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We demonstrate theoretical conditions for highly efficient degenerate four-wave mixing in triply resonant
nonlinear (Kerr) cavities. We employ a general and accurate temporal coupled-mode analysis in which the
interaction of light in arbitrary microcavities is expressed in terms of a set of coupling coefficients that we
rigorously derive from the full Maxwell equations. Using the coupled-mode theory, we show that light consisting
of an input signal of frequency ω0 − �ω can, in the presence of pump light at ω0, be converted with quantum-
limited efficiency into an output shifted signal of frequency ω0 + �ω, and we derive expressions for the critical
input powers at which this occurs. We find the critical powers in the order of 10 mW, assuming very conservative
cavity parameters (modal volumes ∼10 cubic wavelengths and quality factors ∼1000). The standard Manley-
Rowe efficiency limits are obtained from the solution of the classical coupled-mode equations, although we also
derive them from simple photon-counting “quantum” arguments. Finally, using a linear stability analysis, we
demonstrate that maximal conversion efficiency can be retained even in the presence of self- and cross-phase
modulation effects that generally act to disrupt the resonance condition.
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I. INTRODUCTION

For many years, researchers have used confinement of
light for a long time in a small volume (resonant cavities)
to enhance light-matter interactions such as optical nonlinear-
ities, recently entering the integrated-optics regime of smaller
and smaller cavities with limited sets of interacting modes.
In such systems, careful design is required to maximize the
efficiency and minimize the power of a a given nonlinear
process such as frequency conversion [1–17], and the use
of cavities can also lead to qualitatively new phenomena
such as bi- or multistability [1,3,18–31]. While the use of
cavities is known to enhance nonlinear effects, every distinct
nonlinear process requires a new analysis. In this paper, we
consider the problem of intracavity degenerate four-wave
mixing (DFWM): an electromagnetic cavity resonant at three
frequencies ω0 and ω0 ± �ω, in which a third-order (χ (3))
nonlinearity converts an input signal at ω0 − �ω to an output
shifted signal at ω0 + �ω in the presence of an input pump
at ω0. The small-�ω regime corresponds, for example, to
conversion between different channels in wavelength-division
multiplexing (WDM), which is similar to recent experimental
studies of nonlinear frequency conversion in cavities [32–40].
It allows one to exploit structures such as ring resonators
[3] or photonic-crystal cavities [41] that support closely
spaced resonances; in Sec. IV A, we show that this regime
supports stable quantum-limited conversion at low signal
powers for a critical pump power. Conversely, we show that the
�ω > ω0 regime generalizes our previous work on intracavity
third-harmonic generation (THG) [1,2]; in Sec. IV B, we
show that this regime supports stable conversion with 100%
efficiency at a critical pump and signal power. For example,
with a typical nonlinear material such as gallium arsenide
(GaAs) and reasonable cavity parameters (volume ∼10 cubic
wavelengths and quality factors ∼1000), we obtain critical
powers in the milliwatts (on the order of 10 mW) for both

�ω regimes. The standard Manley-Rowe efficiency limits are
considered from both a simple photon-counting “quantum”
argument [42,43] and are also derived from purely classical
coupled-mode equations [44,45] (Sec. III), where the latter
also yield stability information, critical powers, and other
dynamics (Secs. IV A and IV B). The coupling coefficients
in these equations are derived explicitly from the full Maxwell
equations for arbitrary microcavities (Sec. II). We also show
that the nonlinear dynamics leads to additional phenomena,
such as multistability and limit-cycle (self-pulsing) solutions,
similar to phenomena that were previously shown for other
nonlinear systems [1,18,46,47] (Secs. IV A and IV B). Finally,
in Sec. IV C, we consider the effects of self- and cross-phase
modulation (SPM and XPM), which induce nonlinear shifts
in the cavity frequencies; these must be compensated by
preshifting the resonances and they also affect the stability
analysis (as we previously found for THG [1]).

Although nonlinear effects in electromagnetism are weak,
it is well known that confining light in a small volume
and/or for a long time, as in a waveguide or cavity, can
both enhance the strength and modify the nature of nonlinear
phenomena [48,49]. Much previous work in nonlinear fre-
quency conversion has studied χ (2) processes (where there is
a change in the susceptibility that is proportional to the square
of the electric field) such as second-harmonic generation
(SHG) [2,4,17,46,50–59], sum/difference-frequency genera-
tion (SFG/DFG) [5,6,60–63], and optical parametric amplifi-
cation (OPA) [64–66]. Studies of SHG in doubly resonant χ (2)

cavities have demonstrated that 100% conversion efficiency is
achieved at critical pump power, much lower than for SHG
in singly resonant cavities [2,4,17,51–56,58,67–69]. Recent
studies of DFG in triply resonant χ (2) cavities also showed
the existence of a critical relationship between pump and idler
power that results in optimal quantum-limited conversion [61],
with potential applications to terahertz generation [7,8]. The
existence of quantum-limited frequency conversion can be
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predicted from the Manley-Rowe relations, which govern the
rates of energy transfer in nonlinear systems [48]. There has
also been some recent work on intracavity χ (3) third-harmonic
generation [1]. (In a χ (3) medium, there is a change in the
refractive index proportional to the square of the electric field.)
As in SHG, THG in doubly resonant cavities has been shown
to support solutions with 100% conversion efficiency, even
when taking into account nonlinear frequency shifting due to
SPM and XPM, as well as interesting dynamical behavior such
as multistability and limit cycles (self-pulsing) [1], with lower
power requirements compared to singly resonant cavities or
nonresonant structures [9,50,59,66,70–82]. Limit cycles have
been observed in a number of other nonlinear optical systems,
including doubly resonant χ (2) cavities [46,83], bistable
multimode Kerr cavities with time-delayed nonlinearities [84],
nonresonant distributed feedback in Braggs gratings [19], and
a number of nonlinear lasing devices [85].

