
PHYSICAL REVIEW A 83, 033819 (2011)

Nonlinear dynamics of double-cavity optical bistability of a three-level ladder system
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We present nonlinear dynamical features of two-photon double-cavity optical bistability exhibited by a three-
level ladder system in the mean-field limit at low input light levels. The system exhibits a hump-like feature in
the lower branch of the bistable response, wherein a region of instability develops. The system displays a range
of dynamical features varying from normal stable switching to periodic self-pulsing and chaos. The inclusion of
two competing cooperative atom-field couplings leads to such rich, nonlinear dynamical behavior. We provide a
domain map that clearly delineates the various regions of stability, as well as bifurcation diagrams with associated
supporting evidence that identifies the period-doubling route to chaos.
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I. INTRODUCTION

Understanding instability is pivotal to fabricating practical
devices. In recent times chaos has been used in a variety
of applications including generating random numbers [1,2],
obtaining ultrawide bandwidths [3], and in optical communica-
tion schemes [4,5]. An all-optical implementation of nonlinear
dynamical behavior is preferred, as it offers a larger bandwidth
(greater than a few gigahertz [5]) in comparison to systems
involving electronic circuits that have a limited bandwidth
(∼100 kHz); moreover, all-optical systems are largely immune
to thermal noise. The phenomenon of all-optical bistability
[6,7] has historically offered a fertile platform for studying
nonlinear dynamical effects [8–10]. In this paper we describe
an all-optical bistable system that is simple yet exhibits
a variety nonlinear dynamical behavior within physically
accessible regimes.

In conventional optical bistability (OB), nonlinear dy-
namics arises due to the atom coupling to many cavity
modes [11,12]. A two-level atomic system interacting with
a single mode does not exhibit chaos unless driven much
above the saturation intensity levels [7]. We consider a system
wherein nonlinear dynamics arises due to the interplay of
cooperative atom-cavity coupling at two different frequencies
along two transitions within the atom. This results in a hitherto
unseen nonlinear dynamical regime that arises in double-cavity
two-photon OB, where both fields experience independent
feedback. This new regime occurs at low input light levels, and
the system also exhibits negative as well as positive hysteresis
[13]. We undertake a systematic study of the phase-space
structure that allows us to selectively steer the system to exhibit
either stable periodic self-pulsing or chaos. Such control
mechanisms offer the possibility of utilizing these dynamics
for communication technologies involving multiwavelength
operation, apart from the fact that this simple system also offers
a different paradigm for study of the fundamental aspects of
optical instabilities.

We review some of the earlier works in order to place
this study in the proper context. Optical instability in OB has
been extensively studied in the last four decades, since the
pioneering work by Ikeda et al. [8], where delayed feedback
in an OB system resulted in periodic instabilities and chaotic
behavior. Single-mode instabilities ranging from gain-based
laser systems [14] to passive two-level optical bistable systems

have also been investigated earlier [15,16]. Various studies
related to the three-level atoms interacting with multiple fields
leading to chaos have been undertaken: Savage et al. [17]
described the possibility of tri- and quadrastability as well as
self-pulsing and chaos; Grangier et al. [18] have studied OB in
the purely dispersive limit and shown the occurrence of chaos
for high field intensities. Chaos has also been demonstrated in
a three-level � system with only the probe field experiencing
feedback; coupling-field detuning is used to drive the system
to chaos at high input intensities [19]. To the best of our
knowledge, the OB regime we describe has not been reported
earlier; we obtain chaos for moderate cooperative parameters
in the lower branch of the bistable response at low input
intensity levels. These effects arise due to the competition
between the two cooperative branches within the atom. The
effects are quite robust and occur over a wide parameter
regime; moreover, no approximations are made with regard
to the nonlinearity of the active medium. This model is ideal
for investigation of optical chaos, as it arises just beyond the
single-mode limit; we consider here only two independent
single modes associated with the two monochromatic fields
coupling to three-level atoms. The system exhibits coordinated
dynamics at the two distinct optical frequencies.

