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Nonparaxial solitary waves in anisotropic dielectrics
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We account for the vectorial character of electromagnetic waves in the study of nonlinear self-action and
transverse localization in dielectric anisotropic media. With reference to uniaxials, we address spatial solitons
propagating in the nonparaxial regime in the presence of an arbitrary degree of nonlocality, going from the standard
Kerr response to the highly nonlocal case, unveiling various effects, including transverse profile asymmetry and
bending of the trajectory, as well as a weak effective nonlocality even in local media.
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I. INTRODUCTION

Nonlinear self-action and wave self-localization in solitary
or singular forms have received substantial attention in the
fields of fluid dynamics, plasmas, Bose-Einstein condensates,
acoustics, biology, soft matter, and optics [1–6]. Particularly
in optics, a revival of interest was brought about by con-
sidering nonlocality in media supporting two-dimensional
solitary waves, whereby nonlocal or “accessible” solitons
are stable in propagation and robust against perturbations
[7–11]. In most materials, however, the nonlinear mechanism
yielding self-action and beam self-trapping is associated
with anisotropy, since it depends on the polarization of
the wave and on its direction of propagation. The latter
applies, e.g., to semiconductor and liquid crystals, quadratic
as well as Kerr-like dielectrics [11–20]. High nonlinearities
can also result in wavelength-scale light confinement, making
nonparaxiality relevant [21]. From Lax’s pioneering work
on nonparaxial waves [22], several models of nonparaxial
nonlinear propagation have been developed [23–28]. Exact
solutions of Maxwell’s equations were found in Ref. [29] in
the form of self-confined nonparaxial dark solitons with an
azimuthal polarization. Tight electromagnetic confinement in
subwavelength structures has become important in the rapidly
growing field of plasmonics [30–32], as well as in the context
of optical tweezers [33,34] and nanostructured fibers [35].

In this paper we study electromagnetic self-trapping in
uniaxials, in the presence of arbitrarily large nonlinearity
and nonlocality. Starting from Maxwell’s equations we model
nonparaxial spatial solitons in geometries where ordinary and
extraordinary field components are decoupled and predict
the insurgence of asymmetry in their transverse profile and
bending of their propagation path, as well as the appearance of
a weak effective nonlocality even in media with a purely Kerr
(local) response.

II. MODELING LIGHT SELF-TRAPPING IN
ANISOTROPIC MEDIA

We start by considering a nonmagnetic dielectric with real
permittivity ε in the form

ε =
⎡
⎣εxx 0 0

0 εyy εyz

0 εzy εzz

⎤
⎦ , (1)
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with the optic axis lying in the plane yz and εil (i,l = x,y,z)
also accounting for a space-dependent polarizability. Under
the previous assumptions, Maxwell’s equations admit two
standard independent solutions: an ordinary wave, with an
electric field vector parallel to x̂, and an extraordinary (e)
wave, with an electric field in the plane yz. However, since
the ordinary eigensolution can be addressed as a limiting
case of the e configuration and resembles waves in isotropic
media, in the following we focus on extraordinary (e) waves.
For monochromatic excitation [time dependence exp (jωt)],
Maxwell’s equations read

∇ × Ee = −jωµ0 He, (2)

∇ × He = jω(ε · Ee + PNL), (3)

with PNL the nonlinear polarization. To better illustrate the
underlying physics, we assume that an integration can reduce
the propagation problem with two transverse dimensions
[(2 + 1)D] into a (1 + 1)D case; hence, we set ∂x = 0. The
nonzero components of the electromagnetic field are then Eey ,
Eez, and Hex , governed by(

∂z + εyz

εzz

∂y

)
Hex

= jω

[(
εyy − ε2

yz

εzz

)
Eey − εyz

εzz

P NL
z + P NL

y

]
, (4a)

(
∂z + εyz

εzz

∂y

)
Eey = j

ωεzz

∂2
yHex + jωµ0Hex − P NL

z

εzz

, (4b)

