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Nonconservative electric and magnetic optical forces on submicron dielectric particles
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We present a study of the total force on a small lossless dielectric particle, which presents both an electric and
magnetic response, in a optical vortex wave field. We show that the force is a simple combination of conservative
and nonconservative steady forces that can rectify the flow of magnetodielectric particles. In a vortex lattice the
electric-magnetic dipolar interaction can spin the particles either in or out of the whirl sites leading to trapping
or diffusion. Specifically, we analyze force effects on submicron silicon spheres in the near infrared, proving
that the results previously discussed for hypothetical magnetodielectric particles can be observed for these Si

particles.
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I. INTRODUCTION

The understanding and control of particle transport and dif-
fusion properties is a most relevant issue in fields ranging from
biophysics to material science and chemical processing, with
countless applications which include particle mixing, diffusive
separation of particles, microrhelogy, or intracellular transport
or drug delivery, to mention a few [1-4]. The advances in
sculpting optical wavefronts and light intensity profiles make
optical tools ideal for both imaging and manipulation of
particles. Optical fields are easily tunable in general and affect
any polarizable object, from atoms to microscopic colloidal
particles [5,6]. These fields can be used to arrange, guide
or deflect particles in appropriate light pattern geometries
[7-11]. Intense optical waves can also induce significant forces
between particles [12—17].

Light forces on small dielectric particles are traditionally
described as the sum of two terms: the dipole or gradient
force and the radiation pressure or scattering force proportional
to the Poynting vector [18-20]. A nonconservative scattering
curl force appears when the spatial distribution of the field
polarization is not uniform [21]. For magnetodielectric par-
ticles [22,23], the force presents both electric and magnetic
gradient and scattering contributions together with an addi-
tional term due to the electric-magnetic dipolar interaction,
that contributes to both the scattering force and to the gradient
force [23]. The main purpose of this work is to illustrate the
relevance of this additional contribution in the particularly
simple case of a two-dimensional (2D) field geometry, arising
at the intersection region of two standing plane waves.

In free space, the calculation of optical forces acting on
small (Rayleigh) dipolar particles in two-dimensional optical
lattices is relatively simple, allowing analytical treatment of the
problem [18,21,24-26]. Even in this simple case, the particle
dynamics in an optical vortex lattice (arising in the intersection
region of crossed optical standing waves [27]) presents a
number of interesting properties [25,26]. However, when the
particle size is of the order of or larger than the internal
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wavelength, in the so-called “Mie” regime, it is difficult to
obtain systematic predictions and most theoretical work in this
regime is based on a numerical approach [28]. An analytical
approach for the optical forces on particles far beyond the
Rayleigh limit is still possible provided the scattering can
be described by the first two electric and magnetic Mie
coefficients [23]. Here we discuss the strong magnetic and
electric optical forces on submicron dielectric particles with
unusual scattering effects. As we will show, the electric-
magnetic dipolar interaction plays an active role in spinning
the particles either in or out of the whirl sites of the inter-
ference pattern, leading to trapping or diffusion. Specifically,
optical forces, previously discussed for hypothetical magne-
todielectric particles [23], are now discussed for submicron
silicon spheres, whose magnetodielectric properties in the near
infrared have been recently pointed out [29]. In contrast with
typical (relatively low-index) polystyrene particles, Si particles
present strong magnetic and electric resonant scattering cross
sections and their scattering properties are well described
by its first two electric and magnetic Mie coefficients [29].
To illustrate that they provide a real example and unique
laboratory to explore nonconservative electric and magnetic
optical forces is another of the main outcomes of this work.

Finally, we show that a simple combination of conservative
and nonconservative steady forces can rectify the flow of
magnetodielectric particles. This may permit the exploration of
new forms of controlled atom motion in optical lattices [27,30]
and may be used to separate and sort small particles with
slightly different optical characteristics [10,11].