The organization of the paper is as follows: In Sec. II we
present the description of the theoretical model. We provide
a detailed stability domain map as well as the details of
the numerical modeling in Sec. III. In Sec. IV we present
the results and analysis of the nonlinear dynamical features
including bifurcation diagrams, spectra, and phase-space plots.
We conclude in Sec. V.

II. THEORETICAL MODEL

We consider two optical fields in two independent unidirec-
tional ring cavities that share an overlapping region containing
a collection of three-level atoms of number density N , as
shown in Fig. 1. The electric field associated with the optical
fields at the atom is given by

E = E1e
iω1t + E2e

iω2t + c.c., (1)

which consists of two monochromatic fields of amplitude E1

and E2, at frequencies ω1 and ω2, coupling to the transitions
|1〉 ↔ |2〉 and |2〉 ↔ |3〉, having dipole moments d12 and d23,
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FIG. 1. (Color online) Top: Schematic of the three-level ladder
system interacting with the two fields E1 and E2 at frequencies
ω1 and ω2, respectively. Bottom: Double-cavity OB setup, where
the active medium contained within the length L interacts with the
two fields associated with the two independent unidirectional ring
cavities.

respectively. The fields within the active medium are chosen
to be counter-propagating to minimize the effects of Doppler
broadening in the ladder atomic system.

Our approach closely follows the procedure detailed in
Ref. [7]. We consider the following boundary conditions,
imposed independently on the two fields due to the cavity
feedback, that relate the input-output fields,

Eout
i (t) =

√
TiEi(L,t), (2)

Ei(0,t) =
√

TiE
in
i + Rie

−iδi Ei(L,t − �t), (3)

for the field at ωi . The subscript i = 1,2, throughout this
paper, refers to the two fields at frequencies ω1 and ω2,
respectively. Here, Ti and Ri are the transmission and reflection
coefficients associated with the two independent cavities, and
L is the length of the active medium. The cavity detunings are
δi = (ωc

i − ωi)Li/c, where ωc
i is the nearest resonant cavity

frequency close to the field frequency ωi , and Li is the total
length of the cavity. For simplicity, we have assumed that
the time taken by both fields outside the active medium is
identical and is represented as �t = (Li − L)/c. The wave
equation under the slowly varying envelope approximation is
given as

∂Ei

∂t
+ c

∂Ei

∂z
= i2πωiP (ωi), (4)

where P (ωi) is the macroscopic atomic polarization.
We consider the deviations of the fields from the stationary

solutions of Eq. (4) to be

δEi(z,t) = Ei(z,t) − Est
i (z), (5)

δPi(z,t) = Pi(z,t) − P st
i (z) (6)

upon substituting Eqs. (5) and (6) in Eqs. (3) and (4), and we
obtain the equations governing the deviations as

∂δEi

∂t
+ c

∂δEi

∂z
= i2πωiδP (ωi), (7)

δEi(0,t) = Rie
−iδi δEi(L,t − �t). (8)

The boundary condition, Eq. (8), can be made periodic in space
by the following transformation [7]:

δẼi(z,t
′) = W (z,Ti) δEi(z,t

′), (9)

δP̃i(z,t
′) = W (z,Ti) δPi(z,t

′), (10)

W (z,Ti) = exp

[
z

L
ln (Rie

−iδi )

]
, (11)

t ′ = t + �t
z

L
. (12)

Using the above transformation, Eq. (7) can be recast as

∂δẼi

∂t ′
+ c

L

Li

∂δẼi

∂z
= −κi(1 + iθi) δẼi

+ i2πωi

L

Li

δP̃ (ωi), (13)

with cavity decay κi = cTi/Li and cavity detuning θi = δi/Ti .
Note that for Ti � 1, ln(Ri) ≈ −Ti . We undertake the mean-
field limit for both fields, that is, αiL → 0, Ti → 0, and
δi → 0, which essentially refers to spatially uniform fields that
change little in each pass through the cavity; however, owing
to the large cavity photon lifetime, the photons undertake
many passes inside the cavity [11], resulting in significant
cooperative effects. Integrating Eq. (4) in the steady state and
under the mean-field limit, we obtain