Eez = −εyz

εzz

Eey + j

ωεzz

∂yHex − P NL
z

εzz

, (4c)

where we found Eez from the z component of Eq. (3) and
then substituted the computed expression [corresponding to
Eq. (4c)] in the projections of Eqs. (2) and (3) along x

and y, respectively. Equations (4) describe beam propaga-
tion in a uniaxial, including nonlinear effects of any size
and nature, linear and nonlinear nonhomogeneities as well
as nonparaxial phenomena associated with wavelength-size
transverse features. Since ẑ is arbitrary, we take it as the
direction of (forward) wave propagation. Eey and Hex can
be normalized by scaling the spatial coordinates y and z by
the wavelength λ0 in vacuum, and Eqs. (4) suffice to fully
characterize the propagation of an electromagnetic wave in
a nonabsorbing nonmagnetic medium. For negligible spatial
variations of εyz/εzz (the latter corresponding to tan δ, with δ
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the walk-off of a plane e wave with wave vector ‖ẑ), we can
operate the transformation

y ′ = y − (εyz/εzz)z, (5a)

z′ = z. (5b)

The use of Eqs. (5) in Eqs. (4a) and (4b) provides

∂2
z′Hex − 2∂z′ (ln ne)

[
∂z′Hex + jω

cos δ
P NL

t

]
+ D∂2

y ′Hex

+ k2
0n

2
eHex − jω

cos δ

[
∂z′P NL

t − D cos δ∂y ′P NL
z

] = 0, (6)

where D = ε0n
2
e

εzz
is the diffraction coefficient and ne =√

εyyεzz−ε2
yz

εzzε0
is the refractive index of e plane waves propagating

along z in a homogeneous medium with a birefringent axis lo-
cally determined by the permittivity ε. We also introduced the
directions t and s specified by unit vectors t̂ = cos δŷ − sin δẑ

and ŝ = cos δẑ + sin δŷ, respectively. In the latter reference
system, the electric field components are given by

Eet = ∂z′Hex

jωε0n2
e cos δ

− j sin δ

ωεzz

∂y ′Hex

− P NL
t

ε0n2
e cos2 δ

+ sin δ

εzz

P NL
z , (7a)

Ees = j cos δ

ωεzz

∂y ′Hex − cos δ

εzz

P NL
z . (7b)

Since the nonlinear polarization PNL can be expressed as
a function of Ee, Eqs. (7a) and (7b) are nonlinear implicit
equations linking the electric field components to the magnetic
field Hex . Equation (6) predicts that, in the linear regime (i.e.,
PNL = 0) and in the absence of an asymmetrically distributed
ε with respect to y ′, a propagating beam with a wave vector
along ẑ has a Poynting vector at an angle δ with it [36], even
in the nonparaxial regime. Specifically, the complex Poynting
vector S can be written as S ≈ Z0

(2n
(0)
e cos δ)

|Hex |2ŝ, with Z0 the

vacuum impedance and n(0)
e the refractive index corresponding

to the peak wave vector.

III. SOLITON PROFILES

To deal with nonparaxial solitons, let us first consider a
nonlinear polarization PNL = P NL

y ŷ = −f (Ee)Hexŷ, with f

a real function depending on the specific nonlinearity. Setting
Hex = Ae−jk0n

(0)
e z′

with k0 = 2π/λ0 and neglecting fast linear
[second term in Eq. (6)] and nonlinear variations along z′ [i.e.,
∂z′f (Ee)] in the polarization of the medium, in spite of the
general formulation of the problem, A is ruled by

−∂2
z′A + 2jk0

(
n(0)

e + cf
)
∂z′A − D∂2

y ′A − k2
0�n2

eA = 0, (8)

where c is the speed of light in vacuum and �n2
e = �n2

L + cf

is an equivalent potential acting on the beam and stemming
from linear (�n2

L) and nonlinear effects (cf , the latter
supporting self-focusing through PNL). Hereafter, we assume
the linear index to be homogeneous, leaving the study of the
interaction between linear and nonlinear index wells to future
work.

