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We present experimentally testable quantum limitations on the phase-insensitive linear amplification and
phase conjugation with respect to the transformation of a Gaussian-distributed set of coherent states following
the footing to assess the success of continuous-variable quantum teleportation and quantum memory devices. The
results enable us to compare the real device with the quantum-limited device via the feasible input of coherent
states.
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An important role of theoretical physics is to derive
fundamental limitations on the performance of physical
devices for manipulating the states of a physical system. The
controllability of the physical states over the existence of the
quantum noise and its connections to quantum measurement
are the central objective in a wide area of quantum physics [1].
An elementary operation for signal processing is amplification
and its quantum limitation is generally determined based on
the canonical commutation relation [2]. A pertinent approach
is optimal cloning of quantum states so as to address the
limitation on amplifying quantum information [3–5]. Those
limitations are thought to be in the reach of experiments [1,6,7].

Any physical process is described by a completely positive
trace-preserving map referred to as a quantum channel [8,9].
We often use the average fidelity as a figure of merit
to estimate the performance of the process in quantum-
information science. The fidelity represents the probability
that the system after the process is in the desired state. The
problems to find the quantum-limit phase-insensitive linear
amplifier and to optimize the cloning map for coherent states
are equivalent when the figure of merit is the trace norm [10]
or the joint fidelity [5,11]. In the case of the most familiar
amplification limit, the figure of merit is the ratio of the
signal-to-noise ratios of the input and output fields [2]. Besides
the amplification, an interesting quantum-state manipulation is
the phase conjugation [12,13]. It corresponds to the universal
NOT gate for qubit states [14] and to a transposition map for
finite- and infinite-dimensional states [13].

In addition to the quantum limitations, it is also fundamental
to establish classical limitations for asserting the nonclassical-
ity or quantum coherence of the devices.

In this regard, an important benchmark is to outperform
classical measure-and-prepare (MP) schemes [11,15–19]. Sur-
passing the classical limit achieved by classical MP schemes
is a proof of entanglement because a MP scheme is an
entanglement breaking channel [20]. It is known that the
optimal fidelity of the phase conjugation can be achieved
by a classical device [12–14] and that the Gaussian phase-
conjugation (time-reversal) map belongs to the entanglement
breaking channel [21].
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To experimentally test the performance of the quantum
device, an accessible input state is the coherent state. It
is theoretically simple to determine the classical (or other
physical) limitation assuming a uniform set of input states
because the figure of merit has a covariant property [5] and
the group theoretical treatment is useful [22]. In the case of
uniform distribution, the quantum limitations were determined
for the amplification [2,5,10,11] and for the phase conjugation
[12,13]. However, neither testing the input-output relation for
every coherent state nor assuming the displacement covariant
property for the real device is feasible. In practice, the available
power of the input field is limited and the linearity of the
transformation is supposed to hold only on a limited range of
the input variable. The covariant approach is inconsistent with
these conditions since it implies an ever-increasing input power
and an everlasting linearity. In the case of optical or atomic
continuous-variable quantum-information processing [9], the
amplitude of the input coherent states has to be much smaller
than the total number of the particles in the so-called local
oscillator field.

As a feasible figure of merit, the fidelity averaged over
a Gaussian-distributed set of coherent states is employed
associated with the quantum teleportation and memory for
continuous-variable states [15,16]. Due to the Gaussian prior
distribution, one can test the performance without concerning
the contributions of impractically high-amplitude coherent
states. On this footing, the classical limit of the average
fidelity is determined for unit gain devices [15,16] and for
the devices with the effect of loss or amplification [11,18].
The well-known quantum teleportation [23] and quantum
memory [24] protocols serve as amplifiers via the gain control
mechanism, and it is important to show in what extent such
a real device is approximating the quantum-limited device.
However, the quantum limitation on the amplification has been
left open [11].

To give a solid foundation for experiments, it is crucial to
address the quantum limitations under experimentally testable
frameworks. It is worth noting that the classical capacity for
bosonic quantum channels has been derived under the energy
constraint [25].