In what follows, we extend the previous work on SHG,
DFG, and THG in resonant cavities to the case of DFWM in
χ (3) media. Four-wave mixing is characterized by taking input
light at frequencies ω1,ω2, and ω3 and producing light at fre-
quency ω4 = ±ω1 ± ω2 ± ω3; degenerate four-wave mixing,
however, is restricted to the case where ω1 = ω3 to generate
2ω1 − ω2. Previous work has studied FWM in the context of
optical fibers [86–90], photonic crystal waveguides [91,92],
and even matter waves [93], and has demonstrated the use of
FWM in applications such as phase conjugation [65,94–96]
and generation of two-photon coherent states [86,97,98].
While there has been recent experimental work on intracavity
FWM in χ (3) media (degenerate or otherwise) [32–40,99–101],
we are not aware of any detailed studies of the underlying
theoretical phenomena in general cavities. As we shall see
DFWM in triply resonant cavities shares many qualitative
features with SHG, DFG, and THG, including the existence
of critical powers at which optimal conversion efficiency is
achieved as well as interesting nonlinear phenomena such as
limit cycles and multistability. As in DFG, and unlike SHG
or THG, there exist Manley-Rowe limitations on the overall
conversion efficiency. In Sec. III, we discuss the corresponding
relations governing four-wave mixing and illustrate their
implications for conversion efficiency. These relations can be
obtained classically through temporal coupled-mode theory
[44,45], but they are more easily motivated and understood
from a quantum perspective [42,43]. Such arguments have
been employed before in the context of lasing [102,103], RF
circuits [104], and other nonlinear optics phenomena [48]. In
the case of intracavity frequency conversion, we show how
both perspectives yield limits on conversion efficiency.

Several different approaches can be used to study non-
linear optical systems. Most directly, brute-force numerical
simulations by a variety of methods, such as finite-difference
time-domain (FDTD) [41,105], offer the most general and
flexible technique, in that they can characterize phenomena
involving many degrees of freedom and going beyond the
perturbative regime; however, such simulations are relatively
slow and allow one to study only a single geometry and
excitation at a time. More abstract analyses are possible in
many problems because confinement to a waveguide or cavity
limits the degrees of freedom to the amplitudes of a small
set of normal modes, combined with the fact that optical

nonlinearities are typically weak (so that they can be treated
as small perturbations to the linear modes). For example,
many nonlinear phenomena have been studied in the context
of co-propagating plane waves, in which the amplitudes of
the waves can be shown to satisfy a set of simple ordinary
differential equations (ODEs) in space (the slowly varying
envelope approximation) [48]. More generally, however, it
can be shown that all nonlinear problems coupling a finite
set of modes and satisfying certain fundamental principles
such as conservation of energy, regardless of the underlying
wave equation (e.g. electromagnetic or acoustic waves), can
be described by a universal set of ODEs characterized by
a small number of coefficients, determined by the specific
geometry and physics. This approach, which has come to be
known as temporal coupled-mode theory (TCMT), dates back
several decades [44,106] and has been applied to a number of
problems, including microwave transmission systems [104],
active media microphotonic structures [107], and the nonlinear
intracavity problems mentioned above [1,2,61,106]. Likewise,
we employ TCMT in this paper to characterize the most general
possible behavior of intracavity DFWM systems, regardless
of the nature of the cavity. As reviewed elsewhere [44],
TCMT begins with the purely linear system and breaks it
into abstract components such as input and output channels
(e.g. waveguides or external losses) and cavities, characterized
by resonant frequencies and coupling rates that depend on
the geometry. It then turns out that the ODEs describing
such a system are completely determined by those parameters
once the constraints of conservation of energy, linearity,
time-invariance, and reciprocity (or time-reversal invariance)
are included, under the key assumption that coupling rates are
slow compared to the frequencies (i.e., strong confinement)
[41,44]. Nonlinearities can then be introduced as additional
terms in these equations, without disturbing the previously
derived relationships, as long as the nonlinear processes are
also weak (i.e., nonlinear effects occur slowly compared to
the frequency), which is true in nonlinear optics [48]. Using
these ODEs, the general possible behaviors can be obtained
(including the Manley-Rowe relations mentioned above); but,
to obtain the specific characteristics of a particular geometry,
one then needs a separate calculation to obtain the cavity
parameters. Properties of the linear modes, such as frequencies
and lifetimes (Q), can be obtained by standard computational
methods [41,44]. It turns out that the nonlinear coefficients can
also be obtained from the linear calculations, thanks to the fact
that the nonlinearities are weak; using perturbation theory,
expressions for the nonlinear coefficients as integrals of the
linear modes can be derived from Maxwell’s equations. Such
expressions were previously derived for SHG and THG [2],
and also recently for DFG [61]. Here, we derive both the
abstract TCMT equations and the specific nonlinear coupling
coefficients for DFWM in the Maxwell equations with χ (3)

nonlinearities.
In Sec. II, we begin to apply the coupled-mode formalism

to the case of DFWM in a triply resonant cavity to obtain
the coupled-mode equations of motion as well as explicit
expressions for the nonlinear coupling coefficients. We then
briefly discuss general properties of the conversion process
in Sec. III and, using the standard Manley-Rowe relations
and simple photon-counting arguments, obtain limits on the
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FIG. 1. (Color online) ( Left) Schematic for degenerate four-wave
mixing involving a coupled waveguide-cavity system. Dynamical
variables for coupled-mode equations represent a single input (output)
channel [with incoming (outgoing) field amplitudes s±] coupled to a
resonant cavity with three modes at frequencies ω0, ωm = ω0 − �ω,
and ωp = ω0 + �ω (and corresponding amplitudes a0, am, and ap).
The three resonant modes are nonlinearly coupled by a Kerr (χ (3))
nonlinearity. (Right) Diagram illustrating the relationship between
the three resonant frequencies.

maximal efficiency of the system. In Secs. IV A and IV B,
we analyze the stability and dynamics of the solutions to
the coupled-mode equations obtained in Sec. II, neglecting
SPM and XPM effects, and demonstrate the existence of the
maximal conversion efficiencies obtained in Sec. III. Finally,
in Sec. IV C, we briefly consider the effects of SPM and XPM
using a simple model to illustrate the qualitative behavior
of the system; in particular, we demonstrate the existence of
stable, maximal-efficiency solutions, including SPM and XPM
effects.