Equation (8) transforms into the well-known generalized
nonlinear Schrödinger equation (NLSE) when the first term

can be neglected and cf � n(0)
e . At variance with the isotropic

case, the coefficient D in Eq. (8) differs from unity because
it depends on the second derivative of the permittivity with
respect to the propagation angle [20,37]. For arbitrarily large
anisotropy, the calculated (using a plane-wave expansion)
diffraction of a Gaussian beam in a linear homogeneous
uniaxial is in perfect agreement with the theoretical result from
Eq. (8). Given the ansatz for PNL, in this case the nonlinearity
does not affect the walk-off (i.e., the soliton trajectory). We
consider a generic third-order nonlinear and nonlocal dielectric
with the response [38,39]

�n2
e =

∫ ∞

−∞
[Gyy(y ′ − ξ )|Eey |2 + Gzz(y

′ − ξ )|Eez|2

+ 2Gyz(y ′ − ξ )Re(EeyE
∗
ez)]dξ. (9)

For the sake of clarity we simply set Gyy = Gzz =
Gyz = n2G, with n2 proportional to the Kerr coefficient
and

∫
G(y ′)dy ′ = 1. Various sizes of nonlocality are ac-

counted for through parameter w in the Gaussian G(y ′) =
1/

√
πw2e−y ′2/w2

. We look for self-trapped waves in the form
of spatial solitons

A(y ′,z′) = u(y ′)e−jk0nNLz′
, (10)

with u the magnetic field profile and nNLk0 the nonlinear
contribution to the propagation constant. We stress that the
position made in Eq. (10) corresponds to considering solitons
which propagate at an angle δ (i.e., the linear walk-off) with ẑ

in the laboratory frame yz. From Eq. (8) it is straightforward
to get the eigenvalue problem(

n2
NL + 2nNLn(0)

e

)
k2

0u = D∂2
y ′u + k2

0�n2
eu, (11)

where �n2
e depends on the beam power through Eq. (9) and

the electric field components are those in Eqs. (4). From
Eqs. (9)–(11) we find that u is a real function, hence the
Poynting vector is

S = Z0
(
n(0)

e + nNL
)

2n2
e cos δ

|u|2ŝ + j

2ωεzz

u∂y ′u ŷ. (12)

We start discussing the highly nonlocal case where the nonlin-
ear perturbation of the permittivity well (index of refraction)
is much wider than the beam waist. In this limit an analytic
solution can be found for solitons [7]. Neglecting terms pro-
portional to |∂y ′u|2, Eq. (9) becomes �n2

e = n2
∫

Gtot|u|2dy ′,
with Gtot = Z2

0( n
(0)
e +nNL

n2
e

)2(tan δ − 1)2G. After defining the nor-

malized Kerr coefficient n2H = n2Z0 cos δ(tan δ − 1)2/nmax
e

(nmax
e is the peak of ne with respect to y ′), we introduce the

beam width σ =
√∫

y ′2|Hex |2dy ′/
∫ |Hex |2dy ′, the power per

unit-wavefront Pd (Wm−1), and the n derivative Gn of Green’s
function G(y ′) evaluated in y ′ = 0, and obtain �n2

e ≈ (G0 +
0.5G2σ

2)n2HPd + n2H G2Pdy
′2 [40]. For a Gaussian Green’s

function �n2
e = 1

w
√

π
(1 − w2

A

2w2 )n2H Pd − n2H Pd

w3
√

π
y ′2, with wA the

waist of a soliton A = ( 2nmax
e cos δ

Z0
√

π

Pd

wA
)

1
2 e−y ′2/w2

A e−jnNLk0z
′
. If

nNL � n(0)
e (i.e., at low powers), the nonlinear propagation

constant is fixed by nNLk0 = 1
w

√
π

(1 − w2
A

2w2 )n2HPdk0 −
n(0)

e

√
Dn2H Pd

nmax
e w3

√
π

, where the term linear in Pd is the increase
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FIG. 1. (Color online) Soliton profiles for w/λ0 = 9.4 and
δ = 8◦. (a) Square modulus of the magnetic field Hex and index
well �n2

e (contour plot) vs y ′/λ0 and effective excitation n2Pdβ, with
β = 2n(0)

e cos δ/Z0; the quantities are normalized to their peak values
for each n2Pdβ in order to compare the relative width. (b) Real part of
Eet vs y ′/λ0 and n2Pdβ. (c)–(d) As in (b) but for the imaginary part
of Eet and Ees , respectively. The quantities in (b)–(d) are normalized
to the modulus of the maximum Eet for each n2Pdβ.