II. FORCE ON A SMALL PARTICLE WITH ELECTRIC
AND MAGNETIC RESPONSE IN AN OPTICAL
VORTEX FIELD

Let us consider a magnetodielectric particle immersed in
a medium with real relative dielectric permittivity € and
magnetic permeability u, illuminated by a time-harmonic
electromagnetic field E(r)e =", B(r)e~'®" with wave number
k = nw/c (cis the speed of light in vacuum, w is the frequency,
andn = ,/€u stands for the refractive index of the surrounding
medium). Thus we shall concentrate on the space-dependent
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part of the wave field from now on. The time-averaged force
on a dipolar magnetodielectric particle, characterized by its
electric and magnetic polarizabilities o, and o, is given by
the sum of three terms [23]: (F) = (F.) + (Fn) + (Fem). The
“electric force” (F.) corresponds to the standard optical force
due to the induced electric dipole [18] and can be written
as [21]

o+ o {2(8) | = o2 | SvxiLsa)
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section and
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are the time-average electric energy density, Poynting vector,
and electric spin density of the optical field, respectively.
The first, second, and third terms of the right-hand side of

Eq. (1) corresponds to the gradient force ((Féw)), radiation
pressure ((Fés>)), and electric spin ((FéL) )) forces, respectively
[21]. The force (F,,) on the induced magnetic dipole has
an analogous decomposition as the former [23] in terms
of a gradient component, a radiation pressure or scattering
component (which is the only one contributing in the case of a
plane wave), and a third term that depends on the polarization
of the magnetic field [analogously to its electric counterpart
Eq. (4)]; namely,
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Finally, the interaction between electric and magnetic dipoles
[22,23] leads to an additional force (F,) given by [23]
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A. Forces in an optical vortex lattice

Let us now consider the electric field in the interference
region of two standing plane waves oriented along the x and y
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FIG. 1. (Color online) Illustration of the maps of (a) the total
force modulus, (b) the force lines and (c) electric field intensity for
a dipolar magnetodielectric particle in the intersection region of two
standing plane waves oriented along the x and y axes and with the
electric field polarized along the z axis.

axes and with the electric field polarized along the z axis:

E (x,y) = —(=({e™ —e7}+ ™ — )
2ZE'O . i¢
= 7 (sinkx 4 €'? sinky), )

where ¢ is the phase shift between the two beams. Figure 1
illustrates this geometry by showing three generic distributions
corresponding to the modulus of the resulting total force
[Fig. 1(a)], the force lines [Fig. 1(b)], and the electric field
intensity [Fig. 1(c)].

Since the electric field polarization is constant, the electric
spin forces are zero (i.e., (Fé“) = 0). In contrast, the polariza-
tion of the magnetic field is not constant. It can be shown (see
Appendix) that the magnetic spin contribution exactly cancels
the magnetic radiation pressure term (i. e., (F,(]f ) )y = —(Fﬁ,f >)).
Then the total force can be expressed as the sum of conservative
“gradient” forces and nonconservative “curl” forces:

(F) = (F&d) 4 (FuT), (10)
with (F=2dy = (F")y + (FSn ™)y 4 (FY)), where
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The expressions (11), (12), and (13) are proportional to
the gradient of the electric and magnetic energy density,
respectively; that is,

V{Ue) = éIEOFV{SinZ kx + sin® ky

+2cos ¢ sinkx sinky}, (15)

V(U,) = —%|EO|2V{sin2 kx +sin’ky}.  (16)

Equations (14) are proportional to the time-averaged Poynting
vector:

k
{—n(S)} = 4i|E0|2V x {1, sing coskx cosky}. (17)
c T

ky/2n
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FIG. 2. (Color online) Nonconservative forces on a Si sphere of
radius a = 230 nm placed at the intersection region of two standing
waves with a dephasing ¢ = 7/2 in a medium with € = = 1. The
light field wavelength, A = 1250 nm, is tuned to the dipolar electric
resonance. Arrows in (a) and (b) point along the total force lines.
(a) Contour maps of the modulus of the normalized total force,
|(F)|/ Fy with Fy = |Ey|?/(ka®). (b) Contour maps of the normalized
electric field intensity, |E|?/|Eo|?. Near the resonance, the radiation
pressure force, (Fé”), overcomes the attractive gradient forces and
dominates the total force which presents no stable equilibrium
positions. The symbols (] and <> indicate saddle points in the force
map.
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B. Force fields and beam dephasing