Est
i (L) − Est

i (0) = i2πωi

L

c
P st

i (ωi). (14)

The boundary condition, Eq. (3), is used above, and neglecting
the terms proportional to powers of T > 1, we obtain

0 = − iκiθiE
st
i (L) − κi

(
Est

i (L) − Ein
i√
Ti

)
+ i2πωi

L

Li

P st
i (ωi),

(15)

which, under the mean-field limit (i.e., Est
i being uniform in

space), can be summed up with Eq. (13) to obtain

∂Ei

∂t ′
+ c

L

Li

∂Ei

∂z
= −iκiθiEi − κi

(
Ei − Ein

i√
Ti

)

+ i2πωi

L

Li

Pi(ωi). (16)

Note also that we have used the fact that W (z,T ) ≈ 1 in the
mean-field limit, hence δẼi = δEi and δP̃i = δPi .

The above equation is reformulated in terms of dimension-
less quantities as

∂Fi

∂t ′
+ c

L

Li

∂Fi

∂z
= κi[−iθiFi − (Fi − yi) + i2Ciρ̃mn], (17)

where the cooperative parameter Ci = αiL/2Ti , and the
absorption coefficient αi = 2πωi |dmn| 2N/h̄cγi (the subscripts
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m and n denote the corresponding transition involving the
atomic levels |1〉, |2〉, and |3〉). The other quantities are

Fi = dmnEi

h̄γi

, xi = dmnE
out
i

h̄γi

√
Ti

,

(18)

yi = dmnE
in
i

h̄γi

√
Ti

, Pi(ωi) = Ndmnρ̃mn.

The fields as well as the atomic variables are expanded in
the basis of cavity modes (ωc

i + q�i , �i = 2πc/Li for q =
0, ± 1, . . .) as

Fi(z,t
′) =

∑
q

eik
(q)
i zf

(q)
i (t ′), (19)

ρ̃mn(z,t ′) =
∑

q

eik
(q)
i zρ(q)

mn(t ′), (20)

where k
(q)
i = 2πq/L and the functions exp[ik(q)

i z] obey
the periodicity boundary condition. The temporal evolution
equation for mode amplitudes f

(q)
i is

∂f
(q)
i

∂t ′
= −iq�if

(q)
i

+ κi

[ − iθif
(q)
i − (

f
(q)
i − yiδq,0

)+i2Ciρ
(q)
mn

]
, (21)

and under the uniform-field approximation the amplitudes
f

(0)
i ,ρ(0)

mn, corresponding to resonant mode, are nonzero. Thus,
using q = 0, f

(0)
i = xi , and ρ(0)

mn = ρmn, we obtain

∂xi

∂t ′
= κi [−xi(1 + iθi) + yi + 2iCiρmn] , (22)

where yi(xi) represents the normalized cavity input(output)
fields.

We now describe the density matrix equation that governs
the interaction of the atom with fields:

∂ρ

∂t ′
= − i

h̄
[Ĥ ,ρ] + L̂ρ, (23)

where the total Hamiltonian Ĥ is

Ĥ = Ĥat + Ĥint,

Ĥat = h̄ω13|1〉〈1| + h̄ω23|2〉〈2|, (24)

Ĥint = −
d · 
E = −h̄G1|1〉〈2| − h̄G2|2〉〈3| + H.c.

The terms h̄ω13(h̄ω23) correspond to the energy levels of the
bare atom measured from the ground state |3〉, and the inter-
action Hamiltonian Ĥint is given in the dipole approximation,
involving the Rabi frequencies:

G1 = d12E1

h̄
, G2 = d23E2

h̄
.

