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Quasistatic limit of the strong-field approximation describing atoms in intense laser fields:
Circular polarization
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In the recent work of Vanne and Saenz [Phys. Rev. A 75, 063403 (2007)] the quasistatic limit of the velocity
gauge strong-field approximation describing the ionization rate of atomic or molecular systems exposed to
linearly polarized laser fields was derived. It was shown that in the low-frequency limit the ionization rate is
proportional to the laser frequency ω (for a constant intensity of the laser field). In the present work I show that
for circularly polarized laser fields the ionization rate is proportional to ω4 for H(1s) and H(2s) atoms, to ω6

for H(2px) and H(2py) atoms, and to ω8 for H(2pz) atoms. The analytical expressions for asymptotic ionization
rates (which become nearly accurate in the limit ω → 0) contain no summations over multiphoton contributions.
For very low laser frequencies (optical or infrared) these expressions usually remain with an order-of-magnitude
agreement with the velocity gauge strong-field approximation.
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The name “the strong-field approximation” (SFA) is fre-
quently used to call one of two well-known versions of the
S-matrix theory which describes nonresonant multiphoton
ionization of atoms and ions in intense laser fields [1,2]. In
principle, this name (SFA) fits well to both theories where the
main approximation is connected with the use of the Gordon-
Volkov wave function [3,4] as a final state of an outgoing
electron. The basic difference between these two versions of
the S-matrix theory is the Hamiltonian form of the laser-atom
interaction. Keldysh used it in the length gauge (LG) [1], while
Reiss used this Hamiltonian in the velocity gauge (VG) [2].
The common feature of both approaches [1,2] is the application
of nonrelativistic and dipole approximations to a description of
atoms (or ions) in intense laser fields. In superstrong laser fields
first nondipole (i.e., connected with a magnetic-field compo-
nent of an electromagnetic plane wave) and then relativistic
effects have to be taken into account [5–8]. Let us note that
the magnetic-field component of the strong but nonrelativistic
laser field is less essential for a circular polarization (CP)
than for a linear polarization (LP) of the field [7,8]. This is
because a classical free electron in the circularly polarized
plane-wave electromagnetic field, even in the fully relativistic
regime, moves along a circle lying in the polarization plane (in
the simplest frame of reference, see Sec. 48, p. 134 of Ref. [9]
and Ref. [7]). In contrast, in the fully relativistic linearly
polarized plane-wave field the motion takes place along the
“figure-8” path in the plane determined by the polarization
direction and the propagation direction (in the simplest frame
of reference, see Refs. [6–9]). However, even in the case of
the LP, nonrelativistic nondipole tunneling theories [5,10,11]
proved correct in experiments for higher laser intensities than
expected [12,13].

In the recent work of Vanne and Saenz [14] the quasistatic
limit of the VG SFA in linearly polarized laser fields was
derived. It appears that in the quasistatic limit (ω → 0) the
ionization rate is proportional to the laser frequency. Naturally
the question then arises how the VG SFA ionization rate
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behaves in the quasistatic limit when the laser field is circularly
polarized. This is the main purpose of my present work. The
expressions which describe ionization rates in the VG SFA
were given in Ref. [2] [for the H(1s) atom] and in Ref. [15]
[for the H(1s), H(2s), H(2px), H(2py), and H(2pz) atoms].
Of course the nonrelativistic Gordon-Volkov wave function
was used to derive the ionization rates in Refs. [2,15]. On
the other hand, in the works of Krainov and Shokri [16,17]
an improved low-frequency theory was presented. It is based
on multiplying the Gordon-Volkov wave function by the
quasiclassical Coulomb correction factor of (2Z2/n2Fr)n (Z
is the nuclear charge, n is the effective principal quantum
number of the initial atomic or ionic state, F is the amplitude
of the electric field vector of the laser, and r is the distance
between the electron and the nucleus). [In the present work
I use atomic units (a.u.): h̄ = e = me = 1, and I substitute
explicitly −1 for the electronic charge.] The results of Refs.
[16,17] are valid not only when

F < FBSI = Z3/16n4, (1)

where FBSI is the so-called barrier-suppression field strength
{see, e.g., Eqs. (4) and (5) in Ref. [16]}. FBSI is a critical
field strength above which the atom should, in principle, ionize
immediately in the quasistatic limit. Equation (1) gives FBSI =
0.0625a.u. for the H(1s) atom. Another critical field strength
for the H(1s) atom was given in Refs. [18,19]. Namely, it was
Fcr ≈ 0.15 a.u., which seems to be a more realistic value. For a
sufficiently low frequency of the laser, the Keldysh parameter
γ [1] obeys

γ = Zω/nF � 1. (2)

I will assume that Eqs. (1) and (2) are satisfied, although
my numerical results [20] (see also Figs. 1–4 here) indicate
that for F � FBSI the new formulas are also useful if ω is
sufficiently low.
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FIG. 1. (Color online) The VG SFA ionization rates of the H(1s)
atom in the circularly polarized laser field for ω = 0.0043 a.u. vs
intensity of the field (see text for more detail).