of the maximum index and the other relates to the convexity
of the self-induced parabolic well. We stress that whenever the
nonlinearity is Kerr like (i.e., the change in index is linear with
intensity), the effective action of the nonlinear perturbation
depends on the product n2HPd .

Figure 1 plots numerically computed soliton solutions
of the nonlinear eigenvalue problem consisting of Eqs. (7)
and (9)–(11), and accounting for ∂y ′u in Eq. (9): u and
Re(Eet ) are bell-shaped [Figs. 1(a) and 1(b)], whereas Im(Eet )
(much smaller than the real part) and Ees = j Im(Ees) (purely
imaginary) have an odd symmetry since they are proportional
to ∂y ′u [Figs. 1(c) and 1(d)]; hence, their amplitudes grow as
the beam width σ reduces, with an increasing degree of profile
asymmetry, as shown in the plot of transversality, i.e., the
ratio max(|Eet |)/max(|Ees |), in Fig. 2(a). Moreover, narrower
solitons (lower transversalities) correspond to higher powers,
as visible in Fig. 2(b). The soliton waist wA = 2σ at high
power tends to 0.5, consistent with the diffraction limit of a
focused beam. For a fixed excitation, the beam waist increases
for higher ratios w/λ0 owing to a lower �n2

e , consistent with

FIG. 2. (Color online) Main features of anisotropic solitons vs
excitation n2Pdβ for various w/λ0. (a) Ratio between maxima of |Eet |
and |Ees |; (b) normalized soliton waist wA/λ0; (c) scalar product of
soliton and best Gaussian (solid lines) or sech (dotted lines) fitting
functions; (d) figure of locality, i.e., ratio between the widths of the
soliton u and of the index well. Here δ = 8◦ and n(0)

e = 1.6.

FIG. 3. (Color online) (a) Effective nonlinear index nNL vs
excitation n2Pdβ for various ratios w/λ0 (increasing downward),
computed by neglecting (dots) or including (solid lines) the second
derivative along z′. The top line is the local case; the others from top
to bottom correspond to w/λ0 = 0.94,1.9,4.7,9.4,94.0, respectively.
(b) Soliton profile calculated in the local case from the complete
model with n2Pdβ = 3 × 10−11m�−2 and (c) corresponding error in
soliton profile when neglecting ∂2

z u in the model. Black solid and red
dashed lines in (b) and (c) are Re(Et ) and Im(Es), respectively.

the highly nonlocal limit. For a fixed w/λ0, Fig. 2(c) shows
how the soliton adjusts from sech to Gaussian profiles as the
power increases (and wA diminishes): the system evolves
from local to nonlocal with excitation [see Figs. 1(a) and
2(d)]. One of the most remarkable effects of the pronounced
asymmetry (Fig. 1) is that, in the nonparaxial limit, even
purely Kerr media become moderately nonlocal since �n2

e

depends on ∂y ′u through Eq. (9). Since walk-off primarily
affects the relationship between Eet/es and Eey/ez, these results
bear a slight dependence on δ (see the definition of n2H ) but
also apply to isotropic media (and ordinary waves) where
δ = 0. Figure 3(a) shows the calculated nNL versus excitation
n2Pdβ for various w/λ0 when ∂2

z′u is either included (dots) or
neglected (solid lines): the difference between the two cases is
appreciable for nNL > 0.2. Figures 3(b) and 3(c) illustrate and
compare the corresponding soliton profiles.

