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Third-order dispersion drastically changes parametric gain in optical fiber systems
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We demonstrate that the third-order dispersion drastically changes the phase-sensitive parametric gain in
cw-pumped fiber systems. We analytically calculate the phase-sensitive gain as a function of the frequency for
amplification of two weak monochromatic fields with spectral components symmetric with respect to the pump
field. In the absence of the third-order dispersion, the phase-sensitive gain is symmetric with respect to the
frequency. When the third-order dispersion is present, the gain has an asymmetric shape. This asymmetry has its
origin in the phase-sensitive nature of the parametric gain.
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Nonlinear systems are well known to manifest a large
spectrum of dynamical behavior ranging from regular to
chaotic regimes. Both regimes exhibit complex spatiotemporal
solutions that have been subject to intensive research [1,2].
The key physical phenomenon characteristic for nonlinear
systems is instability. Among the different types of in-
stabilities, modulation instability (MI) is one of the most
famous since it naturally appears in diverse physical areas,
including hydrodynamics, plasma physics, and optics. The first
studies of MI date back to the early sixties in such different
fields as hydrodynamics [3], nonlinear optics [4], and plasma
physics [5].

In optics, the first experimental observation of MI was re-
ported in [6,7] where an intense quasicontinuous field injected
in an optical fiber was converted into a train of ultrashort
pulses. This ground-breaking experiment gave rise to rapid
development of parametric amplification and ultrashort pulse
generation that have become some of the most important
branches of research in nonlinear fiber optics.

In hydrodynamics, MI was shown to be one of the
fundamental mechanisms responsible for the formation of the
so-called rogue waves [8]. Very recently, optical equivalents
of the oceanic rogue waves have been discovered in optical
fibers [9] and are called “optical rogue waves.” In this context,
the generalized nonlinear Schrödinger equation (NLSE) was
shown to be successful in describing the formation of rogue
waves both in the ocean and in fibers. Many authors have
reported the important impact of higher order dispersive
terms in the generalized NLSE on the main characteristics
of rogue waves [8,10,11] and also on their non-Gaussian
statistics [12]. In particular, it was demonstrated that the
third-order dispersion is already sufficient to explain the
optical rogue wave formation and, most importantly, their
probability density function [13].

In this Brief Report, we show that the third-order dispersion
drastically affects the MI gain even in situations in which only
continuous-wave (cw) perturbations are considered. In our
recent work [14], we have considered a pulsed input signal.
Here, we take an input signal as two weak monochromatic
cw’s symmetrically detuned with respect to the pump wave.
We show that the amplitude of the output signal depends
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on the third-order dispersion. We have obtained an exact
analytical expression for the parametric gain over the whole
MI frequency band. Our analytical formula is in excellent
agreement with numerical simulations performed on the
governing generalized NLSE.

Fiber-based phase-sensitive parametric amplifiers (PSAs)
are very promising candidates for optical fiber communica-
tions. Indeed, it has been shown that PSAs can have a noise
figure (NF) below the 3-dB quantum limit of the phase-
insensitive amplifiers (PIA) [15]. Various configurations for
practical implementation of PSAs in optical-fiber systems have
been proposed recently in the literature (see, for example, [16]
and references therein). The two key parameters characterizing
the PSAs are the parametric gain and the NF. We expect
therefore that our analytical expression for the parametric gain
spectrum will be widely used by the community studying the
PSAs in optical fibers.

For the MI community, we believe that the interesting aspect
of our results is in the fact that we have demonstrated the
dependence of the MI gain for the cw signals upon the odd-
order dispersion terms in the generalized NLSE. This result
stands out as a striking contrast to the widespread belief that MI
is not affected by the odd-order dispersion terms and depends
only on the even-order ones.

Light propagation in an optical fiber is well described by the
following generalized NLSE for the slowly varying complex
amplitude A(z,τ ) of the electric field [17]:

i
∂A

∂z
− 1

2
β2

∂2A

∂τ 2
− i

1

6
β3

∂3A

∂τ 3
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Here, τ = t − β1z is the time in the reference frame moving
with the group velocity vg = 1/β1, β2 and β3 are the second-
and the third-order dispersion coefficients, and γ is the
nonlinear coefficient of the fiber.

