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BEC-BCS crossover and universal relations in unitary Fermi gases
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The contact parameter in unitary Fermi gases governs the short-range correlations and high-momentum
properties of the system. We perform accurate quantum Monte Carlo calculations with highly optimized trial
functions to precisely determine this parameter at T = 0, demonstrate its universal application to a variety of
observables, and determine the regions of momentum and energy over which the leading short-range behavior
is dominant. We derive Tan’s expressions for the contact parameter using just the short-range behavior of the
ground-state many-body wave function, and use this behavior to calculate the two-body distribution function,
one-body density matrix, and the momentum distribution of unitary Fermi gases; providing a precise value of the
contact parameter that can be compared to experiments.
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The experimental realization and concurrent theoretical
calculations of two-component unitary Fermi gases with
short-range interactions offer a unique opportunity to test our
understanding of strongly interacting Fermi systems, and to
study their structure and dynamics. The low-energy properties
of the system are governed by the Bertsch parameter ξ ,
the pairing gap δ, and have been studied extensively in the
literature [1,2]. The short-range correlations of the system
are, in contrast, governed by the many-body wave function
at small interparticle separations, as encoded in the contact
parameter C.

Tan, in a series of papers [3], showed that in Fermi gases
if the effective range of the interaction is much smaller than
any other length scale of the system, several universal relations
occur and related them to a parameter C he called the contact
parameter (see also Ref. [4] for a review). In particular, the
large momentum tail of the momentum distribution N (k)
behaves like C/k4. This same parameter gives the small
distance behavior of the two-body distribution function, and
the derivative of the ground-state energy with respect to the
inverse of the scattering length. Having multiple phenomena
that depend on a single universal parameter means that
the parameter can be calculated and measured in multiple
ways, and in the range of validity of the experiments and
the calculations they must give the same results for the
parameters. We employ highly optimized trial wave functions
and accurate quantum Monte Carlo to calculate several of
these observables and to extract the contact parameter. We
thus produce more accurate results for the leading behav-
ior and simultaneously determine the regimes where it is
dominant.

Recently several experimental measurements have mea-
sured C using a variety of techniques [5]. Values for the contact
parameter have been calculated from previous results from
quantum Monte Carlo [6] and other methods [7]. However,
previous quantum Monte Carlo calculations give values of the
contact at unitarity that disagree with each other at the 5% to
10% level. Here we show that if the calculations are carefully
optimized and extrapolated to zero range, our quantum Monte
Carlo results agree with each other within statistical errors,
less than 0.5% , giving clear numerical evidence of Tan’s

predicted universal contact parameter and its behavior around
unitarity. Our results provide a benchmark prediction for
low-temperature experiments.

We perform variational and fixed-node diffusion Monte
Carlo (VMC and DMC) calculations of a system of a ho-
mogeneous system of fermions interacting with a short-range
potential. Fixed-node diffusion Monte Carlo results produce
upper bounds to the ground-state energy of the system depend-
ing only upon the nodes (zeros) of the trial wave function. We
carefully optimize the trial wave functions and obtain the best
upper bounds to date for the ground-state energy. Observables
other than the ground-state energy are calculated by extrapo-
lating the variational and mixed estimates: OV = 〈�T |O|�T 〉
and Om = 〈�0|O|�T 〉, 〈O〉 ≈ 2Om − OV . After suitable
optimizations the extrapolations are very small. We calculate
the contact parameter in several different ways and show they
all give results consistent with each other and with recent
experiments.

Tan, and later others [3,8], derived expressions for his
contact parameter using a variety of methods. These results can
be understood as coming from the behavior of the many-body
wave function when two unlike spin particles are separated by
a distance r which is small compared to the average particle
separation r0 but outside the range of the potential R,

f (r) = A(1 − a−1r)

r
(1)

(a is the two-body scattering length) which is Eq. (1) in [3] and
A2 will be seen to be proportional to Tan’s contact parameter
C. The unlike spin two-body distribution function will be given
by f 2(r) in this same range:

g↑↓(r) = A2(r−2 − 2a−1r−1 + · · · ), (2)

where g↑↓(r → ∞) = 1
2 for an unpolarized system. The

momentum distribution summed over both spins will also be
dominated by this short-range part of the wave function, so for
k much greater than the Fermi momentum kF but much less
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than the inverse potential range, we have

N (k) = n

∫
d3r dR �(r1 + r, . . . ,rN )�(r1, . . . ,rN )e−ik·r

= n2
∫

d3r d3r ′ f (|r + r′|)
f (r ′)

g↑↓(r ′)e−ik·r

= n2
∫

d3r d3r ′ f (|r + r′|)f (r ′)e−ik·r = 16π2n2A2

k4
,

where dR indicates integration over r1, . . . ,rN and n is
the number density. Fourier transforming the momentum
distribution and the two-body distribution functions gives the
behavior for the one-body density matrix (normalized to 1 at
the origin) and the opposite spin static structure factor (which
goes to 1

2 for k → ∞) of

ρ(1)(r) = 1 − 2πnA2r + · · ·
(3)

S↑↓(k) − 1

2
= 2π2nA2

k

(
1 − 1

4πak

)
+ · · · .