II. TEMPORAL COUPLED-MODE THEORY

We consider the situation depicted schematically in Fig. 1:
an input or output channel coupled to a triply resonant nonlin-
ear (χ (3)) cavity. Here, input light at ω0 and ωm = ω0 − �ω

is converted to output light at a different frequency ωp =
ω0 + �ω, where �ω determines the separation between the
three frequencies. The frequency-conversion process occurs
inside the nonlinear cavity, which supports resonant modes
of frequencies ω0, ωm, and ωp, and corresponding modal
lifetimes τk (or quality factors Qk = ωkτk/2 [44]) describing
the overall decay rate (1/τk) of the modes. In particular, the
total decay rate consists of decay into the output channel,
with rate 1/τs,k , as well as external losses (e.g., absorption)
with rate 1/τe,k , so that 1/τk = 1/τs,k + 1/τe,k . Note that, to
compensate for the effects of SPM and XPM, as described
in [1] and in Sec. IV C, we will eventually use slightly dif-
ferent cavity frequencies ωcav

k that have been preshifted away
from ωk .

It is most convenient to express the TCMT equations in
terms of the following degrees of freedom [41,44]: we let ak

denote the time-dependent complex amplitude of the kth mode,
normalized so that |ak|2 is the electromagnetic energy stored in
this mode, and let sk,± denote the time-dependent amplitude
of the incoming (+) and outgoing (−) wave, normalized so
that |sk,±|2 is the power in the kth mode. (In what follows, we
take sp,+ = 0, corresponding to the up-conversion of light at
ω0 and ωm to light at ωp, for �ω > 0. In order to study the
alternative down-conversion process, one has but to set �ω <

0, in which case we effectively have ωp → ωm, as described
in the following.)

The derivation of the linear TCMT equations, correspond-
ing to decoupled modes ak , has been given elsewhere [44], and
the generalization to include nonlinearities has been laid out

in Ref. [2]. Here we introduce cubic nonlinearities and make
the rotating-wave approximation (only terms with frequencies
near ωk are included in the equation of motion for ak) [2]. This
yields the following general coupled-mode equations:

da0

dt
=

[
iω0(1 − α00|a0|2 − α0m|am|2 − α0p|ap|2) − 1

τ0

]
a0

− iω0β0a
∗
0amap +

√
2

τs,0
s0,+, (1)

dam

dt
=

[
iωm(1 − αm0|a0|2− αmm|am|2− αmp|ap|2)− 1

τm

]
am

− iωmβma2
0a

∗
p +

√
2

τs,m

sm,+, (2)

dap

dt
=

[
iωp(1 − αp0|a0|2 − αpm|am|2 − αpp|ap|2) − 1

τp

]
ap

− iωpβpa2
0a

∗
m, (3)

sk,− =
√

2

τs,k

ak − sk,+. (4)

As explained in Ref. [2], the nonlinear coefficients αij and βk

depend on the specific geometry and materials, and express the
strength of the nonlinear interactions. The αjk terms describe
self- and cross-phase modulation effects, which act to shift the
cavity frequencies, while the βk terms characterize the energy
transfer (frequency conversion) between the modes. As noted
in Ref. [2], these terms are constrained by energy conservation,
which amounts to setting d

dt
(|a0|2 + |am|2 + |ap|2) = 0 (in the

absence of external losses), yielding the following relation:

ω0β
∗
0 = ωmβm + ωpβp. (5)

In the following sections, for simplicity, we neglect losses
such as linear absorption or radiation (we assume τs,k = τk)
and neglect nonlinear two-photon absorption [(we assume
αij are strictly real (two-photon absorption effects can be
minimized by selecting materials less susceptible to such
processes)]. As noted in the following, these considerations
do not qualitatively change our results, but merely act to
slightly decrease the overall conversion efficiency once losses
are included [1,2].

The dependence of the coupling coefficients αij and βk

on the geometry of the system can be obtained via a simple
perturbative calculation involving the linear eigenmodes of the
cavity, as described in Ref. [2]. Carrying out this procedure to
first order in χ (3) yields the following coupling coefficients:

β0 = 1

8

∫
d3x ε0χ

(3)[(E∗
0 · E∗

0)(Em · Ep) + 2(E∗
0 · Em)(E∗

0 · Ep)](∫
d3xε|E0|2

)(∫
d3x ε|Em|2)1/2(∫

d3x ε|Ep|2)1/2

(6)

βm = βp = 1
2β∗

0 , (7)

αjj = 1

8

∫
d3x ε0χ

(3)[|Ej · E∗
j |2 + |Ej · Ej |2](∫

d3x ε|Ej |2
)2 , (8)
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αjk = 1

8

∫
d3x ε0χ

(3)[|Ej · Ek|2+ |Ej · E∗
k |2+ |Ej |2|Ek|2](∫

d3x ε|Ej |2
) (∫

d3x ε|Ek|2
) ,

(9)

αkj = αjk, (10)

where Ek is the electric field in the kth mode and the de-
nominators arise from the normalization of |ak|2. As expected,
Eqs. (6) and (7) satisfy Eq. (5), where Eq. (5) was obtained by
imposing energy conservation on the TCMT equations without
reference to the specific case of Maxwell’s equations.

There are six different αjk parameters [three SPM (αjj )
and three XPM (αjk) coefficients] and, in general, they will
all differ. However, from Eqs. (8) and (9), we see that they are
all determined by similar modal integrals, lead to frequency
shifting of the cavity frequencies, and all scale as 1/V , where
V denotes a modal volume of the fields [41]. Therefore, in
the following sections, we begin by neglecting the frequency-
shifting terms as in Ref. [1], and then, in Sec. IV C, we study
the essential effects of frequency shifting in the simplified
case where all the coefficients are equal (αjk = α). Of course,
for a specific geometry, one would calculate all coefficients
Eqs. (6)–(10); in this paper, we focus on the fundamental
physics and phenomena rather than on the precise behavior of
a specific geometry.

III. QUANTUM-LIMITED VERSUS
COMPLETE CONVERSION

As described in the following, the DFWM process we
consider here exhibits drastically different behavior depending
on the ratio of �ω to ω0. In particular, there exist at least
two distinct regimes of operation corresponding to quantum-
limited (|�ω| < ω0) and complete (�ω � ω0) conversion.
It turns out that, although our coupled-mode formalism is
entirely classical, the same behaviors can be more easily
understood by considering photon interactions in a quantum
picture. Although this system is, of course, described by
the general Manley-Rowe relations, which can be derived
from both classical [44,45,48] and quantum [42,43] arguments
similar to those here, it is useful to review a basic picture of
such limits and their physical consequences for the specific
case of intracavity DFWM.