Equation (1) has the following cw stationary (i.e., τ -
independent) solution:

Ast(z) = A0 exp(iγ P0z), (2)

where P0 = |A0|2 is the cw intensity at the entrance of the fiber.
We now perform a linearization of Eq. (1) around the stationary
solution Ast(z) with respect to a small perturbation a(z,τ ) such
that |a(z,τ )| � |A0|. Namely, we look for a solution of Eq. (1)
in the form

A(z,τ ) = Ast(z) + a(z,τ ). (3)
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Substituting Eq. (3) into Eq. (1) and keeping only linear
terms in a(z,τ ) and a�(z,τ ), we obtain the following linearized
equation:
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where we have introduced the phase θ of the complex
amplitude A0 as A0 = |A0| exp(iθ ). In order to solve the
linearized equation (4), we perform the Fourier transform of
the perturbation a(z,τ ) with respect to the temporal argument
τ and introduce the complex Fourier amplitude a(z,�) as
follows:

a(z,�) =
∫ ∞

−∞
dτei�τ a(z,τ ). (5)

For the Fourier amplitude a(z,�), we obtain a linear differen-
tial equation, which can be solved exactly. We can therefore
express the Fourier amplitude of the perturbation a(z,�) for
an arbitrary z in terms of the initial values at z = 0 of the
Fourier amplitudes a(0,�) and the conjugate a�(0, − �). This
solution can be written in the form

a(z,�) = U (z,�)a(0,�) + V (z,�)a�(0, − �), (6)

where the complex functions U (z,�) and V (z,�) read

U (z,�)

= ei(γ |A0|2z+ 1
6 β3�

3z)

×
{

cosh[g(�)z] + i
γ |A0|2 − 1

2β2�
2

g(�)
sinh[g(�)z]

}
,

V (z,�) = iei(γ |A0|2z+ 1
6 β3�

3z+2θ) γ |A0|2
g(�)

sinh[g(�)z], (7)

with

g(�) = |�|
√

γ |β2||A0|2 − (
1
2 |β2|�

)2
. (8)

In Eq. (8), we have assumed the anomalous dispersion, β2 < 0,
and have written β2 = −|β2|.

To our knowledge, the solution of the linearized NLSE
with dispersion coefficients of arbitrary order (even and
odd) was for the first time given in [18]. Unfortunately, the
solution in [18] [Eqs. (23) and (24) in that reference] contains
(presumably) a typographic misprint. Namely, the phase term,
equivalent to our expression exp(i 1

6β3�
3z) is written without z

and thus becomes independent of the propagation distance. As
is clear from what follows, this term is crucial for our analysis.
Therefore, we have solved independently the linearized NLSE
and obtained the correct solution given by Eqs. (6)–(8).

The coefficients U (z,�) and V (z,�) have the following
symmetry properties:

|U (z,�)| = |U (z, − �)|,|V (z,�)| = |V (z, − �)|, (9)

U (z,�)V (z, − �) = U (z, − �)V (z,�), (10)

which we use below. The expression for g(�) given by Eq. (8)
is very well known in the literature on MI [17]. According to
the standard theory of MI, after a sufficiently long distance
of propagation L, the perturbation will be dominated by the
most unstable Fourier modes corresponding to the maximum

of the expression g(�) with respect to �. This maximum
is reached for two symmetric frequencies ±�c such that
�c = √

2γP0/|β2| with P0 = |A0|2, where the maximum gain
gm = g(±�c) = γP0 is attained. The instability extends to
the frequencies |�| �

√
2�c where g(�) � 0. This condition

defines two MI side lobes. Since the third-order dispersion
term β3 does not appear in the expression for g(�), the general
conclusion is that β3 has no influence on the gain spectrum
or on the bandwidth of the MI. However, one has to realize
that conventional MI theory is restricted to monochromatic
perturbations. In order to describe MI for realistic signals with
a finite frequency band, one has to calculate the frequency-
dependent gain of the system for different Fourier components
� and not only for the most unstable modes with � = ±�c. In
our recent work [14], we have considered the response of the
system to a small pulsed input signal with Gaussian spectrum
located around the most unstable mode with � = �c. We have
found that for such a signal the modulation instability gain
depends on the third-order dispersion β3.