Relaxation processes like spontaneous emission and dephasing
of the atomic coherence are contained in the Liouville operator
L̂ in Eq. (23). We explicitly enumerate the equations of
motion of density matrix elements under the rotating-wave
approximation:

∂ρ11

∂t ′
= −2γ1ρ11 + iG1ρ21 − iG∗

1ρ12,

∂ρ12

∂t ′
= −(γ1 + γ2 + i�1)ρ12 + iG1(ρ22 − ρ11) − iG∗

2ρ13,

∂ρ13

∂t ′
= − [γ1 + i(�1 + �2)] ρ13 + iG1ρ23 − iG2ρ12,

∂ρ22

∂t ′
= 2γ1ρ11 − 2γ2ρ22 − iG1ρ21 + iG∗

1ρ12 (25)

+ iG2ρ32 − iG∗
2ρ23,

∂ρ23

∂t ′
= −(γ2 + i�2)ρ23 + iG2(ρ33 − ρ22) + iG∗

1ρ13,

∂ρ33

∂t ′
= 2γ2ρ22 − iG2ρ32 + iG∗

2ρ23,

where the atomic detunings are given by �1 = ω12 − ω1

and �2 = ω23 − ω2, and 2γ1 and 2γ2 are the spontaneous
emission rates from level |1〉 to level |2〉 and from level |2〉 to
level |3〉, respectively. We have considered only the radiative
relaxation processes in a dilute atomic gas active medium. All
the frequency units are normalized with respect to the atomic
decay γ2, unless specified otherwise.

III. NUMERICAL MODELING AND STABILITY MAP

To understand the nonlinear dynamical aspects of this
system, we solve the field Eq. (22), self-consistently with
the atomic evolution given in Eqs. (25). Investigation of the
nonlinear dynamics is carried out by computing the response
(such as output fields xi) for a given set of input fields
y1 and y2, for a certain choice of atomic parameters (�i ,
γi) and cavity parameters (θi , κi), and with the atom-cavity
coupling governed by the cooperative parameters Ci . The
Newton-Raphson method is used to obtain the solutions of
the coupled nonlinear system of equations in the steady-state
limit. The atom-field cavity interaction dictates the phases
and amplitudes of both output fields. The multiplicity of
the underlying solutions needs careful handling with regard
to its numerical computation and is described in detail in
the companion paper [13]. In essence, this system does not
permit an a priori choice of both output fields, as is done
conventionally to compute the corresponding input fields. An
arbitrary choice of the output fields does not necessarily imply
a physically realizable choice of the input fields.

Computations were undertaken using two independent
numerical tools, one involving Fortran libraries associated with
EISPACK [20] and the other using MATLAB. Furthermore, we
also used the MATLAB continuation package MATCONT [21]
to undertake the study of the nonlinear dynamical aspects of
this system. We identify a series of fixed points that exhibit
interesting bifurcations such as Hopf points, limit points, and
period-doubling cascades in Fig. 4.

The unstable region and its neighborhood are quite often
related to a variety of dynamical behavior such as periodic,
quasiperiodic, or even chaotic dynamics, and hence a detailed
bifurcation analysis was undertaken. Specifically, the periodic
self-pulsing dynamics is further characterized by the Floquet
multipliers that distinguish between stable and unstable limit
cycles, and the Lyapunov exponents are calculated to identify
and characterize chaotic behavior [22]. All these nonlinear
dynamical features are independently confirmed by integrating
the time-dependent equations Eqs. (22) and (25) using the
fourth-order Runge-Kutta technique [23] under generic initial
conditions, namely, atom in the ground state, ρ33(0) = 1 [all
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FIG. 2. (Color online) Stability domain map plotted between
atomic detuning (�2) and cavity detuning (θ2). The stable fixed-point
region (blue), the self-pulsing region (green), and the chaotic region
(red) are indicated. Parameters are γi = 1, κi = 1, �1 = 0, θ1 = 0,
Ci = 200, |y1| = 23, and |y2| = 40, for i = 1,2. The dashed line at
θ2 = −8 indicates the specific parameter variation considered for the
bifurcation study in Fig. 3. All the frequency quantities are in the
units of γ −1

2 .

other elements ρmn(0) = 0], and cavity output fields xi(0) =
0.01, with varying values of the input fields yi .