Our focus in this paper is the up-conversion process (or
interaction) corresponding to taking input light at frequencies
ω0 and ωm and generating output light at frequency ωp.
Therefore, an appropriate figure of merit is the ratio of the
output power in the ωp mode to the total input power, which
we define as the absolute efficiency η = |sp,−|2/(|s0,+|2 +
|sm,+|2).

As described in the previous section, the coupled-mode
Eqs. (1)–(4) follow from very general and purely classical
considerations. The same considerations yield relationships
between the frequencies and coupling coefficients of the
problem, such as frequency conservation (ωm + ωp = 2ω0)
and energy conservation (ωmβm + ωpβp = ω0β

∗
0 ). Additional

conservation rules, which are perhaps best understood from
quantum arguments such as photon energy (h̄|ω|) conservation
and standard χ (3) selection rules [48], also play a substantial

role in the physics of nonlinear frequency conversion. In the
case of the DFWM up-conversion process considered here,
χ (3) selection rules imply that nonlinear interactions can only
be initiated if there exist at least three input photons: two ω0

photons and one ωm photon.
In the |�ω| < ω0 regime, there are at least two important

features that can be understood from the above relations:
First, depletion of the signal input power (sm,+) is impossible,
leading to a conversion efficiency η < 1. Second, in order to
maximize the total conversion efficiency, one desires sm,+ to
be as small as possible. These features can be understood by
considering a simple picture of the nonlinear photon-photon
interaction, as follows. From the DFWM χ (3) selection rule
[48], it follows that the creation of a ωp photon is accompanied
by the destruction of two ω0 photons and one ωm photon. The
latter, along with photon energy conservation, leads to the
process considered in Fig. 2 (left), in which two ω0 photons
and a ωm photon interact to yield two ωm photons and a ωp

photon. From the figure, and since 2ω0 > ωp, one can see that
the incident ωm photon (depicted in red) is merely required by
the χ (3) selection rule to initiate the interaction and emerges
unmodified, accompanied by a ωp photon and an additional
ωm photon. Thus, it is clear that the input ωm photon does
not actively participate in the energy transfer and therefore
merely reduces the maximum possible conversion efficiency.
This implies that one desires a minimal input signal power to
initiate the up-conversion. Effectively, the incident ωm photons
are amplified by the conversion process (a similar amplification
effect is a crucial component in other nonlinear interactions,
such as OPAs in χ (2) media [48,108,109]). In addition, it
is clear that complete depletion of the signal photons, i.e.,
sm,− = 0, is not possible for nonzero sm,+, and therefore the

In
OutIn

Out

FIG. 2. (Color online) Diagram of nonlinear up-conversion pro-
cess involving input light at ω0 and ωm and output light at ωp and ωm.
The conversion efficiency of DFWM is determined by �ω and photon
energy conservation consideration (see text), leading to at least two
different regimes of operation. (Left) For |�ω| < ω0, two ω0 pump
photons and a signal ωm photon are converted into two ωm signal
photons and an ωp photon. The input ωm photon is only necessary
to initiate the conversion process and emerges unchanged after the
interaction (indicated by red). (Right) For �ω � ω0, two incoming
ω0 and a single ωm photon are combined to produce a ωp photon. In
contrast to the previous regime, the ωm photon is energetically needed
to produce the ωp photon.
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conversion efficiency must be less than 100% (since the total
input power is conserved). No such restriction is placed on
s0,−, and we therefore expect that maximal efficiency will
be obtained for arbitrarily low signal power and complete
depletion of the pump power, i.e., s0,− = 0.

On the basis of these arguments, we can predict the maximal
efficiency of the conversion process by considering the ratio
of the energy of the output ωp photon (h̄ωp) to the energy of
the three input photons [h̄(2ω0 + ωm)]. Since the ωm photons
can be provided with arbitrarily low amplitude, we therefore
expect maximal efficiency to be achieved upon neglecting their
contribution, i.e., we predict a maximal efficiency of

ηmax(|�ω < ω0|) = h̄ωp

2h̄ω0
= ωp

2ω0
. (11)

Note that this efficiency depends only on the ratio of �ω

to ω0 and h̄ cancels, so it should appear in the classical
limit as well. As we shall see in Sec. IV A, this prediction
is verified analytically by examining the steady-state solution
of our coupled-mode equations.

In the �ω � ω0 regime, the conversion process is fun-
damentally different and, in particular, complete depletion
of the ωm and ω0 photons is possible, leading to 100%
conversion efficiency. Basically, because ωp > 2ω0 in this
case, no additional photons are required to satisfy photon
energy conservation, yielding the nonlinear interaction process
depicted in Fig. 2 (right), where two input ω0 photons and
a ωm photon combine to produce a ωp photon. Note that
now the input ωm photon actively participates in the energy
transfer, in contrast to the |�ω| < ω0 regime, leading to a
maximal conversion efficiency occurring when s0,+ and sm,+
are both nonzero. Furthermore, since ωp is now the only
product of the interaction, we expect that complete depletion
of both the pump and signal powers s0,− = sm,− = 0 should
be possible, leading to 100% conversion efficiency. As before,
this can also be quantified by comparing the ratio of the output
energy (h̄ωp) to the input energy [h̄(2ω0 + |ωm|)] (note that
now the energy of the ωm photon is h̄|ωm|), and the result
follows from the fact that 2ω0 + |ωm| = ωp. Again, we shall
see in Sec. IV B that this prediction is validated analytically
and directly from the coupled-mode equations, yielding
also the critical input powers at which 100% conversion is
achieved.

In this section, we made a number of predictions based on
very general arguments relying on a quantum interpretation
of the nonlinear interactions, allowing us to obtain predictions
of maximal conversion efficiency. Our final results, of course,
contained no factors of h̄ and it is therefore not surprising that
we recover the same results (albeit with more detail, e.g., pre-
dictions of the values of critical powers) in the ensuing analysis
of the purely classical coupled-mode equations. Nevertheless,
the heuristic quantum picture of Fig. 2 has the virtue of being
simple and revealing, while the classical derivation is more
complicated (although more quantitative). Similar quantum
arguments have also proven useful in other contexts, such as
in many problems involving classical radiation [110], or the
recently studied problem of optical bonding and antibonding
in waveguide structures [111].

