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Engineering squeezed states of microwave radiation with circuit quantum electrodynamics
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We introduce a squeezed state source for microwave radiation with tunable parameters in circuit quantum
electrodynamics. We show that when a superconducting artificial multilevel atom interacting with a transmission
line resonator is suitably driven by external classical fields, two-mode squeezed states of the cavity modes can
be engineered in a controllable fashion from the vacuum state via adiabatic following of the ground state of the
system. This scheme appears to be robust against decoherence and is realizable with present techniques in circuit
quantum electrodynamics.
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Solid-state superconducting quantum circuits [1–4] have
both fundamental and practical implications in condensed-
matter physics, quantum optics, and quantum information.
Over the past years, we have witnessed a tremendous de-
velopment in this field. These circuits can be designed and
constructed on demand and possess the advantages of integra-
tion and scaling on a chip. Among numerous developments,
the field of circuit quantum electrodynamics (QED) [1,5–7],
an on-the-chip counterpart of cavity QED systems [8,9], has
attracted great interest. This system provides an unprecedented
level of tunability and flexibility in the implementation of the
strong-coupling limit [10] and the most promising platform
for studying quantum optics on a chip [11–19]. With the
development of the study of quantum optics in solid-state
superconducting quantum circuits, recently the phenomenon
of squeezing has been investigated in the context of circuit
QED [20–24]. Squeezed states have both fundamental and
practical implications in quantum optics and quantum infor-
mation processing. The goal of this work is to design a two-
mode squeezed field source utilizing a single superconducting
artificial atom interacting with a transmission line resonator
with today’s techniques in circuit QED.

In this Brief Report, motivated by the recent experimental
advance in designing superconducting artificial atoms [25,26],
we present a controllable two-mode squeezed field source
of microwave radiation with tunable parameters in circuit
QED. We demonstrate that, using a superconducting artificial
atom embedded in a transmission line resonator and suitably
driven by external fields, we can find a nontrivial ground
state (dark state) of the effective Hamiltonian controlling the
dispersive interaction dynamics. Adiabatically following this
ground state can transfer the resonator modes from the vacuum
state to the two-mode squeezed state in a controllable way,
while the superconducting artificial atom remains in its lowest
energy level. The degree of squeezing and preparation time
can be directly controlled by tuning the external driving fields.
Compared to previous studies on squeezing in circuit QED, this
scheme is insensitive to the decay of the excited states of the
artificial atom due to adiabatic following of the ground state.
The experimental implementation of this two-mode squeezed
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state source is accessible with currently available experimental
techniques in circuit QED.

The system we consider consists of a three-level super-
conducting artificial atom embedded in a transmission line
resonator, as sketched in Fig. 1. The atomic levels are labeled
|g〉,|e1〉, and |e2〉, where |g〉 is the ground state, and |e1〉
and |e2〉 are the first and second excited states. It has been
experimentally demonstrated that, in superconducting artificial
atoms, the transitions among the three states can be cyclic
under certain conditions. We apply three classical fields of
frequencies ω0, ω1, and ω2 dispersively driving the transitions
|g〉 ↔ |e1〉, |g〉 ↔ |e2〉, and |e1〉 ↔ |e2〉, with Rabi frequencies
�0, �1, and �2. Two cavity modes with frequencies ν1

and ν2 dispersively couple the transitions |e1〉 ↔ |e2〉 and
|g〉 ↔ |e2〉 with coupling constants g1 and g2. The detunings
for these transitions are �0 = ω01 − ω0, �1 = ω02 − ω1 =
ω12 − ν1, and �2 = ω12 − ω2 = ω02 − ν2. The Hamiltonian
of the whole system in the interaction picture with respect to
H0 = h̄