In this Rapid Communication, we consider the quantum
limits of the phase-insensitive linear amplification and phase
conjugation in terms of the average fidelity with respect to the
Gaussian-distributed set of coherent states. We derive a tight
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quantum-limit fidelity for the phase-insensitive amplification
task and show that this fundamental limit is achieved by the
known Gaussian amplifier. We also derive a tight quantum-
limit fidelity for the phase conjugation task and show that this
limit is achieved by a classical MP device.

In what follows the state vector with the Greek letter “α”
denotes the coherent state and the state vector with the Roman
letter “n” denotes the number state (e.g., we write the coherent
state in the number basis as |α〉 = e−|α|2/2 ∑∞

n=0 αn|n〉/√n!).
When we work on the state with two modes, we call the first
system A and the second system B.

Let us define the average fidelity of the physical process E
for the transformation task on the coherent states {|√Nα〉} →
{|√ηα〉} with N,η > 0 by

FN,η,λ(E) :=
∫

pλ(α)〈√ηα|E(|
√

Nα〉〈
√

Nα|)|√ηα〉d2α,

(1)

where the prior distribution of a symmetric Gaussian function
with the inverse width of λ > 0 is given by

pλ(α) := λ

π
exp(−λ|α|2). (2)

This distribution describes the uniform distribution in the
limit λ → 0. The fidelity represents the average probability
that the input state |√Nα〉 is exactly transformed into the
corresponding target state |√ηα〉 by the process E . When
η/N � 1, the transformation task implies the amplification of
the coherent-state amplitude with the gain factor η/N . When
η = N = 1, the task is referred to as the unit-gain task and the
fidelity estimates how well the input coherent state is retrieved
at the output port. When η/N < 1 the transformation suggests
amplitude dumping. This is the case for practical transmission
and storage processes, and the loss of fidelity can be seen as
a deviation from the ideal lossy channel. When N and η are
positive integers the task may be called N -to-η cloning where
the fidelity implies how well the transformation from N copies
|α〉⊗N to η copies |α〉⊗η can be achieved. The quantum-limit
fidelity is defined as an upper limit of the average fidelity F (E)
achieved by the completely positive trace-preserving map E .
We call the limit tight if the fidelity limit is achieved by
a completely positive trace-preserving map. Note that, from
Eqs. (1) and (2), by changing the integral parameter we can
verify the identity

FN,η,λ = FN
η

,1, λ
η
, = F1,

η

N
, λ

N
. (3)

Quantum optimal phase-insensitive linear amplifier. Let us
consider the amplification task {|α〉} → {|√ηα〉} with the gain
η > 1. In the following we show that the fidelity F1,η,λ is
bounded above by 1+λ

η
for sufficiently small λ and that this

bound is achieved by the known Gaussian amplifier. Note
that the tight quantum-limit fidelity of attenuation task with
η ∈ [0,1] is unity [11].

Proof. Let us consider the following integration [26] with
the parameters s � 0, 0 � κ � 1, and 0 � ξ < 1

JE (s,κ,ξ ) :=
∫

d2αps(α) 〈α|A 〈κα∗|BEA

⊗IB(|ψξ 〉〈ψξ |)|κα∗〉B |α〉A, (4)

where |ψξ 〉 =
√

1 − ξ 2
∑∞

n=0 ξn|n〉|n〉 is the two-mode
squeezed state and I represents the identity process. The
integration can be connected to the average fidelity by

JE (s,κ,ξ ) = s(1 − ξ 2)

λ
FN,1,λ(E), (5)

where the parameters are supposed to satisfy the following
relations

λ = s + (1 − ξ 2)κ2, (6)√
N = κξ. (7)

From the condition s � 0 with Eqs. (6) and (7), we have

λ

1 − ξ 2
� N + λ. (8)

We proceed to consider the upper bound of JE instead of the
upper bound of the fidelity F (E). For any physical process with
the complete positivity and trace-preserving condition, ρE :=
E ⊗ I (|ψξ 〉〈ψξ |) is a density operator. Then, the maximum of
JE with respect to the optimization of the process E is no larger
than the maximum achieved by the optimization of the density
operator ρE over the set of the whole physical states. Thus we
have

sup
E

JE (s,κ,ξ ) � max
ρE

Tr[ρM] = ‖M‖, (9)

where we define

M :=
∫

ps(α)|α〉〈α| ⊗ |κα∗〉〈κα∗|d2α,

and ‖ · ‖ := max〈u|u〉=1〈u| · |u〉 stands for the maximum eigen-
value.

