
PHYSICAL REVIEW A 83, 033820 (2011)

Parametric generation of quadrature squeezing of mirrors in cavity optomechanics
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We propose a method to generate quadrature-squeezed states of a moving mirror in a Fabry-Perot cavity. This is
achieved by exploiting the fact that when the cavity is driven by an external field with a large detuning, the moving
mirror behaves as a parametric oscillator. We show that parametric resonance can be reached approximately by
modulating the driving field amplitude at a frequency matching the frequency shift of the mirror. The parametric
resonance leads to an efficient generation of squeezing, which is limited by the thermal noise of the environment.
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I. INTRODUCTION

Cavity optomechanics [1–4], as an interaction interface
between a cavity field and a moving mirror, is an exciting
research area for exploring quantum behavior in macroscopic
systems as well as applications in quantum information
processing. With the recent advances of cooling techniques
in optomechanical systems [5–12], it is becoming possi-
ble to overcome thermal noise and study quantum state
engineering of mechanical mirrors. Indeed, recent studies
have already shown that various kinds of nonclassical states
can be generated by optomechanical coupling. These in-
clude quantum superposition states [13,14], entangled states
[15–19], and squeezed states of light [20–23] and mirrors
[24–28].

Specifically, achieving squeezed states in mechanical
oscillators (mirrors) is an important goal because of the
applications in ultrahigh precision measurements such as the
detection of gravitational waves [29–31]. Several schemes
have been proposed to create quantum squeezing of the moving
mirror in cavity optomechanics. For example, squeezing can
be transferred from a squeezed light driving the cavity to
the mirror [25], and recently Mari and Eisert have shown
that squeezing can be generated directly by a periodically
modulated driving field [26].

We note that a basic mechanism for creating quadrature
squeezing is to introduce a parametric coupling for the mo-
tional degree of freedom of the mirror. In particular, efficient
squeezing can be achieved at the parametric resonance, such
that the Hamiltonian in the interaction picture takes the
form HI ∝ b2 + b†2 [where b and b† are operators of the
oscillator in Eq. (1)] and the corresponding evolution operator
is a squeezed operator. Therefore an interesting question
is how the parametric resonance can be reached in cavity
optomechanical systems. One of the difficulties here is the
dynamical shift of the mechanical resonance frequency due to
the optomehanical coupling, which is sensitive to the intensity
of the cavity field. In this paper we show that in the large
detuning limit, the frequency shift can be compensated by
modulating field amplitude at a suitable frequency, and hence
parametric resonance can be reached approximately. We will
present an explicit form of the driving amplitude, and analyze
the time development of squeezing in the presence of thermal
noise.

II. MODEL

The system under consideration is an optical cavity formed
by a fixed mirror and a moving mirror connected with a
spring (Fig. 1). We consider a single-mode field in the cavity
and model the moving mirror as a harmonic oscillator. The
Hamiltonian of the system reads

HS = h̄ωca
†a + h̄ωmb†b − h̄ga†a(b† + b)

+ h̄�(t)e−iωd t a† + h̄�∗(t) eiωd ta, (1)

where a† (b†) and a (b) are the creation and annihilation
operators associated with the single-mode cavity field (mirror)
with frequency ωc (ωm). Assuming meff is the effective mass
of the mirror, then the position and momentum operators of
the mirror are x = xzpf(b† + b) and p = imeffωmxzpf(b† − b),
where xzpf = √

h̄/(2meffωm) is the zero-point fluctuation of the
mirror’s position. The third term in Eq. (1) describes a radiation
pressure coupling with the coupling strength g = ωcxzpf/L,
where L is the rest length of the cavity. In addition, the cavity
is driven by an external field with a main frequency ωd and the
time-varying amplitude �(t).

