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Density functional, density matrix functional, and the virial theorem
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On the basis of the virial theorem for finite motion of interacting electrons in a static external field, it is shown
that ground-state energy is determined evidently by the one-particle density matrix. The exact expression for
ground-state energy is found and can be applied to various problems, in particular, in studying the electronic
structure of atoms, molecules, and other bound complexes.
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At present, for theoretical consideration of the equilibrium
properties of inhomogeneous electron gas in a static Coulomb
field of nuclei, the density-functional theory (DFT) (see, e.g.,
[1,2] and references therein) and the density-matrix-functional
theory (DMFT) (see, e.g., [3,4] and references therein) are
used. The DFT is based on the Hohenberg-Kohn theorem [5]
for the ground-state energy in a local external field, while the
DMFT is based on the Gilbert theorem [6] for the ground-state
energy in a nonlocal static external field.

As shown in [7,8], the Hohenberg-Kohn theorem can also
be proved for the one-particle density matrix ρ(1)(r,r1) in
the local external field, taking into account the fact that the
nonuniform density n(r) = ρ(1)(r,r) is completely defined if
the one-particle density matrix is known (the reverse is, gen-
erally speaking, incorrect). Within the DFT, the nonuniform
density n(r) calculation is reduced to solving the Kohn-Sham
equations [9] with a local effective external field. In turn,
the one-particle density matrix ρ(1)(r,r1) calculation within
the DMFT is reduced to solving the equations similar to the
Hartree-Fock equations, with nonlocal effective external field
(see, e.g., [3]). In this case, it seems impossible to establish
a correspondence between Kohn-Sham and Hartree-Fock
equations [10,11], except for the case of the quasiclassical
approximation, when the ground-state energy of the inhomo-
geneous electron gas in the Hartree-Fock approximation is
reduced to the Thomas-Fermi approximation (see, e.g., [12]).
Thus, the theory of the equilibrium inhomogeneous electron
gas contains an ambiguity associated with the choice between
DFT and DMFT. Such an ambiguity can be resolved in two
possible ways. Either both theories lead to equivalent results
for the ground-state energy of the inhomogeneous electron gas
or the choice between them is caused by characteristics of the
local external field acting on the electron gas.

Let us pay attention to the fact that the theoretical study
of properties of equilibrium systems of interacting particles
is often based on the assumption that the system Hamiltonian
completely defines these properties (see, e.g., [13]). However,
setting the Hamiltonian of the system is insufficient to correctly
describe its equilibrium properties. A typical example is the
“special” (in addition to the Hamiltonian) consideration of
the identity of particles in the nonrelativistic consideration
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of quantum equilibrium systems, which necessitates the pro-
cedure of wave-function symmetrization (or antisymmetriza-
tion) or the use of the secondary quantization formalism
(see, e.g., [14]). To solve the problem under consideration,
it is required to know boundary conditions for wave func-
tions, without which the Schrödinger equation with an exact
Hamiltonian of the interacting particle system cannot be solved
[14]. The conventional quantum-mechanical statement of the
problem about boundary conditions is reduced to the condition
of wave function vanishing at an infinite distance of a particle
from the “force center” (an alternative problem statement in
which a particle at an infinite distance behaves as a free one
relates to the scattering theory, and it obviously cannot be
used in describing equilibrium properties). It is the case of
the so-called finite motion, i.e., motion in a limited region
of space, although the space itself is not limited in any way.
According to quantum-mechanical concepts, stationary states
of the many-particle system with discrete energy spectrum
correspond to finite motion [14]. Among such problems is the
major problem of the determination of bound electronic states
in a static field of nuclei (atom, molecule, etc.). In turn, the
so-called virial theorem, which was established 140 years ago
by Clausius within classical mechanics, is valid for the finite
motion.

The virial theorem formulation for quantum mechanics,
taking into account vanishing wave functions at infinity, is
given by (see, e.g., [15])

2〈K〉 − 〈r · ∇U (r)〉 = 0, (1)

where angle brackets 〈. . .〉 denote, as usual, quantum-
mechanical or quantum-statistical averaging (depending on the
problem statement), K is the kinetic energy operator, r · ∇U (r)
is the potential energy virial, and the quantity U is the sum
of potential energies of the interparticle interaction U int with
potential ϕint and the energy of the interaction U ext with the
static external field with potential ϕext which provides finite
motion of particles in the considered equilibrium system of N

interacting particles:

U = U int + U ext, U int = 1

2

N∑
a,b=1,a �=b

ϕint(|ra − rb|),
(2)