IV. COUPLED-MODE ANALYSIS

To gain a simple understanding of the system, we shall
first consider frequency conversion in the absence of self- and
cross-phase modulation, i.e., αjk = 0. The nonzero α case
will be considered in Sec. IV C. Section IV A focuses on the
|�ω| < ω0 regime, whereas Sec. IV B focuses on the �ω �
ω0 regime. In both cases, we describe the solutions to the
coupled-mode equations (1)–(3) in the steady state, including
the stability of these solutions and their dependence on the
cavity parameters.

A. |�ω| < ω0 regime: Limited conversion

Although the analysis in this section is general, for
the purposes of plotting results, we choose the specific
parameters αjk = 0, τ0 = τm = τp = 100/ω0, β = 10−4, and
�ω = 0.05ω0. The qualitative results remain unchanged as
these parameters are varied, provided that the Q are large
enough such that mode overlap is minimal as required by
CMT. The influence of varying these parameters is discussed
further at the end of this section.

To understand the stability and dynamics of the nonlinear
coupled-mode equations in the quantum-limited regime, we
apply the standard technique of identifying the fixed points
of Eqs. (1)–(3) and analyzing the stability of the linearized
equations around each fixed point [112]. A fixed point is given
by a steady-state solution where the mode amplitudes vary
as ak(t) = Ake

iωkt , with the Ak being unknown constants.
Plugging this steady-state ansatz into Eqs. (1)–(3), we ob-
tain three coupled polynomial equations in the parameters
A0,Am,Ap,s0,+, and sm,+. These polynomials were solved
using Mathematica to obtain the mode energies |Ak|2, which
are then used to calculate the efficiency η = |sp,−|2/(|s0,+|2 +
|sm,+|2). The phases of the Ak can be easily determined from
the steady-state equations of motion; A0 and Am acquire the
phases of s0,+ and sm,+, respectively, while the phase of Ap

is that of βpA2
0A

∗
m rotated by π/2. Without loss of generality,

s0,+ and sm,+ can be chosen to be real.
In general, this system has either one or three solutions, only

one of which is ever stable. The stability and efficiency of this
solution are shown in Fig. 3 for the specific parameters men-
tioned here. We observe that maximal conversion efficiency is
obtained in the limit as input signal power sm,+ is reduced to
zero, consistent with the discussion in the previous section. To
obtain the maximum efficiency and the corresponding critical
input powers, complete depletion of the pump (ω0) photon is
required, i.e., s0,− = 0 (note that one can not require depletion
of the signal photon, for the reasons discussed in the previous
section). We find that the maximum efficiency ηmax is obtained
at |scrit

0,+|2 = P0 as |sm,+|2 → 0, where

P0 = 4

τ0|β0|
√

τmτp|ωmωp| , (12)

ηmax = ωp

2ω0
= 1

2

(
1 + �ω

ω0

)
. (13)

Note that Eq. (13) is identical to the value predicted in the
previous section. In the important case of narrow-band con-
version |�ω| � ω0, the maximum efficiency is approximately
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50%. (However, this is relative to the pump power; compared
to the input signal alone, the output signal is amplified to an
arbitrary degree.) If Q0 ∼ Qm ∼ Qp, then, as in THG [1], the
critical power scales as V/Q2, where V is the modal volume
(recall that β ∼ 1/V ).

As �ω → ω0, the maximum efficiency approaches unity,
i.e., 100% conversion can be achieved in the limit. This limit is
reminiscent of second-harmonic generation, since ωp = 2ω0.
However, the interaction process is fundamentally different
from the standard (χ (2)) SHG in a number of ways. First,
one is converting dc (ωm ≈ 0) light and ω0 pump light into
2ω0. Second, the stability of this solution (described in the
following) is quite different from that of SHG [46,47,83].
Finally, the critical power in this case, P0, diverges as
1/

√
1 − (�ω/ω0)2 for �ω near ω0. However, �ω close but not

equal to ω0 yields a reasonable P0; for example, �ω = 0.95ω0

yields efficiency η = 0.975 with a critical power roughly
three times the critical power for �ω near zero. Because this
near-“SHG” situation involves coupling resonances at very
different frequency scales, it is reminiscent of using χ (2) DFG
to produce THz from infrared [61].

Equations (12) and (13) are only valid in the limit |sm,+|2 →
0, which is ideal from an efficiency perspective. However, it
is interesting to consider the system for noninfinitesimal sm,+,
in which case we solve for the input power that yields a stable
solution with maximal efficiency for a given sm,+. We denote
this input power by Pc(|sm,+|2) = |scrit

0,+|2 + |sm,+|2, where
|scrit

0,+|2 (a function of |sm,+|2) is defined to be the pump power
required to achieve maximum, stable conversion efficiency for
a given signal power |sm,+|2. As seen in Fig. 3, this efficiency
is always � ηmax, and Pc → P0 as sm,+ → 0. In the nonzero
|sm,+|2 regime, Pc does not correspond to complete depletion

FIG. 3. (Color online) Color plot of the steady-state conversion
efficiency η = |sp,−|2/(|s0,+|2 + |sm,+|2) as a function of input power
|s0,+|2 and |sm,+|2 for a system consisting of �ω = 0.05ω0, β =
10−4, and τ0 = τp = τm = 100. Both powers are normalized by the
critical power Pc(|sm,+|2 → 0) = P0 = 2/τ0|β|√τmτp|ωmωp| (black
dot). The shaded region indicates that the solution is unstable. The
curves P± indicate the powers at which depletion of the ω0 input light
is achieved, i.e., s0,− = 0; the critical power Pc(|sm,+|2) is defined as
the total input power that yields the highest stable efficiency for any
given |sm,+|2. The dashed line is the cross section shown in Fig. 4.
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FIG. 4. (Color online) Bifurcation diagram of the steady-state
efficiency η, normalized by the quantum-limited maximum efficiency
ηmax = 1

2 ωp/ω0, as a function of |s0,+|2, normalized by P0, for signal
power |sm,+|2 = 0.1P0 (indicated by the black dashed line of Fig. 3).
Red (blue) lines correspond to a stable (unstable) solution (note that
the two bifurcating solutions are always unstable). The green dashed
line illustrates the bounds of the limit cycles obtained from time
domain simulations, where the solid green line yields the average
over the cycle. (Inset:) Efficiency as a function of time in units of the
period Tp = 2π/ωp in a regime where there exists a limit cycle.

of the pump. Requiring pump depletion (s0,− = 0) for a given
signal power |sm,+|2 yields two pump powers, which we label
P±(|sm,+|2). P+(|sm,+|2) does indeed provide a solution with
maximal efficiency; however, this solution is always unstable.
As seen from Fig. 3, only for small signal power sm,+ does
depletion of the pump lead to maximal efficiency.