The present notation resembles the one from Refs. [16,17].
In this notation Eqs. (A.11)–(A.14) from Ref. [15] take the
form

�1s =
∞∑

N=N0

aN

∫ π

0
dϑ sin ϑJ 2

N (pNF sin ϑ/ω2), (3)

�2s =
∞∑

N=N0

bN

∫ π

0
dϑ sin ϑ

×J 2
N (pNF sin ϑ/ω2), (4)

�2px
= �2py

=
∞∑

N=N0

cN

∫ π

0
dϑ sin3 ϑ

×J 2
N (pNF sin ϑ/ω2), (5)

�2pz
=

∞∑
N=N0

2cN

∫ π

0
dϑ sin ϑ cos2 ϑ

×J 2
N (pNF sin ϑ/ω2), (6)

where aN = 8Z5pN/dN,bN = Z5pN (−2EB + p2
N )2/d2

N,cN =
Z7p3

N/(2d2
N ),dN=(2EB+p2

N )2 and pN=√
2(Nω − UP − EB)
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FIG. 2. (Color online) As Fig. 1 but for ω = 0.057 a.u.
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FIG. 3. (Color online) The VG SFA ionization rates of the H atom
in the circularly polarized laser field for F = FBSI/3 vs ω. The data
shown in the plot are for four different initial states of this atom,
namely 1s, 2s, 2px or 2py , and 2pz. (For n = 1, FBSI = 0.0625 a.u.,
and for n = 2, FBSI = 0.00391 a.u.)

is the asymptotic momentum of the outgoing electron. EB =
Z2/(2n2) is the binding energy of the initial state of the
atom, UP = F 2/(2ω2) is the ponderomotive potential, N is the
number of photons absorbed, and N0 = [(UP + EB)/ω] + 1
is the minimal value of N . {The symbol [x] denotes the
integer part of x. For the laser field intensity I and the CP
the following relation holds: I = 2F 2.} It appears that in each
of Eqs. (3)–(6) the main contribution to the respective sum
comes from the terms where the final (asymptotic) kinetic
energy (EN = p2

N/2) of the outgoing electron is close to UP .
For the ordinary Bessel function JN [from Eqs. (3)–(6)] the
following asymptotic expansion will be used [21] [Eq. (9.3.2)]:

JN

(
N

cosh α

)
≈ (2πN tanh α)−1/2 exp [N (tanh α − α)] , (7)

which is valid for α > 0. [I have numerically verified that both
Eqs. (7) and (8) become more and more accurate as ω → 0.
Then α → 0 and N → ∞, but Nα3 → const for those values
of N which give the largest contribution to the sum over N .]
One substitutes N/ cosh α = pNF sin ϑ/ω2. Then in Eq. (7)
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FIG. 4. (Color online) The VG SFA ionization rates of the H(1s)
atom in the circularly polarized laser field for F = 2 a.u. vs ω.
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one applies the Taylor expansion to the argument of JN and the
argument of an exponential function, retaining each time two
nonzero terms of the lowest order. After solving the resulting
algebraic equation for the small quantity α, one substitutes
this α to the exponent in Eq. (7). Since α � 1 and α ≈ γ

assumption (2) is important. In the pre-exponential factor the
approximation tanh α ≈ α is sufficient. (For more detail see
Sec. 4 of Ref. [17].) As a result, one obtains

J 2
N

(
pNF sin ϑ

ω2

)
≈ nω

2πZpN

exp

[
− 2Z3

3n3F

(
1 − γ 2

15

)

− ZF

nω2

(π

2
− ϑ

)2
− Zω4

nF 3
δN ′2

]
, (8)

where δN ′ = δN − F 2/(6n2ω) and δN = N − F 2/ω3 −
EB/ω. When Eqs. (1) and (2) are satisfied, angular distri-
butions of outgoing electrons are strongly peaked at ϑ = π/2,
that is, electrons are mainly emitted in the polarization plane.
Equation (8) can be used now in Eqs. (3)–(6), leading to simple
Gaussian integrals upon ϑ ′ = π/2 − ϑ , where only a very
narrow vicinity of ϑ ′ = 0 matters. Therefore, in the integrals
upon ϑ ′ it is enough to take into account only the first nonzero
term of the Taylor expansion of trigonometric functions, which
appear in the integrands from Eqs. (3)–(6). For the H(1s) atom
(one puts n = 1) the respective integral is∫ π

0
dϑ sin ϑJ 2

N

(
pNF sin ϑ

ω2

)

≈ ω2

2
√

πZ3FpN

exp

[
−2Z3

3F

(
1 − γ 2

15

)
− Zω4

F 3
δN ′ 2

]
.