Since M is a two-mode Gaussian state, its maximum
eigenvalue is given from the symplectic eigenvalues of its
covariance matrix [27]. Let us define the covariance matrix of
a density operator on the two-mode field ρ

γρ := 〈R̂R̂t + (R̂R̂t )t 〉ρ − 2〈R̂〉〈R̂t 〉ρ,
where R̂ := (x̂A,p̂A,x̂B,p̂B)t is the set of the quadrature
operators of the mode A and mode B whose elements
satisfy the canonical commutation relations [x̂A,p̂A] = i and
[x̂B,p̂B] = i. Then, the covariance matrix of the operator M is
calculated to be

γM = 14 + 2

s

(
12 κZ

κZ κ212

)
,

where 14 := diag(1,1,1,1), 12 := diag(1,1), and Z :=
diag(1,−1). To diagonalize this matrix we define a matrix
U (r) corresponding to the two-mode squeezing operator
Ûr := e−i(x̂Ap̂B+x̂B p̂A)r = e(â†b̂†−âb̂)r through the transformation

Û †R̂Û =
(

cosh r12 sinh rZ

sinh rZ cosh r12

)
R̂ =: U (r)R̂.

When the squeezing parameter satisfies tanh 2r =
2κ/(1 + s + κ2) the covariance matrix is diagonalized
as U (−r)γMUt (−r) = diag(ν+,ν+,ν−,ν−) where the
symplectic eigenvalues are determined to be

ν± = [
√

(1 + s + κ2)2 − 4κ2 ± (1 − κ2)]/s.
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Therefore, the diagonal form of M is the product of the
thermal states T (n̄+) ⊗ T (n̄−) with the mean photon numbers
n̄± = (ν± − 1)/2 where the thermal state with the mean
photon number n̄ is defined by

T (n̄) := 1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n

|n〉〈n|.

This implies the following form of the maximum eigenvalue
with the help of Eqs. (6) and (7):

‖M‖ = 4/[(ν+ + 1)(ν− + 1)]

= 2s

N + λ + 1 +
√

(N + λ + 1)2 − 4N/ξ 2
.

Using this relation, Eqs. (5), (8), and (9), we have

sup
E

FN,1,λ(E) � λ

s(1 − ξ 2)
‖M‖

� 2(N + λ)

N + λ + 1 +
√

(N + λ − 1)2

=
{
N + λ if (N + λ) � 1,

1 if (N + λ) > 1.
(10)

By taking the replacement (N,λ) → (1/η,λ/η) and using the
identity of Eq. (3), we obtain the upper bound of the fidelity
for the amplification task

sup
E

F1,η,λ(E) �
{

1+λ
η

if η � 1 + λ,

1 if η < 1 + λ.
(11)

Next we consider the attainability of this bound. The
Gaussian amplifier with the gain g = cosh2 r � 1 is defined
by Ag(ρ) := TrB[Urρ ⊗ |0〉〈0|BU

†
r ]. It transforms the coher-

ent state as Ag(|α〉〈α|) = 1
π(g−1)

∫
e
− |β|2

g−1 |√gα + β〉〈√gα +
β|d2β. This implies

F1,η,λ(Ag) = λ

λg + |√g − √
η|2

= λ

(λ + 1)
(√

g −
√

η

λ+1

)2 + λη

λ+1

� 1 + λ

η
,

where the equality is achieved when g = η/(1 + λ)2 � 1.
Therefore, the upper part of Eq. (11) is saturated by the
Gaussian phase-insensitive amplifier if the distribution is
sufficiently flat so as to satisfy η � (1 + λ)2. �

In the limit of λ → 0, our fidelity reproduces the quantum
limit for the case of the uniform distribution Fo = 1/η

[5,11]. As we can see, the fidelity value (1 + λ)/η always
exceeds the uniform limit Fo, and thus a naive comparison
of the experimental fidelity with Fo gives an illegal result
or an overestimation on how well the experimental device
is approximating the quantum-limited device. In contrast,
our result includes the effect of the finite distribution λ

and enables a legitimate estimation toward the fundamental
quantum limitation.