∑
i=1,2[νi â

†
i âi + ω0i |ei〉〈ei |], where the energy of the

ground state |g〉 has been taken to be zero, takes the form

HI = h̄�0|e1〉〈g|ei�0t + h̄�1|e2〉〈g|ei�1t + h̄�2|e2〉〈e1|ei�2t

+ h̄g1â1|e2〉〈e1|ei�1t + h̄g2â2|e2〉〈g|ei�2t + H.c., (1)

where âi is the annihilation operator for the cavity mode
with frequency νi (i = 1,2). The following conditions
are assumed: (i) |�0|,|�1|,|�2|,|�0 − �1|,|�0 − �2|,|�1 −
�2| � |�0|,|�1|,|g1|,|�2|,|g2|; (ii) |�0|,|�1|,|�2| � g1,g2;
and (iii) −|�1|2/|�1| � |�2|2/|�2| � |�0|2/|�0|. Condition
(i) guarantees that the dominant process is the two-photon
Raman transition between states |g〉 and |e1〉 via the excited
state |e2〉. Condition (ii) ensures that the terms proportional to
|g1|2 and |g2|2 can be neglected. Condition (iii) can completely
cancel the energy shifts (Stark shifts) and the related terms.
Thus we obtain the effective Hamiltonian of two-color Jaynes-
Cummings form,

Heff = h̄[�2(t)â2 − �1(t)â†
1]|e1〉〈g|

+ h̄[�2(t)â†
2 − �1(t)â1]|g〉〈e1|, (2)

where �i(t) = |�igi

�i
|, and �2(t) > �1(t) is assumed in the

following.
We now try to find the eigenstate of Hamiltonian Heff with

zero eigenenergy (dark state) and zero population in the excited
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FIG. 1. (Color online) (a) A superconducting multilevel artifi-
cial atom (fluxonium) embedded in a transmission line resonator.
(b) Energy level structure with couplings to the cavity modes and
microwave driving fields.

state |e1〉. We denote the state as |ψD〉 = |g〉|φ〉c, where |φ〉c
is a to-be-determined state vector for the cavity modes. We
define the quantity N− = â

†
2â2 − â

†
1â1 + |e1〉〈e1|. It is easy to

show that the quantity N− remains constant under the action
of the Hamiltonian Heff. Thus, if the system initially stays in
|01,02〉c|g〉 (i.e., N− = 0), then at any time it will be zero.
The state |n1,n2〉c is the two-mode Fock state for the cavity
modes. The conservation of the quantity N− is very significant
in the following discussions for obtaining the dark state of the
system. From the eigenvalue equation Heff|ψD〉 = 0, we have

[�2(t)â2 − �1(t)â†
1]|φ〉c = 0. (3)

From the Baker-Hausdoff formula eABe−A = B + [A,B] +
1
2! [A,[A,B]] + · · · , it is easy to obtain

[�2(t)â2 − �1(t)â†
1] =

√
�2

2 − �2
1(cosh ζ1â2 − sinh ζ1â

†
1)

=
√

�2
2 − �2

1e
ζ1â

†
1 â

†
2−ζ1â1â2 â2e

ζ1â1â2−ζ1â
†
1 â

†
2 ,

with cosh ζ1 = �2√
�2

2−�2
1

, sinh ζ1 = �1√
�2

2−�2
1

. Inserting

the above relation into [�2(t)â2 − �1(t)â†
1]|φ〉c = 0, we

have â2e
ζ1â1â2−ζ1â

†
1 â

†
2 |φ〉c = 0. This means that the state

eζ1â1â2−ζ1â
†
1 â

†
2 |φ〉c is a vacuum state for cavity mode 2, or

eζ1â1â2−ζ1â
†
1 â

†
2 |φ〉c = |02,φ1〉c, where |φ1〉 is an arbitrary state

for cavity mode 1 and we choose |φ1〉 = |01〉 due to the
conservation of the quantity N−. So at present we obtain the
dark state of the system,

|ψD(t)〉 = eζ1(t)â†
1 â

†
2−ζ1(t)â1â2 |01,02〉c|g〉. (4)

Obviously, the state eζ1â
†
1 â

†
2−ζ1â1â2 |01,02〉c =∑∞

n=0(tanh ζ1)n/ cosh ζ1|01,02〉c is a two-mode squeezed
state [24]. The squeezing parameter ζ1(t) = tanh−1 ε(t),
where ε(t) = �1(t)

�2(t) , which can be controlled through
tuning the Rabi frequencies �1(t),�2(t). The physics that
results in the dark state (4) is a quantum interference
phenomenon: the destructive interference between two
different pathways |i1,j2〉c|g〉 ↔ |(i + 1)1,j2〉c|e1〉 and
|(i + 1)1,(j + 1)2〉c|g〉 ↔ |(i + 1)1,j2〉c|e1〉, where i,j refer
to the cavity excitations.

