stability of the symmetric
family at a point of the pitchfork bifurcation. Since inside the
stability domains solitons are attractors with sufficiently large
basin they can be excited with a variety of regular or noisy
input patterns. For Gaussian inputs and a single amplifying
channel stationary solitons may form already after propagation
over 20–30 diffraction lengths. In the case of multiple gain
channels the bifurcation leads to the appearance of several
stable asymmetric modes. While the bifurcation type is the
same as one leading to the appearance of self-trapped states in
a conservative double-well potential [9], here we deal with a
purely dissipative phenomenon and the system does not pos-
sesses any characteristic scale related to its conservative part.
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