The configuration considered in [14], with only one signal at
�c present at the input to the system, is known in the literature
as phase-insensitive amplification [19]. In this Brief Report,
we investigate a more general case with two monochromatic
input signals around �c and −�c, corresponding to the phase-
sensitive amplification. Below we analytically calculate the
phase-sensitive gain characterizing the amplified quadrature
component of the field. We find that this phase-sensitive gain
strongly depends on the third-order dispersion term β3 even
for the monochromatic input signals.

In order to calculate the phase-sensitive gain, we investigate
the spatial evolution of the following small perturbation:

a(z,τ ) = a1(z)ei�0τ + a2(z)e−i�0τ , (11)

where a1(z) and a2(z) are the complex amplitudes of the signal
and idler and �0 is their detuning frequency with respect
to optical carrier frequency ω0 of the pump field. Thus, the
central frequencies of the signal ω1 and the idler ω2 are
ω1 = ω0 − �0 and ω2 = ω0 + �0. We assume that in general
�0 is different from �c discussed above. We evaluate the
complex amplitudes of the signal and the idler aµ(L),µ = 1,2
at z = L with arbitrary initial conditions at z = 0, aµ(0) = aµ.
Let us write the complex amplitudes aµ at the input of the
system as follows:

a1 = |a1|eiψ1 = (|c0| + |s0|)eiφeiϕ,
(12)

a2 = |a2|eiψ2 = (|c0| − |s0|)eiφe−iϕ.

Here, |c0| and |s0| are the amplitudes of the quadrature
components of the total field (signal and idler) determined
by the phase ϕ as

a1 + a2 = 2eiφ(|c0| cos ϕ + i|s0| sin ϕ), (13)

The phase-sensitive gain GPSA(ϕ) is defined as [20]

GPSA(ϕ) = |a1(L) + a2(L)|2
|a1(0) + a2(0)|2 , (14)

and depends on the phase ϕ of the amplified quadrature
component.

For evaluating the complex amplitudes aµ(L), we perform
the Fourier transform of Eq. (11) and introduce the Fourier
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amplitudes of the signal a1(z,�) = a(z,�0 + �) and idler
a2(z,�) = a(z, − �0 + �). Using aµ from Eq. (12) as initial
conditions, we have aµ(0,�) = aµδ(�). These initial condi-
tions guarantee that for z = L we have aµ(L,�) = aµ(L)δ(�).
The coefficients aµ(L) are found by substitution of aµ(0,�)
into Eq. (6) as

a1(L) = U1a1 + V1a
�
2, a2(L) = U2a2 + V2a

�
1, (15)

where U1 = U (L,�0), V1 = V (L,�0), U2 = U (L, − �0),
and V2 = V (L, − �0).

Using the symmetry properties of the functions U (z,�) and
V (z,�) from Eqs. (9) and (10), we can write the functions Uµ

and Vµ in the following form:

Uµ = cosh(r)e±iκei(ψ−ψ0), Vµ = sinh(r)e±iκei(ψ+ψ0), (16)

with “+” corresponding to µ = 1 and “−” corresponding to
µ = 2. Here r(�) is the squeezing parameter, defined as [21]

exp[±r(�)] = |U (z,�)| ± |V (z,�)|, (17)

and the arguments ψ0,ψ , and κ are equal to

ψ0(�) = −arg[U (z,�)V �(z,�)]/2,

ψ(�) = arg[U (z,�)V (z, − �)]/2, (18)

κ(�) = arg[V (z,�)V �(z, − �)]/2.