Equation (4) represents the key result of this work, based on
which we can generate the squeezed state eζ1â

†
1 â

†
2−ζ1â1â2 |01,02〉c

from the initial vacuum state |01,02〉c. By varying the

parameters slowly, this allows the system to adiabatically
follow the dark state (4). If we require that

lim
t→t0

�1(t)

�2(t)
= 0, lim

t→tf

�1(t)

�2(t)
= ε0, (5)

then the dark state (4) consequently has the limits

|ψD(t0)〉 = |01,02〉c|g〉, |ψD(tf )〉 = eζ 0â
†
1 â

†
2−ζ 0â1â2 |01,02〉c|g〉,

(6)

where ζ 0 = tanh−1 ε0. So we can produce two-mode field
squeezing from the vacuum state of the cavity modes through
adiabatic passage while the superconducting artificial atom
remains in its lowest energy state during this process. This
adiabatic process is somewhat like the fractional stimulated
Raman adiabatic passage method [27], which can transfer the
population from a single state to a superposition state.

To confirm the above analysis, we perform numerical
simulations to see whether the system adiabatically follows
the dark state of Eq. (4) and two-mode squeezing can be
produced. The evolution of the system is governed by the
following master equation:

dρ

dt
= − i

h̄
[HI ,ρ] +

∑
i=1,2

κiD(âi)ρ +
∑

i

γiD(|g〉〈ei |)ρ,

(7)

where D[A]B ≡ ABA† − {A†A,B}, and κi and γi denote
the cavity photon decay rate and the decay rate from state
|ei〉 → |g〉, respectively. The initial state of the global sys-
tem is ρ(0) = |01,02〉c〈02,01| ⊗ |g〉〈g|. As mentioned above,
to implement this protocol requires that the two classical
fields have a counterintuitive pulse sequence initially, but
they terminate simultaneously while maintaining a constant
ratio of amplitudes. Here we choose the following pulse
shape for them [27]: �1(t) = �̃0 sin αe−(t−τ )2/T 2

and �2(t) =
�̃0e

−(t+τ )2/T 2 + �̃0 cos αe−(t−τ )2/T 2
. This pulse sequence is

believed to make the fractional stimulated Raman adiabatic
passage as robust as the general stimulated Raman adiabatic
process [27]. Through numerical solution of the master
equation, we plot the overlap between the density matrix
operator ρ and the instantaneous dark state |ψD(t)〉 [i.e.,
F = 〈ψD(t)|ρ|ψ(t)D〉], the average photon number per mode
n = 〈â†

i âi〉(i = 1,2), and the occupation of the excited state
|ei〉 [i.e., p = 〈|ei〉〈ei |〉 (i = 1,2)]. Figure 2(a) displays the
time evolution of the Rabi frequencies �1(t),�2(t). Figure 2(b)
shows the numerical results for the overlap F , the occupation
of the state |e1〉 p, and the average photon number n. As
predicted, the transfer to the target state is very efficient.
That the overlap is always close to 1 and the occupation of
the excited state |e1〉 or |e2〉 is nearly zero signify that the
system always remains in the instantaneous dark state in the
adiabatic limit. We also notice that the average photon number
per mode evaluated from the master equation coincides with
that in the case of an ideal two-mode squeezed state. At the
end of the process, we can prepare the cavity modes in a
two-mode squeezed state with about 12 photons per mode
from the given parameters, with a preparation time of about
2T (< 1/κ � 50T ). With typical experimental parameters in
circuit QED, the characteristic time T is about 100 ns, which
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FIG. 2. (Color online) (a) Time evolution of the Rabi frequencies
�1(t) and �2(t). The parameters are α = π/4.1, τ = 0.6T , and �̃0 =
20T −1. (b) Numerical results of the overlap F , and the occupation
of the excited state |e1〉 p. In the inset the average photon number
per mode, n, is shown. The parameters are chosen as |�0| � |�2| =
10�̃0, |�1| = 5�̃0,�0 = �̃0, g1 � g2 = 0.2�̃0, k1 � k2 = 0.005g1,
and γ1 � γ2 = 0.002g1.