To include damping in our model, we follow the standard
approach by coupling the system with oscillator baths such
that the quantum Langevin equations (in a rotating frame with
frequency ωd ) for the operators a and b are given by

ȧ = −i�ca + iga(b† + b) − i�(t) − γc

2
a + ain, (2a)

ḃ = −iωmb + iga†a − γm

2
b + bin, (2b)

with the detuning �c = ωc − ωd and the cavity (mirror)
decay rate γc (γm). Under the assumption of Marko-
vian baths, the noise operators ain and bin have zero
mean values and they are characterized by the correla-
tion functions 〈ain(t)a†

in(t ′)〉 = γcδ(t − t ′), 〈a†
in(t)ain(t ′)〉 = 0,

〈bin(t)b†in(t ′)〉 = γm(n̄m + 1)δ(t − t ′), and 〈b†in(t)bin(t ′)〉 =
γmn̄mδ(t − t ′), where n̄m = {exp[h̄ωm/(kBTm)] − 1}−1 is ther-
mal excitation number of the mirror’s bath at temperature Tm

and kB is the Boltzmann constant. Here we have assumed that
the bath coupled to the cavity field is effectively a vacuum,
and the rotating-wave approximation has been employed to
describe the system-bath interaction [32,33].
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FIG. 1. (Color online) Schematic diagram of the cavity optome-
chanical system. An externally driven Fabry-Perot cavity is formed
by a fixed end mirror and a harmonically bound end mirror.

III. LINEARIZED SYSTEM: FORMAL SOLUTION
OF FLUCTUATIONS

Next we write a = 〈a〉 + δa and b = 〈b〉 + δb such that
the fluctuations about the expectation values are described by
operators δa and δb. Assuming the fluctuations are sufficiently
small, then we may linearize Eq. (2) to obtain the equation of
motion for δa and δb

δȧ = −i�(t)δa + ig〈a(t)〉(δb† + δb) − γc

2
δa + ain, (3a)

δḃ = −iωmδb + ig[〈a†(t)〉δa + 〈a(t)〉δa†] − γm

2
δb + bin,

(3b)

where �(t) = �c − g[〈b(t)〉 + 〈b†(t)〉]. The expectation val-
ues 〈a(t)〉 and 〈b(t)〉 are governed by equations of mo-
tion ˙〈a〉 = −[i�(t) + γc

2 ]〈a〉 − i�(t) and ˙〈b〉 = −(iωm +
γm

2 )〈b〉 + ig|〈a〉|2.
For convenience, we introduce the quadrature operators

by δXs=a,b = (δs† + δs)/
√

2 and δYs=a,b = i(δs† − δs)/
√

2.
Then Eq. (3) can be concisely expressed as

v̇(t) = M(t)v(t) + N(t), (4)

where v = (δXa,δYa,δXb,δYb)T , and M is

M(t)=

⎡
⎢⎢⎢⎢⎣

− γc

2 �(t) −√
2g〈Ya(t)〉 0

−�(t) − γc

2

√
2g〈Xa(t)〉 0

0 0 − γm

2 ωm√
2g〈Xa(t)〉 √

2g〈Ya(t)〉 −ωm − γm

2

⎤
⎥⎥⎥⎥⎦,

(5)

with 〈Xs=a,b(t)〉 = [〈s†(t)〉 + 〈s(t)〉]/√2 and 〈Ys=a,b(t)〉 =
i[〈s†(t)〉 − 〈s(t)〉]/√2. The noise vector in Eq. (4) is defined by
N = (Xin

a ,Y in
a ,Xin

b ,Y in
b )T , with Xin

s=a,b = (s†in + sin)/
√

2 and

Y in
s=a,b = i(s†in − sin)/

√
2.

Equation (4) is a first-order linear inhomogeneous differ-
ential equation with variable coefficients. Its formal solution
is

v(t) = G(t)v(0) + G(t)
∫ t

0
G−1(τ )N(τ ) dτ, (6)

where the matrix G(t) satisfies Ġ(t) = M(t)G(t) and the
initial condition G(0) = I (I is the identity matrix). In
the present system, interesting quantities are the quadra-
ture fluctuations of the cavity and the mirror. Hence, we