Using Eqs. (16), (15), and (12), we can express the
phase-sensitive gain GPSA(ϕ) as a function of the squeezing
parameter r(�) from Eq. (17) and the arguments from Eqs. (18)
and (12). Here, for the sake of simplicity, we discuss the
important case when the input intensities of the signal and
idler are equal, that is, |s0| = 0. In this particular situation, the
phase-sensitive gain reads

GPSA(ϕ) = [e2r cos2(�φ) + e−2r sin2(�φ)]
cos2(ϕ + κ)

cos2(ϕ)
,

(19)

with �φ = ψ0 − φ. This expression is the main result of
our paper. The first term in Eq. (19) is well known (see,
for example, [19,21]). The originality of our work is in the
appearance of the new multiplicative second term, which
is a function of the frequency via the parameter κ(�).
An inspection of the last equation in Eq. (18) shows that
κ(�) = 1

6β3�
3z is proportional to β3 and vanishes with it.

This parameter provides a measure of the asymmetry in
the spectrum that is widely observed in fiber systems when
third-order dispersion has to be accounted for.

In Fig. 1, we have shown the phase-sensitive gain GPSA(ϕ)
as a function of the detuning frequency �0 for different values
of the relative phase ϕ and nonzero third-order dispersion
coefficient β3. One can clearly observe the asymmetry of these
curves with respect to the frequency for the case of nonzero
ϕ. It is worth noting that when ϕ = 0, the gain spectrum
remains symmetric with respect to �0 even for β3 �= 0. The
explanation is easily seen from Eq. (19). Indeed, for ϕ = 0 the
second factor becomes cos2(κ) and remains symmetric with
respect to frequency even for a nonzero third-order dispersion
coefficient. We have compared the analytical expression given
by Eq. (19) with the parametric gain obtained from numerical
integration of the governing Eq. (1). The numerical results

FIG. 1. Phase-sensitive gain GPSA(ϕ) as a function of dimen-
sionless frequency �0/�c for four different values of the phase
ϕ: ϕ = 0, π/3, − π/3, and 3π/4. The pump power P0 = 1 W,
the nonlinear coefficient γ = 0.002 W−1m−1, the fiber length L =
700 m, and the second- and third-order dispersion coefficients are
β2 = −1 × 10−28 s2/m and β3 = 1 × 10−40 s3/m. Solid curves are
drawn using Eq. (19); diamonds correspond to numerical simulations
of the NLSE.

are displayed in Fig. 1 by the diamonds. One can see that the
agreement between the two results is excellent.

In Fig. 2, we have demonstrated the role of the third-order
dispersion parameter β3 on the parametric gain by plotting
on the same graph the parametric gain spectra for β3 that
are different from zero (red) and equal to zero (black). We
have chosen two different values of ϕ: ϕ = 0 and ϕ = π/3. In
the first case, ϕ = 0, both curves are symmetric with respect
to the detuning frequency in spite of the presence of β3.
The most striking feature in this case is that the picks of
gain oscillations are limited by the gain curve corresponding
to β3 = 0. However, the curve with β3 �= 0 shows more
oscillations due to the term κ(�) = 1

6β3�
3z. Thus, even for

ϕ = 0 the role of the third-order dispersion is very significant,
since the maximum gain is localized around some specific
frequency bands.

For ϕ = π/3, the presence of β3 enhances the gain for
all amplified frequency bands. Most important, the maximum
peak gain can be several times (four times in Fig. 2) higher
than the standard MI gain (black curve). This greatly contrasts
with the case ϕ = 0 and opens the possibility for achieving
high-gain noiseless amplification.

FIG. 2. (Color online) Phase-sensitive gain GPSA(ϕ) as a function
of dimensionless frequency �0/�c for β3 = 1 × 10−40 s3/m (red
curve) and β3 = 0 (black curve with single minimum). All other
parameters are as in Fig. 1.
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In summary, our analysis establishes the important impact
of the third-order dispersion on MI, resulting in a drastic
change in the phase-sensitive gain spectrum. Our results are
not specific to the third-order dispersion and can be extended

to the higher order odd-dispersion terms. Because our solution
is valid only at the initial stages of wave propagation in a fiber,
it should be considered as a precursor for longer propagation
distances.
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