IV. SELF-STEERING VIA NONLINEAR WALK-OFF IN
PURELY KERR MEDIA

Aiming at generalizing the above analysis of nonparaxial
soliton physics, we now address the role of each nonlinear
term in Eq. (6) for anisotropic (uniaxial) media with
a Kerr (local) nonlinearity PNL = �Ee with, e.g.,
� = ε0n2(|Ees |2 + |Eet |2), i.e., a non-negligible ∂y ′P NL

z

in Eq. (6). We find solitons in the form given by Eq. (10), thus
fixing the direction of energy propagation.

For a generic nonlinear polarization in the form PNL =
pNLe−jk0(n(0)

e +nNL) and starting from Eq. (8), Eq. (11) becomes

−k2
0

(
n2

NL + 2n(0)
e nNL

)
u + D∂2

y ′u

− k2
0c

(
n(0)

e + nNL
)

cos δ
pNL

t + jk0cD∂y ′pNL
z = 0, (13)

where we supposed the absence of a linear index well. The
Poynting vector can be cast as

S = 1

2

[
ŝ

(
n(0)

e + nNL

n2
e cos δ

Z0|u|2 + j sin δ

ωεzz

u∗∂y ′u + pNL
t u∗

ε0n2
e cos δ

− sin(δ)pNL
z u∗

εzz

)
+ t̂

(
j cos δ

ωεzz

u∗∂y ′u − cos δ

εzz

u∗pNL
z

)]
.

(14)
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FIG. 4. (Color online) Self-steering solitons. Calculated modulus
of (a) magnetic field, (b) tangential, and (c) longitudinal electric field
vs y ′/λ0. Blue, green, and red lines (from bottom to top) correspond to
n2Pdβ = (1,3,5) × 10−11 m�−2, respectively. (d)–(f) Corresponding
phase profiles vs y ′/λ0; the transverse phase jump increases with
excitation. Here δ = 8◦.

The factor proportional to pNL
t in Eq. (13) reduces to a non-

linear index variation of the form �n2
e ∝ �; hence, the results

previously obtained from Eq. (8) hold valid. In Eqs. (7a)-(7b),
we neglect terms depending on pNL

z (lower than pNL
t for

realistic nonlinearities), being the nonlinear polarization much
smaller than the linear one in the local case (see Fig. 3). Setting
kt = −Z0(nNL + n(0)

e )(n2
e cos δ) and ks = cos δ/(ωεzz), we

can write jωD∂y ′pNL
z = ωD[ks cos δ(∂y ′�∂y ′u + �∂2

y ′u) −
jkt sin δ(�∂y ′u + u∂y ′�)], where the imaginary part of Eet

is neglected in line with the results of Fig. 1(c). The real
terms (multiplied by ks) are even and affect the profile of the
nonlinear index well, as well as of the soliton; the imaginary
terms (multiplied by kt ) distort the soliton phase front; hence,
they modify the soliton path. Figure 4 shows numerical
computations of the electromagnetic field of a soliton with
the Poynting vector fixed along z′, i.e., at angle δ with z in
the plane yz, demonstrating the appearance of a self-induced
tilt in the beam phase front owing to a nonlinear variation in
walk-off with excitation. Let us now focus on the Poynting
vector given by Eq. (14): pNL

z is neglected, consistent with
the approximation made in calculating the soliton profile,
whereas pNL

t gives rise to a y ′-dependent change (proportional
to �n2

e) in the amplitude of the s component of the Poynting
vector. Finally, the two last terms containing u∗∂y ′u can be
grouped as j/(ωεzz)ŷu∗∂y ′u. Writing u in polar form, we get
u∗∂y ′u = |u|∂y ′ |u| + j |u|2∂y ′ ( 
 u); hence, the real part of S
along ŷ is proportional to |u|2∂y ′ ( 
 u) and even with respect to
y ′. Thus, we have a nonzero (transverse) transfer of real energy
across the soliton profile. Eventually, we remark that this kind
of light self-steering effect does not occur in isotropic media
where δ = 0.