define a covariance matrix R(t) by the elements Rll′ (t) =
〈vl(t)vl′(t)〉 for l,l′ = 1,2,3,4. Obviously, the four diagonal
elements of R(t) are the expectation values of the square
of the four quadrature operators of the system. They are
R11(t) = 〈δX2

a(t)〉, R22(t) = 〈δY 2
a (t)〉, R33(t) = 〈δX2

b(t)〉, and
R44(t) = 〈δY 2

b (t)〉. For the mirror’s rotating quadrature opera-
tor Xb(θ,t) ≡ cos θXb(t) + sin θYb(t), the corresponding vari-
ance is given by 〈δX2

b(θ,t)〉 = cos2 θR33(t) + sin2 θR44(t) +
1
2 sin 2θ [R34(t) + R43(t)]. Since [Xb(θ,t),Xb(θ + π/2,t)] = i,
quadrature squeezing occurs when 〈δX2

b(θ,t)〉 < 1/2.
To test the dynamical quadrature squeezing, we need to

determine the covariance matrix R(t), which has the formal
expression

R(t) = G(t)R(0)GT (t) + G(t)Z(t)GT (t), (7)

where Z(t) is defined by

Z(t) =
∫ t

0

∫ t

0
G−1(τ )C(τ,τ ′)[G−1(τ ′)]T dτdτ ′. (8)

Here C(τ,τ ′) is the two-time noise operator correlation
matrix defined by the elements Cnn′ (τ,τ ′) = 〈Nn(τ )Nn′(τ ′)〉
for n,n′ = 1,2,3,4. For Markovian baths, we have C(τ,τ ′) =
Cδ(τ − τ ′), where the constant matrix C is given by

C = 1

2

⎡
⎢⎢⎢⎣

γc iγc 0 0

−iγc γc 0 0

0 0 γm(2n̄m + 1) iγm

0 0 −iγm γm(2n̄m + 1)

⎤
⎥⎥⎥⎦ . (9)

IV. GENERATION OF QUADRATURE SQUEEZING

Having obtained the formal equations for the evolution of
quadrature fluctuations of the mirror, we now ask how the
external driving amplitude �(t) can be chosen to generate
a large degree of quadrature squeezing of the mirror. We
approach the problem by considering the large detuning regime
(�c � ωm) so that by adiabatic approximation we have

δa ≈ g

�c − iγc/2
〈a(t)〉(δb† + δb) + Fin, (10)

with Fin = ∫ t

0 ain(t ′)e(i�c+γc/2)(t ′−t)dt ′. Here, we have also
assumed �c � g〈Xb(t)〉 and hence �(t) ≈ �c. Correspond-
ingly, the equation of motion (3b) for δb becomes

δḃ = − iωmδb + iη|〈a(t)〉|2(δb† + δb) − γm

2
δb +F ′

in, (11)

where η = 2g2�c

�2
c+γ 2

c /4 and the noise operator consists of two parts

F ′
in ≡ Fa

in + bin. The part Fa
in = ig〈a†(t)〉Fin + ig〈a(t)〉F †

in

comes indirectly from the cavity’s bath and depends on the
mean-field solution, while the second part bin comes directly
from the mirror’s bath.

Next we observe that if the external driving amplitude is
chosen as

�(t) = �0 sin [(ωm − ξ0) t] , (12)

with �0 being a constant and ξ0 = g2�2
0�c/(�2

c + γ 2
c /4)2,

then by the adiabatic solution 〈a(t)〉 ≈ −�(t)/(�c − iγc/2)
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and the assumption ωm � ξ0, Eq. (11) can be approximated
by

δḂ = −i
ξ0

2
δB† − γm

2
δB + F ′

ine
i(ωm−ξ0)t , (13)

where δB = δbei(ωm−ξ0)t is defined. In deriving Eq. (13), we
have made use of a rotating-wave approximation such that
counterrotating terms with the rapidly oscillating phase factors
e±2i(ωm−ξ0)t and e±4i(ωm−ξ0)t have been dropped.