U ext =
N∑

a=1

ϕext(ra).
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Let us pay attention to the fact that the virial theorem
derivation [15] for quantum mechanics is based on analysis
of the stationary Schrödinger equation for the system of
interacting electrons in the Coulomb field of immobile nuclei
and is used for describing the bound (localized) electronic
states in the ground energy state. Due to the exponential decay
of localized wave functions of bound electronic states with the
distance from nuclei being localization centers, wave functions
can be taken equal zero at the system boundaries. A detailed
analysis (see [16] and references therein) shows that the virial
theorem formulation for the ground state in the “traditional”
form (1) requires that not only wave functions themselves,
but also their spatial derivatives, would vanish at infinity. This
is exactly the consideration of the boundary conditions for
solving the corresponding Schrödinger equation. It is easy to
verify, e.g., that relation (1) is satisfied for one electron in
the Coulomb field of the attractive center. In what follows,
we take into account that in the secondary quantization
representation,

〈r · ∇U ext(r)〉 =
∫

n(r)[r · ∇ϕext(r)]dr,
(3)

n(r) = 〈N (r)〉, N (r) = �†(r)�(r),

where n(r) is the inhomogeneous density of the number of
particles, �+(r) and �(r) are the field creation and annihilation
operators, and N (r) is the density operator of the number of
particles. Integrating in (3) by parts, it is easy to verify that∫

n(r)[r · ∇ϕext(r)]dr = −
∫

{3n(r) + r · ∇n(r)}ϕext(r)dr.

(4)

In deriving (4), it was taken into account that the inhomo-
geneous density for finite motion vanishes on the infinitely
remote surface bounding the space occupied by the system
(the so-called condition at infinity [14]). In this case,∮

n(r)ϕext(r) r · dS = 0, (5)

where dS = ndS, n is the unit vector of the external normal
to the surface, and dS is the infinitely remote surface unit.
Therefore, for the exact solution to the Schrödinger equation
in the static Coulomb field of nuclei, which provides finite
motion for the system of interacting electrons in the ground
localized state (atom, molecule, etc.) in infinite space, which
is of major interest for quantum chemistry, the virial theorem
(1), taking into account (2) and (4), takes the form

2〈K〉 + 〈U 〉 = −
∫

{2n(r) + r · ∇n(r)}ϕext(r)dr. (6)

Hence, according to (2), for the ground-state energy E0 of
such a system,

E0 = 〈K〉0 + 〈U 〉0, 〈U 〉0 = 〈U int〉0 + 〈
U ext

0

〉
, (7)

one finds the equality

E0 = −〈K〉0 −
∫

{2n0(r) + r · ∇n0(r)}ϕext(r)dr, (8)

where the index 0 means that the corresponding quantity
is defined for the ground state of the system. Note that

a relation similar to (8) has been used (see, e.g., [17,18])
in parallel with the Hellman-Feynman theorem, to analyze
the universal density functional in the framework of the
Hohenberg-Kohn hypothesis [5] on the existence of a universal
density functional (for more detail see [19]). Take into
account the fact that the average kinetic energy is com-
pletely defined by the one-particle density matrix ρ(1)(r1,r2) =
〈�+(r1)�(r2)〉,

〈K〉 = − h̄2

2m

∫ {∇2
r1
�(1)(r,r1)

}
|r1=r

dr. (9)

In turn, the inhomogeneous density of the number of
particle is n(r) = ρ(1)(r,r). Hence, according to (8) and
(9), the ground-state energy of the system of interacting
electrons in the static Coulomb field of nuclei during finite
motion is completely defined by the one-particle density
matrix.

Taking into account the Hohenberg-Kohn theorem for the
one-particle density matrix [7,8], we come to the conclusion
that the ground-state energy of the inhomogeneous interacting
electron gas during finite motion is undoubtedly the one-
particle density matrix functional. Strictly speaking, this does
not mean that the ground-state energy cannot be the density
functional in this case. In this regard, let us pay attention to the
fact that in the case of noninteracting electrons (〈U int〉 = 0),
according to (6), we can write

〈K〉 = −1

2

∫
{3n(r) + r · ∇n(r)}ϕext(r)dr. (10)

Hence, taking into account (8) and (10), the ground-state
energy for noninteracting particles during finite motion in a
given static local field can be considered as both the density
matrix functional and the density functional.

Thus, based on (8) and (9), we can certainly argue that,
in the case of finite motion of interacting electrons in a
static external field, the ground-state energy is completely
determined by the one-particle density matrix. This means
that the results of the use of the DMFT have an advantage over
the results of the use of the DFT, in particular, in studying
the electronic structure of atoms, molecules, and other bound
complexes, where interacting electrons exhibit finite motion.
It is obvious, since the explicit form of the density functional
is unknown. However, Eq. (8) cannot be directly applied to
the determination of the one-particle density matrix using the
variational procedure. To use the variational procedure, as in
the case of the DFT (see [19] for more details), the existence of
the universal (i.e., whose form is the same for various external
fields) functional of the one-particle density matrix should
be proved. The existence of such a universal functional of the
one-particle density matrix is one of the central problems of the
DMFT (see, e.g., [20]). In addition, to use (8) for a variational
procedure the detailed consideration of the N -representation
problem is needed. Nevertheless, the existence of the exact
DMFT functional [(8) and (9)] already provides the basis for
many practical applications.
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