Tan also related the contact parameter to the derivative of the
energy with respect to the inverse scattering length. Changing
the scattering length by changing the potential with the mass
fixed and using the Hellman-Feynman theorem [9]

dE

da−1
= n

2

∫
d3r g↑↓(r)

dv(r)

da−1
, (4)

where E is the energy per particle. Since v(r) is nonzero only
inside R, where the two-body potential is very strong, g(r) can
be replaced with f 2(r) where h̄2

m
∇2f (r) = v(r)f (r) and the

integration taken over a sphere of radius R. Therefore

dE

da−1
= n

2

[
d

da−1

∫
d3rf 2(r)v(r) − 2

∫
d3rf (r)v(r)

df (r)

da−1

]

= h̄2n

2m

{
d

da−1

∫
d3r f (r)∇2f (r)

− 2
∫

d3r [∇2f (r)]
df (r)

da−1

}

= 2πh̄2n

m
R2

[
d

da−1
f (r)

df (r)

dr
− 2

df (r)

da−1

df (r)

dr

]∣∣∣∣
r=R

.

This only depends on f (r) around R, and using Eq. (1) the
result is

dE

da−1
= −h̄22πnA2

m
→ C = 8π2n2A2. (5)

The equation of state and therefore Tan’s C1 are conven-
tionally parametrized around unitarity as [3]

E

EFG
= ξ − ζ

kF a
− 5ν

3(kF a)2
+ · · · ,

(6)
C

k4
F

= 2

5π

[
ζ + 10ν

3(kF a)
+ · · ·

]
,

1Some authors define the contact as an extensive quantity C = �C,
where � is the volume and report the unitless intensive quantity
C

NkF
= 3π 2 C

k4
F

.

where EFG = 3h̄2k2
F

10m
is the infinite system free-gas energy per

particle. At unitarity we have several quantities related to ζ :

ρ(1)(r) → 1 − 3

10
ζkF r, N (k) → 8

10π
ζ

k4
F

k4
,

(7)

g↑↓(r) → 9π

20
ζ (kF r)−2, S↑↓(k) → 3π

10
ζ

kF

k
.

We use quantum Monte Carlo (QMC) techniques to
accurately solve the many-body ground state and compute
properties of the unitary Fermi gas. Our QMC calculations use
the many-body Hamiltonian

H =
N∑

i=1

p2
i

2m
− v0

8h̄2

mr2
e

∑
i↑,j↓

1

cosh2(2rij /re)
, (8)

where the two-body interaction is a short-range potential taken
only between opposite spin particles. At unitarity, v0 = 1 and
the effective range is re. The scattering length and effective
range can be tuned by changing v0 and re. The limit of zero
effective range (dilute system) is reached by taking re 
 r0

with r0 = [3/(4πn)]1/3. The unitary limit is approached when
r0 
 a where a is the scattering length of the two-body
interaction. At unitarity the details of the interaction are not
important, and the only scale of the system is given by its
Fermi momentum kF . The ansatz for the many-body trial
wave function is the same as previously used in other QMC
calculations [10]:

�T =
∏
ij

fJ (rij ′)	BCS, 	BCS =A[φ(r11′)φ(r22′) · · · φ(rnn′)],

where A antisymmetrizes the like spins and the unprimed
coordinates are for up spins and the primed are for down spins
and n = N/2. The pairing function is

φ(r) = β̃(r) +
∑

n

a
(
k2
n

)
exp(ikn · r),

β̃(r) = β(r) + β(L − r) − 2β(L/2), (9)

β(r) = (1 + cbr) [1 − exp(−dbr)]
exp(−br)

dbr
.

The function β̃(r) has a range of L/2, the value of c is chosen
such that it has zero slope at the origin.

The variational wave function has been carefully optimized;
in particular we optimize the pairing orbitals entering in the
wave function by using VMC to minimize the energy [11].
The fixed-node DMC energies do not depend on the Jastrow
function fJ . Our simulations are performed with 66 particles
in a periodic box, and we study the effect of the effective
range of the interaction by changing re and extrapolating to
the re → 0 limit. The results of 66 particles is very close to the
infinite limit [12]. Careful optimization of the variational wave
function significantly improves the energy upper bounds. At
unitarity the best previous QMC results using 66 particles are
ξ = 0.42(1) fixing re/r0 ≈ 0.08 [1], and ξ = 0.42(1) using
re/r0 ≈ 0.01 [13]. Our new estimate is ξ = 0.4069(5) and
ξ = 0.3923(4) with re/r0 ≈ 0.07 and 0.02, respectively. The
parameters for φ at unitarity are b = 0.5kF , d = 5 and the
nonzero a(k2) are given in Table I. Improved optimization
of the trial wave function lowers the fixed-node energy by
4%–7%. Careful extrapolation to the re → 0 limit is also
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TABLE I. The optimized plane wave coefficients at unitarity for
the pairing function.