(9)

For H(2s), H(2px) [or H(2py)], and H(2pz) atoms (one puts
n = 2) the respective integrals are∫ π

0
dϑ sin ϑJ 2

N

(
pNF sin ϑ

ω2

)

≈
√

2ω2

√
πZ3FpN

exp

[
− Z3

12F

(
1 − γ 2

15

)
− Zω4

2F 3
δN ′ 2

]
,

(10)∫ π

0
dϑ sin3 ϑJ 2

N

(
pNF sin ϑ

ω2

)

≈
√

2ω2

√
πZ3FpN

exp

[
− Z3

12F

(
1 − γ 2

15

)
− Zω4

2F 3
δN ′ 2

]
,

(11)∫ π

0
dϑ sin ϑ cos2 ϑJ 2

N

(
pNF sin ϑ

ω2

)

≈
√

2ω4

√
πZ5F 3pN

exp

[
− Z3

12F

(
1 − γ 2

15

)
− Zω4

2F 3
δN ′ 2

]
.

(12)

Substituting Eqs. (9)–(12) in Eqs. (3)–(6), respectively,
one obtains asymptotic ionization rates in the form �asympt =∑∞

N=N0
�N (Z,ω,F ), where �N (Z,ω,F ) denote partial ioniza-

tion rates corresponding to absorption of exactly N photons.
When F = const and ω → 0 one obtains that N0 → ∞, but
one can change the index of summation to δN ′ [as defined

right below Eq. (8)]. In the limit ω → 0 δN ′ changes from
−∞ to +∞, but Eqs. (9)–(12) clearly show that the main
contribution to each sum comes from terms with δN ′ ≈ 0.
Furthermore, one can transform each sum over δN ′ to a
Gaussian integral. Since pN is large and changes much
slower with δN ′ than the exponential factor, one can put
p2

N ≈ F 2/ω2 � EB and neglect EB in the resulting integrand.
This makes the integration upon δN ′ trivial. Finally, one
obtains the following asymptotic expressions describing the
VG SFA ionization rates:

�
asympt
1s = 4Z3ω4

F 3
exp

[
−2Z3

3F

(
1 − γ 2

15

)]
, (13)

�
asympt
2s = Z3ω4

F 3
exp

[
− Z3

12F

(
1 − γ 2

15

)]
, (14)

�
asympt
2px

= �
asympt
2py

= Z5ω6

2F 5
exp

[
− Z3

12F

(
1 − γ 2

15

)]
,

(15)

�
asympt
2pz

= Z4ω8

F 6
exp

[
− Z3

12F

(
1 − γ 2

15

)]
. (16)

Equations (13)–(16) are the main result of this work.
For the H(1s), H(2s), and H(2pz) atoms their quantum
numbers (n,l,m) are the following: (1,0,0), (2,0,0), and
(2,1,0), respectively. Wave functions of the atoms H(2px) and
H(2py) are linear combinations of wave functions (normalized
to unity) with the quantum numbers (2,1,−1) and (2,1,1),
namely

�2px
= 1√

2
(�2,1,−1 − �2,1,1),

(17)

�2py
= i√

2
(�2,1,−1 + �2,1,1).

One can show [20] that in the VG SFA the ionization rate
is the same for all the initial states given by

�2p = α�2,1,−1 + β�2,1,1, (18)

where α and β are arbitrary complex numbers such that |α|2 +
|β|2 = 1. In particular one has

�
asympt
2,1,−1 = �

asympt
2,1,1 = �

asympt
2px

= �
asympt
2py

. (19)

When the electron is initially bound (EB = κ2/2) in
the zero-range potential with the initial-state wave function
(normalized to unity) given by

� (�r) =
√

κ/2πexp (−κr)/r, (20)

the ionization rate for the circularly polarized laser field in the
VG SFA is [2]

�zero−range =
∞∑

N=N0

κpN

∫ π

0
dϑ sin ϑJ 2

N

(
pNF sin ϑ/ω2

)
.