V. HIGHLY NONPERTURBATIVE REGIME:
REORIENTATIONAL CASE

In the previous sections we neglected the nonlinear polar-
ization term PNL in Eqs. (7), which is a good approximation
for a large variety of materials and excitation conditions
(see Fig. 3). In this section we will focus on a specific

system where the latter approximation does not hold valid for
large enough powers, namely, nematic liquid crystals (NLCs).
NLCs are known to exhibit very high effective nonlinearities
(typically n2 ≈ 10−6 cm2 W−1) due to the particular nature
of light-matter interactions [41–43]. Consequently, in uniaxial
NLCs, the optic axis (or molecular director) can reorientate
in space by reacting to low electric fields, i.e., light beams
of powers in the milliwatt or even microwatt range [44,45]:
when the induced rotation becomes comparable with the
initial distribution, the nonlinear polarization is no longer
negligible with respect to the linear one. Light self-steering
owing to nonlinear changes in walk-off was experimentally
demonstrated in the modulational instability regime [46,47]
and for stable self-trapped beam propagation [48].

With reference to light self-trapping, NLCs behave as a
saturable nonlocal nonlinear medium able to support stable
(2 + 1)D spatial solitons at relatively low cw excitations
[11,44,48,49]. At low powers, the soliton trajectories do not
bend because of the negligible walk-off variations associated
with the optically induced reorientation [11]; at higher powers,
beam self-bending can be expected [48,49]. We refer to a
planar NLC cell, infinitely extended along y and z and with
a finite thickness L across x [11]. The boundary conditions
induce a homogeneous director distribution in the absence
of excitation, with the optic axis lying in the plane yz at
an angle θ0 with respect to z. Equations (4) need be solved
in conjunction with those ruling the director distribution
[11,41,43]; since the electric field vector belongs to the plane
yz, the director remains coplanar at an angle θ with respect to
axis z; θ is governed by [11]

K∇2θ + εa[sin(2θ )(|Eey |2 − |Eez|2)

+ 2Re(EeyE
∗
ez) cos(2θ )] = 0, (15)

with K the Frank elastic constant (for molecular deformations)
and εa the dielectric anisotropy. We look for single-hump
solitary solutions having a flat-phase transverse profile, i.e.,
in the form Hex = u(y ′)e−j (n(0)

e +nNL)k0z with u real and θ =
θu(y ′), where we set y ′ = y − z tan δ and where δ is the
power-dependent walk-off. Therefore, we fix the wave vector
and allow the Poynting vector to change its direction in yz,
in agreement with typical experimental setups [11,48]. Due
to the high nonlocality of this medium [8,11], to compute
the soliton profile we can use Eq. (8), taking for δ and n(0)

e

the value computed at the beam peak (solitons are even
due to symmetry). In other words, following the approach
of self-consistent soliton theory [50] and assuming θu − θ0

known, we can consider the latter as a linear inhomogeneous
distribution of the optic axis, and keep into account that the
nonlinear perturbations on θ effectively are perceived by the
soliton (i.e., through spatial overlap with its intensity profile) as
small because of the high nonlocality; hence, only transverse
variations in the refractive index ne are relevant.

To get a simplified (1 + 1)D model for nonlinear optical
propagation, in Eq. (15) we make the ansatz sin(πx/L) (the
cell boundaries are in x = 0,L) for the x dependence of the
optical perturbation θu − θ0 and consider beams propagating
in the cell midplane x = L/2 [49]. Therefore, we have to solve
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FIG. 5. (Color online) Soliton self-steering in NLC. (a) Soliton
waist (dashed blue line) and walk-off (solid green line) vs power
density. (b) Plots of |Hx | and the optical perturbation θ − θ0 in the
soliton case, vs y and the logarithm of the power density Pd , with
P0 = 62 Wm−1. Both quantities are normalized to their peak value at
each power. (d) Beam evolution in yz computed by the BPM (beam
propagation method) when the input profile corresponds to a solitary
solution for Pd = 62 Wm−1 (black lines, beam with the largest slope
in yz) and Pd = 1.8 × 104 Wm−1 (red lines). (e) and (f) show the
corresponding perturbation in the director distribution in the cell.
In this example, λ0 = 442 nm, n⊥ = 1.5, n‖ = 1.7, K ≈ 10−11N,
θ0 = π/4, and L = 50 µm.