We present the highlights of the linear stability analysis
in the form of the detailed stability map shown in Fig. 2.
We believe the stability domain map will facilitate the
experimental realization of these diverse nonlinear dynamical
features. The parameter space associated with the system
is exceedingly large owing to 12 physical parameters—γ1,2,
�1,2, θ1,2, κ1,2, C1,2, and Ein

1,2—each of which can be varied
independently. The stability map in Fig. 2 indicates the range of
just two of these parameters, �2 and θ2, and the system exhibits
stable switching (blue region), periodic or quasiperiodic (green
region), and chaotic (red region) dynamics. One can clearly
see the islands of stable self-pulsing (green) within the chaotic
region (red). The dashed (black) line indicates the dynamics
that we explore further and is discussed below in detail along
with the associated bifurcation diagram. The stability domain
map allows one to pick up the appropriate parameter regime
that corresponds to a desired dynamical behavior, such as
self-pulsing, stable switching, or chaotic output; even complete
avoidance of the chaotic region is possible by judicious choice
of the trajectory in the multidimensional parameter space.

IV. NONLINEAR DYNAMICS

To understand the route to chaos we consider the bifurcation
diagram along the dashed line in Fig. 2 and shown in Fig. 3(a).
By varying the detuning �2 while maintaining a constant
cavity detuning (θ2 = −8.0), we obtain a period-doubling
cascade for values of �2 within [0:1.2] and inverse periodic
doubling around �2 ≈ 8.5. The largest Lyapunov exponent
corresponding to the regions of self-pulsing is close to 0.
The chaotic domains are clearly identified by the positive
Lyapunov exponents as shown in Fig. 3(b). Self-pulsing and
chaotic dynamics occur intermittently and the windows of
stable periodic self-pulsing within a largely chaotic region are
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0.4

(b)

∆2
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FIG. 3. (Color online) (a) Bifurcation diagram indicating the
output field |x2|; (b) the largest Lyapunov exponent (Ly) plotted with
respect to atomic detuning �2. Parameter values are the same as
specified in Fig. 2 with θ2 = −8. All the frequency quantities are in
the units of γ −1

2 .

clearly shown. Beyond �2 ≈ 8.5 all the Lyapunov exponents
become negative, indicating that the system quickly moves
toward a stable fixed-point behavior independent of the initial
conditions; in our case this corresponds to stable switching.

We illustrate the input-output response and the associated
nonlinear dynamical features for |y1| = 23, as the other input
field y2 is varied. We obtain an S-shaped bistable response
along with a hump-like feature. The associated linear stability
analysis of the lower branch is also shown in Fig. 4; black(red)
portions of the curves indicate unstable(stable) fixed points.
The corresponding bistable curve without cavity feedback for
the field coupling upper transition (systems with cooperative
parameter C1 = 0) is shown in the inset in Fig. 4 for
comparison with the conventional OB.

The hump-like feature under an appropriate parameter
regime transforms into a negative hysteretic bistable response.
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FIG. 4. (Color online) Bistable response having a hump-like
feature for the field at ω2 while the input field at ω1 is held constant.
The associated stable (red) and unstable (black) regions between
the Hopf point (H1,H2) and the limit-point (LP) bifurcations are
also indicated for C1 = 200 and C2 = 200, |y1| = 23. Inset: Bistable
response in the absence of feedback to field at ω1 (C1 = 0, C2 = 200)
with |y1| = 1.5; other parameters are γi = 1, κi = 1, �1 = 0, θ1 = 0,
�2 = 4, and θ2 = −3 for i = 1,2.
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FIG. 5. (Color online) Bifurcation diagrams for the cavity output
fields, indicating the periodic-doubling route to chaos. (a) Output
field coupling the lower transition |x2| versus the input field |y2| and
(b) output field coupling the upper transition |x1| versus |y2|, for the
same parameters as in Fig. 4. Unstable regions are shown in black.