We notice that Eq. (13) precisely corresponds to the equa-
tion of motion of a damped parametric oscillator at resonance.
If damping can be ignored, a mirror initially prepared in the
ground state would display exponential squeezing as time
increases: 〈δX2

b(π/4,t)〉 = 1
2e−ξ0t . Such an efficient squeezing

can be understood by inspecting Eq. (11) in which our choice
of �(t) matches the average value of the shifted resonance
frequency of the mirror ωm − η|〈a(t)〉|2, and therefore the
parametric resonance can be reached approximately. Note
that ξ0 is the average value of such a frequency shift and it
also plays the role of an effective strength of the parametric
process.

However, it should be noted that for practical purposes, ξ0

in Eq. (13), which decreases as �−3
c , has to be strong enough

to overcome noises of the baths (i.e., the detuning �c cannot
be arbitrarily large). For realistic choices of �c, the quality
of squeezing has to be examined in the presence of noise
without making use of the adiabatic approximation. To this
end, we employ the linear formalism above and solve directly
the covariance matrix in Eq. (7) numerically. For simplicity, we
assume that the system is initially prepared in its ground state
|0〉c ⊗ |0〉m through a state preparation process. Such an initial
state may be achievable in future experiments based on ground-
state cooling techniques. In addition, we consider the fol-
lowing systems parameters: ωm = 2π × 1 MHz, �c = 2π ×
10 MHz, γm = 2π × 100 Hz, γc = 2π × 100 kHz, �0 ≈
2π × 31.6 GHz, and g = 2π × 100 Hz, which are realistic
under current experimental conditions [34,35]. In Fig. 2 we
plot the time dependence of quadrature variance of the mirror
at various temperatures based on the form of �(t) in Eq. (12),
the evidence of squeezing is clearly shown at sufficiently low
temperatures. In fact, for not too large �c = 10ωm chosen in
Fig. 2, our exact numerical results agree well with the adiabatic
approximation.

If the temperature of the mirror’s bath is higher than a
critical value T c

m, then there will no longer be squeezing in the
mirror (Fig. 2, blue line). A rough estimation of the damping
effect can be made by considering that the noise is mainly
from the mirror’s bath, so that

〈
δX2

b(π/4,t)
〉 ≈ 1

2
e−(γm+ξ0)t + γm(n̄m + 1/2)

(γm + ξ0)
(1 − e−(γm+ξ0)t ).

(14)

FIG. 2. (Color online) Time evolution of 〈δX2
b(π/4,t)〉 at various

temperatures Tm. From the bottom up, the three curves correspond
to kBTm/(h̄ωm) = 0, 20, and 50, respectively. The standard quantum
limit 1/2 is indicated by dashed black line. The parameters are given
in the text.

Therefore squeezing occurs if the thermal excitation number
n̄m is below a critical number, n̄c

m = ξ0

2γm
. For the parame-

ters used in Fig. 2, our estimation gives T c
m ≈ 4.8 mK or

kBT c
m/h̄ωm ≈ 50.5, and this agrees with the numerical value

50 shown in Fig. 2. We remark that in deriving Eq. (14), the
effect of noise ain has been neglected. This can be justified by
a lengthly calculation which shows that 〈δX2

b〉 due to the cavity
field noise is of the order of ξ0(γm + ξ0 + γc)/[4�c(γm + ξ0)]
in the long time limit, and hence it can be made small compared
with the contribution from the thermal bath of the mirror by a
large detuning.

V. CONCLUSION

To conclude, we have presented a method to generate
quadrature squeezing of a mirror in cavity optomechanics.
Specifically, we have shown that in the large detuning regime
with �c � ωm � ξ0 and �c � g|〈Xb(t)〉|, the driving field
of the form �(t) given in Eq. (12) can generate squeezing
dynamically [36]. The squeezing is supported by direct
numerical calculations for realistic parameters. We should
point out that our scheme is different from that in Ref. [26]
because the large detuning regime considered here enables us
to eliminate the cavity field and formally map the mirror to
a parametric oscillator. In addition, parametric resonance can
be fine-tuned by our driving field �(t) so that the frequency
shift of the mirror due to coupling to the cavity field can be
compensated approximately.
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