means that g1 � g2 ∼ 50 MHz, and κ1 � κ2 ∼ 0.3 MHz, with
a quality factor of Q ∼ 105 for the cavity. The photon numbers
and preparation time can be further controlled through tuning
the external driving fields.

In principle, the above generic proposal can be experi-
mentally demonstrated with various Josephson-junction-based
artificial atoms coupling to a transmission line resonator (e.g.,
the flux qubit); when the bias magnetic flux is slightly away
from the flux degeneracy point, it possesses only a few
bound states among which the transitions can be cyclic [28].
Here we propose a convenient demonstration with a new
superconducting artificial atom design dubbed fluxonium that
has recently been introduced in experiments [25,26]. The
fluxonium has the same closed-loop topology as the flux qubit,
but the loop contains a Josephson junction series array, giving
an inductance much larger than the simple geometric induc-
tance. Experimental results show that this new qubit design
is totally insensitive to offset charges and exhibits very long
phase coherence times reaching several microseconds [25,26].
This artificial atom can be described by the Hamiltonian
Ha = 4ECN̂2 + EL

2 (ϕ̂ + 2π �ext
�0

)2 − EJ cos ϕ̂, where N̂ is the
charge on the junction capacitance and ϕ̂ is the reduced flux.
The externally imposed, static magnetic flux �ext threading
the loop �0 modulates the spacings of energy levels of the
artificial atom. When �ext/�0 �= 0,0.5, the transitions among
the lowest three bound states |g〉, |e1〉, and |e2〉 can be
cyclic; that is, bound states of this artificial atom lose their

well-defined parities. Then we can write the energies of the
fluxonium atom as Ha = ∑

j=1,2 h̄ω0j |ej 〉〈ej |, where h̄ω0j is
the energy difference between the two states |ej 〉 and |g〉. The
spacings of energy levels can be modulated by the external
flux bias �ext. For example, when the external flux �ext is near
the half-flux-quantum �0/2, the transition frequency ω01/2π

is about 350 MHz, while ω02/2π is about 14 GHz [26]. So the
two levels |g〉 and |e1〉 are nearly degenerate, and they can be
coupled via stimulated Raman pulses through the third level
|e2〉, forming a � energy level structure. In our proposal, we
need to properly tune the external magnetic flux to allow the
transition frequencies ω12 and ω02 to nearly match the first and
second harmonic modes, respectively, of a transmission line
cavity.

It is noted that several proposals for two-mode field
squeezing have been presented in the context of cavity QED
[29–32]. The dark-state method used in this work is quite
different from that in Ref. [32]. Cheng et al. [32] have assumed
that the atomic variables decay much more rapidly than the
cavity fields, and they have eliminated the atomic variables
adiabatically to get the dissipative evolution of the cavity
modes only. In the present work, the dark state involves the
atomic state and the field state. We do not have to assume the
strong dissipation condition. In fact, in a typical circuit QED
experiment, the characteristic decay rates for the cavity mode
and superconducting qubit are on the same order of magnitude.
Therefore, the above condition cannot be satisfied in general.

In conclusion, we have presented an efficient controllable
two-mode squeezed state source of microwave radiation with
an artificial atom capacitively coupled to a superconducting
transmission line resonator. The dark-state approach presented
in this work is generic and differs fundamentally from the
existing methods to produce microwave field squeezing.
Because of an unprecedented level of tunability and flexibility
in this setup, the degree of squeezing, the number of photons,
and the preparation time can be directly controlled. This
scheme is robust against decay of the superconducting atom
and is realizable with present techniques in circuit quantum
electrodynamics.
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