From the discussion above, notice that (F) is conservative
or nonconservative depending on the phase, while (F,)
is always conservative (the opposite holds for p-polarized
fields—with the magnetic field polarized in the z direction).
Optical forces resulting from the interference field given by
Eq. (9) can be tuned by changing the phase between the beams
[25,27]. Experimentally, this phase ¢ between the two crossed
standing waves, can be set to any desired value produced by
the optical path length difference between the beams. This may
be achieved by controlling the position of one of the reflecting
mirrors involved in the formation of the four mutually coherent
counterpropagating beams; for example, with the two branches
of a Michelson interferometer setup, as discussed in Ref. [27].

When lasers oscillate synchronously(i.e., for ¢ =0,
(Feurly = (), therefore, the force is conservative. It is well
known [31] that, when the electric resonance is tuned,
Re{ae} = 0 and Im{oe} = Im{c.}™* (for lossless particles
Im{c.} oc A2 and is independent of both particle size and ma-
terial). Just at this resonance, the electric force becomes zero,
(Fo) = (Féw) = (F§S>) = 0; therefore, the total force would
be zero if we did not take the magnetic and electric-magnetic
interaction force into account. However, the magnetic and
the interference term leads to a finite force. This should be
observed in future experiments, in contrast with the previous
predictions that considered only dipolar electric forces.

For ¢ = /2 the force has contributions from the conserva-
tive and nonconservative forces. The nonconservative forces
arise as a consequence of the rotation of the Poynting vector
around the field nodes. In this case, when the wavelength
is close to the electric dipolar resonance (i.e., Re{ae} ~ 0
and Im{e.} ~ Im{ae}™), the large electric extinction cross
section enhances (F§S>) and overcomes the attractive gradient
forces so that there are no stable equilibrium positions in
the system, as is the case for a metallic particle when the

2=1250 nm

-—=—2=1300 nm

—2=1600 nm

~-—2A=1725nm

kx/2n

FIG. 3. (Color online) Normalized force in the x direction, F,
along a line defined by ky = 7/2 for a Si sphere of radiusa = 230 nm
in the intersection region of two standing waves with ¢ = 7/2 and
for different wavelengths. Notice that, since the force magnitude Fy
is inversely proportional to ka?, this normalization factor is different
for each of the four plots. The symbols sketch the force fields at
several positions: <> and [ correspond to saddle points and A and O
correspond to unstable and stable equilibrium (zero-force) positions,
respectively.
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dissipation dominates [25]. Nevertheless, as the wavelength
goes away from the electric resonance, a stable equilibrium
position can be found due to (Fés)) being compensated by the
rest of the force contributions.

Notice that, for ¢ = /2, the gradient of the electric
and magnetic energy density are equal except for the sign,
V{(Un) = —V (U,). Therefore it is possible to obtain a purely
nonconservative force if the particle polarizabilities fulfill
Re{a.} = Re{a,} and Im{a.} = Im{o,,} because, in this
case, (Fﬁfl] >) = —(FéU)), (Fé%’”) = 0, and the gradient force
becomes zero.

III. OPTICAL FORCES ON SUBMICRON Si PARTICLES

A recent work [29] shows that dielectric spheres whose
refractive index is around 3.5 and whose size parameter ka is
between 0.75 and 1.5 are excellent instances of magnetodi-
electric particles whose electric and magnetic polarizabilities
o and o, are well described by

3¢

Qe = imal, O by, (18)

RS

where a; and b; are their two Mie coefficients. In this
connection, a very illustrative example to test all these new

ky/2n

ky/2n

FIG. 4. (Color online) Same as Fig. 2 but for a wavelength A =
1300 nm slightly above (red-shifted) the electric dipolar resonance.
The force field, dominated by the scattering force contributions,
presents no stable equilibrium position in the system.
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results is a silicon sphere of radius a = 230 nm whose
refractive index may well be approximated by n, = 3.5 in
the range of near infrared wavelengths and the spectral line
shapes of these electric and magnetic Mie resonances are well
resolved with little overlap [29,32].