In general, to obtain the largest efficiency while retaining
stability, one would aim to operate with low signal power
|sm,+|2 and use a pump power near the critical power P0

given in Eq. (12). However, it is interesting to consider the
unstable solutions, because they turn out to be related to limit
cycles. As mentioned above, the system contains either one or
three steady-state solutions for given input powers. Figure 4
plots these stable and unstable solutions as a function of
pump power |s0,+|2 at fixed signal power |sm,+|2 = 0.1P0,
corresponding to the horizontal dashed line in Fig. 3. For
low-input pump power |s0,+|2, the system has a single steady-
state solution; as the pump power is increased, the system
experiences a bifurcation yielding two unstable solutions.
As mentioned above, the higher efficiency solution emerging
from the bifurcation achieves a maximum corresponding at
|s0,+|2 = P+, coinciding with complete depletion of the pump
(s0,− = 0), but this maximal-efficiency solution is always
unstable; note that there may be a stable solution at |s0,+|2 =
P+, but the stable solution will have a lower efficiency than the
maximal, unstable solution, as shown in Fig. 4. Furthermore,
the original stable solution eventually becomes unstable as the
pump power is increased (this can occur before or after the
bifurcation, depending on the system parameters); this onset
of instability coincides with the onset of limit cycles, which
are stable oscillating-efficiency solutions. An example of these
limit cycles is shown in Fig. 4, where the green dashed lines
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indicate the bounds of the oscillations and the solid green line
gives the average. The limit cycles are plotted as a function
of time in the inset of Fig. 4. The limit cycles shown here
were obtained by numerically time evolving the coupled-mode
equations. In general, we find that these limit cycles oscillate
with a period proportional to τp.

Figures 3 and 4 describe a system corresponding to a
particular set of values for the parameters �ω and τk .
Qualitatively, the most important features of the figures remain
largely unchanged as these parameters are varied. Basically,
there exist at most three solutions to the coupled-mode
equations, one of which has a finite region of stability as a
function of s0,+ and sm,+, with the general shape that is shown
in Fig. 3, and two others that are always unstable and bifurcate
at a finite s0,+. There are, however, some differences to note:
First, as �ω increases from 0, the maximum steady-state
efficiency also increases, asymptoting to η = 1 as �ω → ω0.
This was obtained analytically and is quantified in Eq. (13).
Unfortunately, we find that as �ω increases, the region of
instability in Fig. 3 also increases; furthermore, the conversion
efficiency at finite sm,+ also drops off more rapidly. (In
particular, we observe in the “SHG” limit of �ω → ω0 that
the system becomes largely unstable except for very low signal
powers.) These tendencies are depicted in Fig. 5, which plots
Pc(|sm,+|2) and the corresponding conversion efficiency for
different values of �ω. The kinks observed in the plots of Pc

are due to the discontinuity in the slope of the Pc curve as it
reaches the region of instability, corresponding to the point U

in Fig. 3.
Varying τk does not affect the maximum possible efficiency

and also leaves Fig. 3 qualitatively unchanged, changing only
the scale of the critical input power P0. The stability of the
system, however, does depend on the relative lifetimes of the
cavity modes. In particular, the stability depends largely on
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FIG. 5. (Color online) Plot of the steady-state efficiency η (solid
lines) along the critical solution [total input power Pc(|sm,+|2) =
|sm,+|2 + |sc

0,+|2 that yields the maximum efficiency for a given |sm,+|2
(solid white curve of Fig. 3)] and the value of Pc (dashed lines) as
a function of |sm,+|2, normalized by P0, for three different values of
�ω: 0.1ω0 (red), 0.5ω0 (blue), and 0.9ω0 (green). The kinks in the
Pc curves correspond to the point U where Pc reaches the region of
instability (see Fig. 3). The coupling lifetimes τ and coefficient β of
the system are equivalent to those of Fig. 3.

the ratio τ0/τp, and decreases weakly as τm increases with
respect to either τ0 or τp. This makes sense since, as argued
in Sec. III, the ωm photons do not actively participate in the
energy transfer. (A similar dependence on the ratio of the
lifetimes was also observed in the case of THG [1].) More
quantitatively, we follow the position of the point U (the point
where Pc reaches the region of instability) as the τk are varied.
Assuming equal modal lifetimes (τ0 = τm = τp as in Fig. 3),
we find that U lies at critical input powers |s0,+|2 ≈ 1.28P0

and |sm,+|2 ≈ 0.35P0. Increasing τ0/τp, from 1 to 10, we
find that U moves to |s0,+|2 ≈ 10P0 and |sm,+|2 ≈ 4.75P0.
However, if we instead keep τ0 = τp and increase τm such
that τm/τ0 = τm/τp = 10, U moves only to |s0,+|2 ≈ 1.05P0

and |sm,+|2 ≈ 0.27P0. Note that, as mentioned previously,
maximal stable conversion efficiency is obtained for low signal
power |sm,+|2 and input power |s0,+|2 near the critical power
P0, regardless of τk . We note that rescaling β simply scales
the input power and therefore changing β does not affect the
dynamics.

Thus far, we have focused on the up-conversion process:
taking input light at frequencies ω0 and ωm and generating
output light at frequency ωp > ω0. However, it suffices to
consider this system when �ω < 0 to understand the physics
of the alternative, down-conversion process: taking input light
at frequencies ω0 and ωp and generating output light at
frequency ωm. For �ω < 0, we effectively have ωm ↔ ωp. In
this regime, all of the above analysis holds and, in particular,
the maximal efficiency, given by Eq. (13), is obtained as
|sm,+|2 → 0 with |s0,+|2 = P0. Similarly, the stability of the
solutions follows similar trends to those outlined above.