L2

4π2 k2 a(k2) L2

4π2 k2 a(k2)

0 0.00198 5 0.000190
1 0.00250 6 0.000200
2 0.00194 8 0.000167
3 0.00081 9 0.000163
4 0.00033 10 0.000120

important. We show an example at unitarity in the inset of
Fig. 1 where we plot QMC points at different effective ranges
and their extrapolation. Using more points and a more complex
fit typically provides a somewhat lower upper bound to the
energy [12]; such a correction is about 0.002 to ξ .

We optimized the many-body wave function for systems
with different scattering lengths and for each value of kF a

we repeated the extrapolation of re. Our results of ξ (kF a)
are shown in Fig. 1. Fitting the QMC points shown in Fig. 1
gives the values ξ = 0.383(1), ζ = 0.901(2), and ν = 0.49(2).
Using Eq. (5) we predict

C

k4
F

= 2ζ

5π
= 0.1147(3). (10)

An alternative direct method for calculating the contact can
be obtained by computing correlation functions at unitarity.
For example, the pair distribution function is shown in Fig. 2
where we compare the VMC result with the mixed estimate
computed with DMC. The two results are almost identical and
differences appear only for very small distances. The value
of ζ is obtained by fitting g↑↓(kF r) in the range re 
 r 

k−1
F using the function a + b/r2. The fit gives b = 1.2678(1).

Using Eqs. (2) and (5) gives the value for ζ = 0.897(2) in good
agreement with the result extracted from Eq. (6).

The calculated radial one-body density matrix ρ(1)(kF r)
is shown in Fig. 3 using VMC and the mixed DMC results.
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FIG. 1. (Color online) Energy per particle in the BEC-BCS
crossover regime in units of EFG as a function of the scattering length
a. The QMC points are the results of extrapolations to the re → 0
limit. In the inset we show the extrapolation at unitarity.
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FIG. 2. (Color online) The calculated spin-opposite two-body
distribution function at small distance r; the effective range of the
interaction is kF re ≈ 0.08 (vertical black dashed line). The VMC
(red), mixed (green), and extrapolated (blue) results are shown.
The extrapolated QMC results are used to fit the function giving
b = 1.2678. In the inset we show the same functions multiplied
by (kF r)2.

Again the results are nearly identical, with strikingly linear
behavior over a large range of small kF r values. The fit gives
ζ = 0.895(16) again in good agreement with the equation of
state result. The calculated momentum distribution is shown in
Fig. 4. The momentum distribution and the one-body density
matrix are each other’s Fourier transform. The only difference
in our calculations are that the angular average has been done
in real space for the one-body density matrix to give the radial
one-body density matrix, while the momentum distribution is
calculated for the k vectors that correspond to the periodic
simulation cell. The extraction of the k4 tail is rather noisy;
using the radial one-body density matrix gives a more accurate
fit. From our results it appears that the contact term dominates
the behavior for k >∼ 2kF . Our asymptote is consistent with
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FIG. 3. (Color online) The radial one-body density matrix,
symbols, and kF re ≈ 0.08 as in Fig. 2. A line showing the linear
fit with c = 0.2685 is also shown, the dominant short-range behavior
is accurate up to approximately kF r ∼ 3.
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FIG. 4. (Color online) The calculated momentum distribution
summed over both spins multiplied by k4/k4

F showing the k−4 tail.
Dashed line shows 2C/k4

F of Eq. (10).

the value 0.229(1) expected from ζ = 0.901(2) (dashed line
in Fig. 4).

Recent experiments have measured the contact parameter
from the equation of state [5], momentum distribution directly
using ballistic expansion and indirectly through the rf line
shape and photoemission spectroscopy [5], and from the static
structure factor [5]. Navon et al. [5] extracted a value of
ζ = 0.93(5) from their equation of state measurements. Our
best value of ζ = 0.901(3) is well within their experimental
errors. Kunhle et al. [5] calculate a slope of S(k) versus

kF /k at large k for 1/(kF a) = 0 of 0.75(3) at T = 0.10(2)TF ,
giving a value of ζ = 0.80(3), while Stewart et al. give values
somewhat away from unitarity which also give ζ lower than our
value.

In conclusion, we have used quantum Monte Carlo tech-
niques to study the short-range correlations of unitary Fermi
gases as encoded in Tan’s contact parameter. The extractions
from various observables all give the same result within
statistical errors. These Monte Carlo methods give particularly
low variance values for the energy of the system and with
minimal bias. Therefore extracting the contact parameter from
the equation of state is the simplest and most reliable. However,
we have shown that its value extracted from the two-body
radial distribution function, the one-body radial density matrix,
and the momentum distribution also give the same results
albeit with somewhat larger error bars. For each of these
quantities we have also determined the regime over which
the leading contact behavior is dominant, which should be
useful to future experiment in extracting the contact behavior
and leading corrections.
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