In the vortex lattice, each vortex is always centered around
the nodes of the electric field and limited by force lines located
at kx =2m+ 1)rr/2 and ky = (2] + 1)r/2 with m and !
integer numbers. This is independent of the light wavelength.
However, the overall structure of the force field strongly
depends on A.

As an example, near the electric dipolar resonance of the Si
particle (at A & 1250 nm), the strong electric nonconservative
component of the force, Eq. (14), induces orbital line forces
around these areas where the electric field is less intense and
prevents finding stable equilibrium positions in the system (see
Fig. 2). Notice that, in the overdamped regime the particle flow
follows the force lines [26]. Along a given line (for example,
forky = m/2 and —27 < kx < 2m), the zero F, points along
x (see A = 1250 nm in Fig. 3), corresponding to saddle points
in the 2D force-field map of Fig. 2.

As the wavelength increases, the dipolar electric response
decreases and, for A ~ 1650 nm, the (230-nm-radius) Si

FIG. 5. (Color online) Same as Fig. 2 for a wavelength A =
1600 nm slightly below (blue-shifted) the magnetic dipolar reso-
nance. Equilibrium (zero-force) positions correspond to electric field
maxima.
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particle presents a strong magnetic resonance (see Fig. 1 in
Ref. [32] and Fig. 3 in Ref. [29]). The corresponding changes in
the force-field maps are illustrated in Figs. 4-7. These changes
manifest themselves in the x component of the force along the
ky = m /2 line, as shown in Fig. 3.

For wavelengths slightly above (red-shifted) the electric
dipolar resonance, the electric polarizability is larger than zero
and the contribution of the conservative gradient force is not
negligible. As can be seen in Fig. 4, for A ~ 1300 nm the
circular “orbits” become “whirls” around the nodes of the
electric field. However, gradient forces are not strong enough to
overcome scattering forces and there are no stable equilibrium
positions in the system. The force along the division lines still
present the same “saddle” points as in resonance (Fig. 3).

Far enough from electric resonance, but still below (blue
shifted) the dipolar magnetic resonance, the gradient forces
dominate, giving rise to stable equilibrium positions in the
system centered where the electric field is more intense
because Re{a} > 0 and Re{a,} < 0 so that (Féw) and (F,(flj >)
contribute to the conservative force with same sign [Egs. (11)
and (13)]. This is illustrated in Figs. 5 and 6 where we plotted
the force map at A =~ 1600 nm. Now the stable positions
correspond to the high-intensity-field regions far from the
vortex centers. This can also be seen in Fig. 3, where the
original saddle points become equilibrium positions (i.e.,
effective potential minima) and new saddle points appear
between two minima.

Above the magnetic resonance (red-shifted), Re{on} >
Re{ae} > 0 in such way that (F,(g >) [Eq. (13)] dominates

kx/2n

® \ = =N\
= 0SSN f_-lru”/ N

2\l

r f/,{\ yj;.:\\"g@\"\]f?}ﬁlyj ez

X =\ i x-ﬁ-J 3
SN\

-0.5 0
kx/2n

0
kx/2n

FIG. 6. (Color online) (a) Total force lines, (b) scattering force
lines, and (c) conservative force lines for a Si sphere of radius
a = 230 nm placed at the intersection region of two standing waves
with a dephasing ¢ = /2 in a medium with € = u = 1. The light
field wavelength, 1 = 1600 nm, is slightly below (blue-shifted) the
magnetic dipolar resonance (same as Fig. 5). The rotation of the
Poynting vector around the field nodes [Fig. 6(b)] induces orbital
scattering force lines around these nodes; however, the conservative
force [Fig. 6(c)] pushes the particle out from these nodes and toward
stable positions at the corners between adjacent orbiting domains.
The interplay between these two forces produces the whirls on the
total forces [Fig. 6(a)].
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(b)