B. �ω � ω0 regime: Complete conversion

When �ω is larger than ω0, we argued in Sec. III that
the system is capable of complete conversion, i.e., η = 1. In
this section, we demonstrate the existence of a critical steady-
state solution to the classical coupled-mode equations with
complete conversion and analyze the stability of this critical
solution, as well as relate DFWM to our previous work on
THG [1,2].

As in the previous section, we consider the equations
of motion (1)–(3) in the steady state. To obtain the critical
solution, we again require depletion of the pump power, i.e.,
s0,− = 0. However, as argued in Sec. III, complete depletion
of the signal sm,− = 0 must also occur. Recall from Sec. III
that complete ωm depletion is possible in the �ω � ω0

regime since the up-conversion process does not produce ωm

photons (see Fig. 2). Imposing the depletion constraints on the
steady-state equations of motion yields the following critical
cavity energies |acrit

k |2:

∣∣acrit
0

∣∣2 = 1

|βm|√τmτp|ωmωp| , (14)

∣∣acrit
m

∣∣2 = τm|ωm|
2τ0ω0

∣∣acrit
0

∣∣2
, (15)

∣∣acrit
p

∣∣2 = τpωp

2τ0ω0

∣∣acrit
0

∣∣2
, (16)
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which lead to the following critical powers:∣∣scrit
0,+

∣∣2 = P0, (17)

∣∣scrit
m,+

∣∣2 = |ωm|
2ω0

P0, (18)

where P0 is given by Eq. (12). Solving for the corresponding
output signal |sp,−|2, the output power is indeed 100% of the
input power, as required by energy conservation. (In contrast,
the assumption that s0,− = sm,− = 0 in the |�ω| < ω0 case
yields no solution.) Note that the critical signal power |scrit

m,+|2
is now nonzero due to the fact that the energy from the signal
ωm photons is necessary to produce the output ωp photons.
This is in contrast with the |�ω| < ω0 regime, where maximal
conversion efficiency was only achieved in the limit as input
signal power |sm,+|2 decreased to zero. The critical pump and
signal powers, with the corresponding maximum efficiency η,
are plotted versus �ω in Fig. 6 for both �ω regimes.

As may be noted from Fig. 6, there are two particular values
of �ω that warrant special attention when �ω � ω0. The
first case, when �ω = ω0 (the “SHG” case), was discussed
in the previous section. The second case is when �ω = 2ω0.
In this case, ωm = −ω0 and ωp = 3ω0, which is reminiscent of
third-harmonic generation (THG). In fact, this case of DFWM
corresponds exactly to χ (3) THG and, thus, �ω > ω0 strictly
generalizes our previous THG analysis [1]. To see this, some
care must be taken to adjust the coupling coefficients βk

given in Eqs. (6) and (7) to properly implement the rotating
wave approximation; since ωm = −ω0, we have am = a∗

0 ,
and thus β0 → β0 + β∗

m and βm → βm + β∗
0 . This results in

β0 = β∗
m = 3β∗

p, exactly as shown in [1]. Furthermore, we have
|scrit

0,+|2 = |scrit
m,+|2 = P0 [note that this differs by a factor of 2

THG

2.5 3 3.5 4-1 -0.5 0 1 21.50.5

FIG. 6. (Color online) Plot of the critical powers |s̃0,+|2 (blue),
|s̃m,+|2 (red), and maximum steady-state efficiency η (green) as a
function of �ω/ω0 (the tilde over the critical powers indicates that
the values have been rescaled by the factor 4/τ0|β0|

√
τmτpω2

0). The
vertical dashed lines at �ω = ω0 and �ω = 2ω0 indicate special
degenerate regimes, corresponding to second-harmonic generation
(SHG) and third-harmonic generation (THG). (Note the discontinuity
in |s̃m,+|2 located at �ω = 2ω0, as explained in the text.)

unstable

singly-stable

doubly-stable

0
0

FIG. 7. (Color online) Stability contours (number of stable
solutions) as a function of modal lifetimes τm and τp , normalized
by τ0, pumping at the critical input powers |scrit

0,+|2 and |scrit
m,+|2. The

stability in the �ω � ω0 regime is independent of the value of �ω.

from Eq. (18), due to the adjusted βk values]; upon requiring
that τ0 = τm, this recovers the critical power previously
obtained for THG [1]. Note that the correspondence between
�ω = 2ω0 and χ (3) THG is exact, whereas the �ω = ω0 limit
has little in common with χ (2) SHG as discussed above.

With the existence of a s0,− = sm,− = 0 solution having
demonstrated the existence of critical powers where 100%
conversion can be achieved, we are now interested in char-
acterizing the system at this critical power by studying all
of the fixed points. These fixed points were obtained using
Mathematica as in the previous section, and their stability
was determined via linear stability analysis as before. For
the critical input power, the steady-state equations of motion
yield three solutions; however, in contrast to the |�ω| < ω0

regime, there exists multistability when �ω � ω0. Similar to
the case of THG (�ω = ω0), the system is either singly stable,
doubly stable, or unstable, depending on the values of the mode
lifetimes τk (see Fig. 7). In this �ω > ω0 regime, the stability
of the solutions does not depend on �ω, again in contrast with
the quantum-limited regime. Unlike the |�ω| < ω0 regime,
the value of τm now plays a significant role in the stability
of the solutions.

C. Self- and Cross-Phase Modulation (α �= 0)

Finally, we briefly consider the effects of SPM and XPM.
This corresponds to taking the coefficients αjk to be nonzero;
as mentioned above, for simplicity, we take all the coefficients
to be equal, i.e., αjk = α for all j,k. The main effect of SPM
and XPM in Eqs. (1) and (2) is to shift the resonant frequencies
of the cavity in proportion to the energy of the modes in
the cavity. Generally, this drives the frequency input light
off resonance and therefore degrades the overall conversion
efficiency obtained in Secs. IV A and IV B, as shown in
Ref. [1]. However, in Ref. [1], we showed that one simple way
to overcome this difficulty is to preshift the cavity resonant
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frequencies so as to compensate for the SPM and XPM effects
when operating near the critical input power. Unfortunately,
this will inevitably affect the stability analysis obtained in the
α = 0 case, and therefore a new analysis that includes SPM
and XPM effects must be performed. In the remainder of this
section, we only analyze the stability of the maximal-efficiency
solutions obtained in Secs. IV A and IV B and, in particular, we
find that 100% photon-conversion efficiency can be obtained
in this case as well.