Optimal phase conjugator. Let us consider the
phase-conjugation task {|√Nα〉} → {|α∗〉} with
N > 0 and define the fidelity F ∗

N,1,λ(E) := ∫
d2αpλ(α)

〈α∗|E(|√Nα〉〈√Nα|)|α∗〉. We can show that the optimal
fidelity is given by

sup
E

F ∗
N,1,λ(E) = N + λ

N + λ + 1
, (12)

and is achieved by the classical MP scheme

E∗
MP (ρ) := 1

π

∫
〈α|ρ|α〉

∣∣∣∣∣
√

Nα∗

N + λ

〉 〈√
Nα∗

N + λ

∣∣∣∣∣ d2α. (13)

Proof. We start by defining J ∗
E (s,ξ,κ) :=∫

d2αps(α)〈α∗|A〈κα∗|BEA ⊗ IB(|ψξ 〉〈ψξ |)|κα∗〉B |α∗〉A simi-
larly to Eq. (4). Here, different from the previous case,
we assume a weaker constraint of κ � 0. This suggests
the phase-conjugation task with either attenuation or
amplification. Similar to Eq. (5) we can confirm the following
relation with the help of Eqs. (6) and (7):

J ∗
E (s,κ,ξ ) = s(1 − ξ 2)

λ
F ∗

N,1,λ(E). (14)

An upper bound of J ∗
E (s,ξ,κ) is given by the optimization of

the density operator ρ = E ⊗ I (|ψξ 〉〈ψξ |) over the physically
possible states, namely, we have

sup
E

J ∗
E (s,κ,ξ ) = max

ρ
Tr[ρM∗] � ‖M∗‖, (15)

where we define

M∗ =
∫

ps(α)|α〉〈α| ⊗ |κα〉〈κα|d2α. (16)

This operator is also a two-mode Gaussian state, and its
covariance matrix is calculated to be

γM∗ = 14 + 2

s

(
12 κ12

κ12 κ212

)
.

This covariance matrix can be diagonalized by a beamsplitter
transformation and the symplectic eigenvalues are determined
to be (ν+,ν−) = [1,1 + 2(1 + κ2)/s].

Hence, we have

‖M∗‖ = 4/[(ν+ + 1)(ν− + 1)] = s

s + 1 + κ2
. (17)

Equations (15) and (17) lead to

sup
E

J ∗
E (s,κ,ξ ) � s

s + 1 + κ2
.

Using this relation and Eqs. (6), (7), (8), and, (14) we obtain
the upper bound of the fidelity for the phase-conjugation task

sup
E

F ∗
N,1,λ(E) � λ

(1 − ξ 2)

1

N + λ + 1
� N + λ

N + λ + 1
.

On the other hand, this bound is achieved by the MP scheme
of Eq. (13) [i.e., FN,1,λ(E∗

MP ) = N+λ
N+λ+1 holds]. We thus obtain

Eq. (12). �
The value of the optimal fidelity for the covariant approach

[12,13] is reproduced when we set N = 1 and take the limit
λ → 0. Our result shows that the optimality of the classical
device for the phase-conjugation task occurs beyond the case
of the uniform distribution. The optimality of the classical
device suggests the coincidence of the quantum limit and
classical limit. Such a coincidence also occurs when the target
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states are orthogonal to each other [17]. Note that when the
optimization of the state ρE in Eq. (9) is limited over the
positive-partial-transpose states [26], the value of the optimal
fidelity corresponds to the value of the optimal fidelity for the
phase-conjugation task. Hence, for many of the tasks whose
target states are given by the transpose of the input states, it
is likely that the gap between the quantum limit and classical
limit disappears.