the (1 + 1)D nonlinear eigenvalue problem(
2nNLn(0)

e + n2
NL

)
k2

0u = D∂2
y ′u + k2

0�n2
eu, (16a)

(1 + tan2 δ)∂2
y ′θu −

(
π

L

)2

(θu − θ0) + εa[sin(2θu)(|Eey |2

− |Eez|2) + 2 cos(2θu)Re(EeyE
∗
ez)] = 0. (16b)

Figure 5 shows numerical solutions of system of Eqs. (16)
for θ0 = π/4: due to the reorientational nonlinearity, the
induced optical perturbation saturates at high power, resulting
in a nonmonotonic trend for the soliton waist with power
[Fig. 5(a)]. Figure 5(a) graphs also the walk-off δ versus power,
demonstrating soliton self-bending. Figures 5(c) and 5(d) plot
the profiles of u and θu versus y ′ and power density Pd : u is very
close to Gaussian due to the NLC high nonlocality, whereas the
optical perturbation θu − θ0 is very similar to Green’s function
of the structure with a width slightly changing versus power,
exponentially decreasing for large |y ′| with a slope determined
by L [49].

Using a BPM propagator with a relaxation algorithm to
calculate the director distribution in yz, we checked that
the calculated solutions effectively correspond to solitons by
simulating their propagation in an NLC cell with Eq. (8)
(where ∂2

z′A is neglected) together with the reorientation
equation in the plane x = L/2, respectively. It is noteworthy
that the second derivative contribution in Eq. (8) is vanishing
because we take for n(0)

e the refractive index at the maximum
reorientation. As shown in Fig. 5(d), the beams walk-off with
invariant profiles, confirming the validity of the computed
solutions and the occurrence of power-dependent angular

self-steering. The corresponding optically perturbed director
distributions are visible in Figs. 5(e) and 5(f).

VI. SELF-STEERING IN NONCENTROSYMMETRIC
MEDIA

Finally, we consider a linearly isotropic medium (i.e.,
δ = 0) with a Kerr response lacking inversion symmetry;
in this case, the z component of the nonlinear polariza-
tion in general contains a term proportional to �Ey with
� ∝ (|Ez|2 + γ |Ey |2) and γ a constant related to the cubic
susceptibility tensor χ (3). Neglecting extra contributions to
P NL

z , ∂y ′P NL
z = kt (u∂y ′� + �∂y ′u) yields an odd (imaginary)

term in Eq. (6). Therefore, similar to what was discussed
above, a noncentrosymmetric nonlinear response breaks the
parity and provides nonlinear steering of the soliton trajectory
depending on the transverse gradient of the longitudinal
nonlinear polarization.

VII. CONCLUSIONS

In conclusion, we have derived a model governing nonlinear
propagation of electromagnetic beams in inhomogeneous
uniaxials, taking into account the longitudinal field component
arising in the nonparaxial regime. Our model and calculations
demonstrate that, regardless the degree of nonlocality or
despite it, nonparaxiality introduces asymmetry in soliton
transverse profiles and a weak nonlocality, even in the case of
purely Kerr media. We demonstrated self-steering effects due
to nonlinear walk-off changes in the presence of strong self-
confinement in Kerr media with an anisotropic linear behavior.
In the highly perturbative regime, we demonstrated how such
effect can take place even though the longitudinal electric field
remains negligible with respect to the transverse one, referring
to NLC as a realistic example. In noncentrosymmetric media
and in the nonparaxial regime we predicted that asymmetry in
the longitudinal field can lead to self-action of the light beam
on its own trajectory.

With reference to applications, light self-steering can play
an important role in the design and realization of optical
networks with topology controlled by the signal itself. Our
results have also potential implications in particle confinement
and manipulation via tightly focused light beams. Finally, we
expect these findings to have an impact on self-confinement
of longitudinal waves in diverse fields such as acoustics, fluid
dynamics, and atom optics.
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