FIG. 7. (Color online) Same as Fig. 2 for a wavelength A =
1725 nm slightly above (red-shifted) the magnetic dipolar resonance.
Although the force has both contributions, conservative and non-
conservative, the conservative magnetic force dominates giving rise
to stable equilibrium positions centered where the electric field is
less intense. The equilibrium (zero-force) positions, corresponding
to magnetic field maxima, are now located at the vortex center.

the conservative force and the stable equilibrium positions
in the system become centered around the high-magnetic-field
regions where the electric field is less intense (see Fig. 7).
This is reflected in Fig. 3 where the stable equilibrium
positions (below the magnetic resonance) become unstable
zero-force positions (i.e., effective potential maxima) above
the resonance. Interestingly, the vortices are now centered
around the effective potential minima leading to vortex lines
converging toward the centers.

Finally, let us mention some results concerning the case of
zero dephasing. For dephasing ¢ = 0 so the force is always
conservative. Interestingly, near the dipolar electric resonance
the electric force is negligible and the effective potential
landscape is entirely due to the magnetic and electric-magnetic
interaction force contribution. The force map is shown in
Fig. 8.

Finally, we should emphasize that it is possible to obtain
equivalent results for p-polarization. In this case the electric
force is always conservative and curl terms appear in the
magnetic and electric-magnetic force contribution. The force
maps near the magnetic resonances will now be similar to that
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A=1300 n

(b)

ky/2n

0
kx/2m

FIG. 8. (Color online) Same as Fig. 4 when the crossed beams
oscillate synchronously (¢ = 0). At the dipolar electric resonance the
electric forces are zero. The force field in this case is entirely given
by magnetic or electric-magnetic forces.

discussed for s-polarized beams near the electric resonance
and viceversa.

IV. CONCLUSION

We have studied the optical forces on real small dielectric
particles made of nonmagnetic materials with magnetodielec-
tric response in optical vortex fields. We have demonstrated
that those forces can be written as a sum of conservative and
nonconservative components. Also, we have shown that the
geometry of the force lines can be easily tailored by tuning
both the wavelength and the phase shift between the fields
forming the standing-wave pattern. The vortex-line forces
depend on the both the chemical nature and the morphology
of the particle through its complex polarizabilities. Submicron
Si particles constitute an excellent laboratory to observe such
new force effects. Similar effects are predicted for particles
having large relative refractive indices such as Ge and TiO2

PHYSICAL REVIEW A 83, 033825 (2011)

particles. Light vortex fields can offer a number of advantages
to assess the local mechanical properties of cells and biological
fluids [33]. In turn, the nonconservative forces may be used
as a tunable probe of (nonlinear) properties of viscoelastic
fluids or soft solids. The relevance of the electric-magnetic
dipole interaction suggests possible applications in particle
separation and sorting. We expect that these results will open
new avenues in the controlled transport of polarizable small
particles.
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APPENDIX

The three force terms of the decomposition Eq. (5), of the
total magnetic force, resulting from the interference field given
by Eq. (9), are expressed as

47R R
(pw)y = TRl g s RelOm ok inkna,
R
- %moﬁk sin(2ky)i,, (A1)
ext
(F9) = oo {ﬁ<s>} - —%6|E0|2 sin ¢ cos kx sin (ky)i,
c
O_SX[
+ 4'“ €| Eo|* sin ¢ cos ky sin (kx)i,, (A2)
T
where
{E (S)} = ﬁlEole x {sin¢ coskx cos (ky)i,}, (A3)
¢
and
(FH) = —o0 {%V x (LSm)}
E 2
= alf]’“e|4—0| sin ¢ sin ky cos (kx)i,
T
ext € | EO |2 : . A
“Om sin¢ sinkx cos (ky)ai,, (A4)
T
where
€|lEo|* . N
(Lsm) = sin ¢ cos kx cos (ky)a,. (AS)
drw

Notice that Egs. (A4) and (A2) cancel each other when sub-
stituted into Eq. (5); namely, (Fﬁ{f >) = —(Fr(rf )). Therefore the
total magnetic force is always conservative and independent
of the phase shift:

(Fp) = (FU)+ (F + (FEY = (FIV). (A6

m
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