In conclusion, we have presented quantum limitations on
the phase-insensitive linear amplification and phase conjuga-
tion in terms of the average fidelity by assuming transformation
tasks on a Gaussian distributed set of coherent states. Thereby,

an experimental test can be done by using coherent states
with a finite amount of phase-space displacement on the
same footing as the success criterion for continuous-variable
quantum teleportation and quantum memory. It was also shown
that both of the fidelity limits can be achieved by the known
Gaussian machines and that the known results for the case of
the uniform distribution are safely reproduced. The present
results give a solid foundation to experimentally observe how
well the real device approximates the quantum-limited device
in a legitimate manner.
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[19] H. Häseler and N. Lütkenhaus, Phys. Rev. A 81, 060306(R)

(2010).
[20] M. Horodecki, P. W. Shor, and M. B. Ruskai, Rev. Math. Phys.

15, 629 (2003).
[21] A. S. Holevo, Probl. Inf. Transm. 44, 3 (2008).
[22] G. Chiribella, G. M. D’Ariano, P. Perinotti, and N. J. Cerf, Phys.

Rev. A 72, 042336 (2005).
[23] A. Furusawa et al., Science 282, 706 (1998); S. L. Braunstein

and H. J. Kimble, Phys. Rev. Lett. 80, 869 (1998).
[24] B. Julsgaard et al., Nature (London) 432, 482 (2004).
[25] H. P. Yuen and M. Ozawa, Phys. Rev. Lett. 70, 363 (1993);

V. Giovannetti et al., ibid. 92, 027902 (2004).
[26] R. Namiki, e-print arXiv:1104.1017; Phys. Rev. A (to be

published).
[27] G. Adesso and F. Illuminati, J. Phys. A 40, 7821 (2007).

040302-4

http://dx.doi.org/10.1103/RevModPhys.82.1155
http://dx.doi.org/10.1103/PhysRevD.26.1817
http://dx.doi.org/10.1103/RevModPhys.77.1225
http://dx.doi.org/10.1103/RevModPhys.77.1225
http://dx.doi.org/10.1103/PhysRevLett.85.1754
http://dx.doi.org/10.1103/PhysRevLett.85.1754
http://dx.doi.org/10.1103/PhysRevA.62.040301
http://dx.doi.org/10.1103/PhysRevA.62.040301
http://dx.doi.org/10.1103/PhysRevLett.95.070501
http://dx.doi.org/10.1103/PhysRevLett.96.163602
http://dx.doi.org/10.1103/PhysRevLett.103.010501
http://dx.doi.org/10.1103/PhysRevLett.94.240503
http://dx.doi.org/10.1103/PhysRevLett.94.240503
http://dx.doi.org/10.1103/PhysRevLett.96.060504
http://dx.doi.org/10.1103/PhysRevLett.98.170503
http://dx.doi.org/10.1103/PhysRevLett.98.170503
http://dx.doi.org/10.1103/PhysRevA.74.032305
http://dx.doi.org/10.1103/PhysRevLett.101.100502
http://dx.doi.org/10.1103/PhysRevLett.101.100502
http://dx.doi.org/10.1103/PhysRevA.64.032307
http://dx.doi.org/10.1016/S0375-9601(03)00954-X
http://dx.doi.org/10.1103/PhysRevA.60.R2626
http://dx.doi.org/10.1103/PhysRevA.60.R2626
http://dx.doi.org/10.1103/PhysRevLett.94.150503
http://dx.doi.org/10.1103/PhysRevLett.94.150503
http://dx.doi.org/10.1103/PhysRevA.78.032333
http://dx.doi.org/10.1103/PhysRevA.78.010307
http://dx.doi.org/10.1103/PhysRevA.78.010307
http://dx.doi.org/10.1103/PhysRevA.81.060306
http://dx.doi.org/10.1103/PhysRevA.81.060306
http://dx.doi.org/10.1142/S0129055X03001709
http://dx.doi.org/10.1142/S0129055X03001709
http://dx.doi.org/10.1134/S0032946008030010
http://dx.doi.org/10.1103/PhysRevA.72.042336
http://dx.doi.org/10.1103/PhysRevA.72.042336
http://dx.doi.org/10.1126/science.282.5389.706
http://dx.doi.org/10.1103/PhysRevLett.80.869
http://dx.doi.org/10.1038/nature03064
http://dx.doi.org/10.1103/PhysRevLett.70.363
http://dx.doi.org/10.1103/PhysRevLett.92.027902
http://arXiv.org/abs/arXiv:1104.1017
http://dx.doi.org/10.1088/1751-8113/40/28/S01