(21)
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If one utilizes Eq. (9) (with Z = κ) in Eq. (21), one finally
obtains

�
asympt
zero−range = F

2κ
exp

[
−2κ3

3F

(
1 − γ 2

15

)]
. (22)

The result (22) is in an agreement with the old result for
the ionization in a static electric field [22] if one puts γ = 0
in the last equation (what corresponds to ω = 0). Therefore,
for the zero-range binding potential, the ionization rate in the
circularly polarized laser field with ω → 0 is exactly the same
as in the static field of the same amplitude F . This is not true in
the VG SFA if the binding potential is the Coulomb one. For
example, instead of the well-known [22–24] static-field ex-
pression for the H(1s) atom: �stat = (4Z5/F ) exp(−2Z3/3F ),
Eq. (13) for γ = 0 gives �

asympt
1s ≈ (4Z3ω4/F 3) exp

(−2Z3/3F ). Only exponential factors are the same. The
proportionality coefficient ω4, which exists in Eq. (13), is the
counterpart (for the CP) of the proportionality coefficient ω

found formerly by Vanne and Saenz in Ref. [14] (for the LP).
However, unlike for the LP, the power of ω in the co-
efficient depends on the (n,l,m) quantum numbers of the
initial state for the CP [cf. Eqs. (13)–(16)]. As a result,
for both polarizations of the laser field I = const and ω →
0 lead to nulling of the ionization rate. The authors of
Ref. [14] state that “This evidently unphysical result indicates
a breakdown of the SFA.” (see Sec. IV of Ref. [14]) and
they propose an application of a Coulomb correction factor
(based on the results of Ref. [10]) to the VG SFA ionization
rate formula. For the H(1s) atom and the VG SFA such
Coulomb-corrected theory has been recently proposed for both
polarizations [25].

In Figs. 1–4 there are the VG SFA ionization rates as a
function of intensity (Figs. 1 and 2) or frequency (Figs. 3 and 4)
for the H atom in the strong circularly polarized laser field.
In each plot I compare the exact and the asymptotic results.
Solid lines correspond to the exact ones [from Eqs. (3)–(6)]

and dotted lines correspond to the asymptotic ones [from
Eqs. (13)–(16)]. In Figs. 1–4 the field parameters (ω,I ) cover
a total range of a validity of the nonrelativistic SFA. In
Figs. 1 and 2 the laser frequencies are fixed. Both frequencies
are of an experimental interest. ω = 0.0043 a.u. conforms
with CO2 laser radiation (λ = 10.6 µm), and ω = 0.057 a.u.

conforms with Ti : sapphire laser radiation (λ = 800 nm).
There are also two vertical lines (in each of Figs. 1 and 2)
which show IBSI = 2F 2

BSI and Icr = 2F 2
cr for the H(1s) atom.

The agreement between exact and asymptotic ionization
rates particularly for the lower frequency ω = 0.0043 a.u.

is satisfactory. For ω = 0.057 a.u. it is hard to obey both
the conditions (1) and (2). Therefore, in the case of Fig. 2,
Eq. (13) can be treated rather as an useful approximation (an
upper bound) to Eq. (3). Nevertheless, if F ∼ FBSI (or lower)
is fixed, the agreement between exact and asymptotic results
is very good for sufficiently low frequencies (see Fig. 3, where
F = FBSI/3). I have evaluated that in the limit ω → 0 a relative
error introduced by the approximation (7) is of the order of
5n3F/(24Z3). {This estimation is based on Eqs. (9.3.7) and
(9.3.9) from Ref. [21].} Therefore, if condition (1) is satisfied
this error is of the order of 1% or less. In Fig. 4 F = 2 a.u.,
which is well above FBSI. For ω → 0 there are two parallel
lines in the log-log plot. This fact indicates that also for
F > FBSI (in the limit ω → 0) the VG SFA ionization rate
for the H(1s) atom is proportional to ω4.

In conclusion, I have derived approximate formulas for the
VG SFA ionization rate for the hydrogenic atom in the initial
state with n either equal to 1 or 2. It appears that the respective
ionization rate is proportional to ω4 [for (n,l,m) = (1,0,0) or
(2,0,0)], to ω6 [for (2,1,±1)], and to ω8 [for (2,1,0)]. These
asymptotic expressions become nearly exact in the quasistatic
limit. For finite but low frequencies these expressions may
be treated as very simple upper bounds to the exact VG SFA
expressions. The latter become much more time consuming
(in numerical calculations) in the infrared or far-infrared
frequency regime.
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