The change in cavity frequency due to SPM and XPM
can be accounted for by a preshifting technique described
in Ref. [1]. In particular, the α terms in Eqs. (1)–(3) act
to shift the cavity resonant frequencies from ωcav

k → ωNL
k ,

spoiling the frequency-conservation relations necessary for
efficient nonlinear frequency conversion as well as detuning
the resonances from the input light. However, one can
simply design the cavity frequencies to be resonant at the
shifted frequencies, i.e., ωcav

k = ωNL
k for a given steady-state

solution. For the critical solutions corresponding to 100%
photon-conversion efficiency, this implies that the new cavity
frequencies will be given by [1]

ωcav
0 = ω0

1 − α
(∣∣acrit

0

∣∣2 + ∣∣acrit
m

∣∣2 + |acrit
p

∣∣2) , (19)

ωcav
m = ωm

1 − α
(∣∣acrit

0

∣∣2 + ∣∣acrit
m

∣∣2 + |acrit
p

∣∣2) , (20)

ωcav
p = ωp

1 − α
(∣∣acrit

0

∣∣2 + ∣∣acrit
m

∣∣2 + |acrit
p

∣∣2) , (21)

where |acrit
k |2 are the energies of the modes at critical power.

For cavity resonances ωcav
k , the new equations of motion are

given by

da0

dt
=

[
iωcav

0 (1 − α00|a0|2 − α0m|am|2 − α0p|ap|2)− 1

τ0

]
a0

− iω0β0a
∗
0amap +

√
2

τs,0
s0,+, (22)

dam

dt
=

[
iωcav

m (1−αm0|a0|2− αmm|am|2− αmp|ap|2)− 1

τm

]
am

− iωmβma2
0a

∗
p +

√
2

τs,m

sm,+, (23)

dap

dt
=

[
iωcav

p (1 − αp0|a0|2− αpm|am|2− αpp|ap|2)− 1

τp

]
ap

− iωpβpa2
0a

∗
m. (24)

Note that the frequencies ωk multiplying the βk terms do not
need to be shifted, since the terms introduced by such a shifting
will be higher order in χ (3). By inspection, we observe that the
solutions obtained in Secs. IV A and IV B at critical input
power acrit

k are also solutions of Eqs. (22) and (23), but, as
explained above, their stability may change. Using the results
from Secs. IV A and IV B, we now study the stability properties
of these solutions in the two �ω regimes.

We first consider the �ω � ω0 regime. As in Sec. IV A, we
restrict our analysis to a specific parameter regime (τ0 = τm =
τp = 100/ω0, β = 10−4, and �ω = 0.05ω0) for simplicity,
although our qualitative conclusions apply to other parameter
ranges. As discussed in Sec. IV A, the maximal efficiency
is obtained for input light with |s0,+|2 = P0 as |sm,+|2 → 0.
Since one must always pump with finite |sm,+|2, and there are
no analytic solutions in this case, we solve for the field energies
|acrit

k |2 numerically at a small |sm,+|2 and for |s0,+|2 = P0 in
the case of α = 0 in order to compute the shifted frequencies
(19)–(21). This allows us to solve the coupled-mode Eqs. (22)
and (23) and therefore obtain the steady-state field amplitudes
and phases. As in Ref. [1], the inclusion of self- and cross-
phase modulation introduces new steady-state solutions absent
in the α = 0 case, and the stability of the old and new solutions
are then examined again via a linear stability analysis, as in
Sec. IV A. In particular, we find that the inclusion of SPM and
XPM does not destroy the stability of the maximal-efficiency
solution in the α = 0 case studied in Sec. IV A and, in fact,
creates additional stable solutions, as shown in Fig. 8.

A similar analysis can be performed in the �ω > ω0

regime, where it is possible to obtain the analytic form of the
maximal-efficiency solutions [Eqs. (14)–(16) in Sec. IV B]. We
find that, as in the previous regime, the presence of α introduces
additional stable solutions, while retaining the original 100%
efficiency α = 0 solution over finite regions of the parameter
space.

The presence of SPM and XPM in our system provides
an opportunity to observe rich and interesting dynamical
behaviors, including limit cycles and hysteresis effects, that
we do not explore in this paper. As noted in this section,
the inclusion of these effects is not prohibitive for 100%
nonlinear frequency conversion, although predicting which
parameter regimes allow for such conversion will depend
on the system under question. In the future, we plan to
examine SPM and XPM effects in more detail for realistic
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FIG. 8. (Color online) Contour plot of number of stable solutions
(ns) as a function of α/β and |s0,+|2/P0 for input pump power
|sm,+|2 = 0.1P0, and for the system described in the text.
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geometries with realistic values of αij and βi . As in Ref. [1],
the presence of multiple stable solutions means that the manner
in which the source is initiated will determine which solution
is excited, but a simple initialization procedure similar to that
in Ref. [1] should be possible to excite the maximal-efficiency
solution.

V. CONCLUSION

By exploiting a simple but rigorous coupled-mode theory
framework, we have demonstrated the possibility of achieving
highly efficient (low-power) DWFM in triply resonant cavities,
similar to our previous work in SHG and THG [1,2]. We con-
clude that there are two main regimes of operation, determined
by the ratio of �ω to ω0. In particular, whereas the maximal
efficiency obtainable in the �ω � ω0 regime, corresponding
to conversion between closely spaced resonances, is bounded
above by a quantum-limited process, there is no such bound
when �ω > ω0. In both regimes, a suitable choice of system
parameters leads to stable, maximal-efficiency nonlinear fre-
quency conversion, even in the presence of SPM and XPM
effects. We remark that all of the results obtained in this

paper correspond to the idealized case of lossless interactions,
since the main focus of the paper is in examining the basic
considerations involved in operating with these systems rather
than predicting results for specific experimentally relevant
systems. Nevertheless, based on our previous experience with
SHG and THG [1,2], we expect that linear and nonlinear losses,
e.g., coming from radiation or material absorption, will only
act to slightly decrease the overall conversion efficiency and
will not affect the qualitative predictions here. In a future
manuscript, we plan to explore DFWM in a realistic geometry
such as a ring resonator coupled to an index-guided waveguide
and study some of the dynamical effects arising from SPM and
XPM.
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