The conventional hysteresis obtained in an OB system is
considered to be positive, wherein at low input intensities the
output is also low, and the system switches from a low-output
state to a high-output state with increasing input field strength.
However, in the region of the hump we obtain the opposite
hysteretic response, wherein at low input intensities the output

is high and the output switches to a lower value for higher
input field strengths. Such a counterintuitive response encloses
within it a negative hysteresis. The physical origin of the
hump-like feature arises from the process of enhancement of
the field at ω2 arising as a result of suppressed absorption
along the |2〉 → |3〉 transition [13]. The choice of a large
cooperative parameter C1 along the upper transition |1〉 ↔ |2〉
leads to enhanced interaction of the atom with the ω1 field and
concurrently results in the extraction of a significant fraction of
the population into excited states; specifically, the upper state
|1〉 population increases. This leads to the creation of inversion
along the upper transition |1〉 ↔ |2〉 (i.e., ρ11 > ρ22), resulting
in a lowering of the influence of the field at ω2 on these
atoms and, thus, the accompanying suppressed absorption.
This dynamics occurs due to the asymmetric choice of the
cooperative parameters C1 > C2 under the cavity resonant
condition θ1 = θ2 = 0. This inversion does not remain immune
to a further increase in the field strength |y2| and the
system exhibits conventional (positive) OB at higher input
intensities.

Furthermore, the hump-like regime is also associated with
nonlinear dynamical behavior arising due to cavity-assisted
inversion as discussed above. The hump exhibits Hopf bifurca-
tions, which are absent in conventional OB models involving
feedback for one field (inset in Fig. 4). This feature is the
result of an intricate interplay of phases of both fields; that is,
if one demands that both the output fields are real, as done
in Ref. [24], the hump-like feature as well as the nonlinear
dynamical behavior disappears. We indicate bifurcation points
such as Hopf points (H) and limit points (LP) in Fig. 4. In
the unstable regime corresponding to the lower cooperative
branch, one obtains self-pulsing as well as chaos at low
input light levels. The bifurcation diagram associated with
Fig. 4 is shown in Fig. 5. We also expand two illustrative

FIG. 6. (Color online) The time evolution of the output field (x2) at ω2 is shown in the first column, the corresponding spectrum (in arbitrary
units) and the population phase plots (ρ11 versus ρ22 and ρ33) are shown in the middle and the last columns, respectively. Plots in each row
correspond to various values of the input field |y2| involved in the sequence of the period-doubling route ultimately leading to chaos: (a) period
1, with |y2| = 49.78; (b) period 2, with |y2| = 49.01; (c) period 4, with |y2| = 47.70; and (d) chaos, with |y2| = 32.47. Time t ′ is in the units
of κ−1

1 and other parameters are the same as in Fig. 4.
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FIG. 7. (Color online) Development of negative hysteresis from
the hump-like feature, as well as multistability for the field at ω2

with �1 = 4, �2 = 0. Each curve corresponds to a particular value
of the input field at ω1, whose magnitude is varied from 20 to 30;
the coexistence of three stable branches (multistability) is indicated
in red. Other parameters are the same as in Fig. 4.

regions of the bifurcation diagram that indicate the onset of
chaos. With increasing input field strength y2 the system loses
stability at the first Hopf point (H1) and exhibits self-pulsing
behavior. This is indicative of a supercritical Hopf bifurcation
at H1 [22]. The Hopf points indicate the onset of periodic
behavior, and in between the Hopf points (H1 and H2) we
observe a period-doubling route to chaos. The stability of the
periodic behavior is established using Floquet multipliers, and
chaos is confirmed using Lyapunov exponents as well as the
output field spectrum.

There is a simultaneous existence of stable fixed-point
solutions and self-pulsing limit cycles beyond the second
Hopf point H2 in the range (48:55). For this range of |y2|,
depending on the initial condition, the system can be driven to
exhibit either periodic self-pulsing or regular stable switching.
A transition from periodic behavior to the fixed-point solution
occurs as a saddle-node/fold bifurcation that takes place
beyond H2 at |y2| = 54.6, and is represented as the limit point
of cycles (LPC) in Fig. 5. At the LPC two limit cycles (one
stable and one unstable) coalesce and annihilate each other,
leading to pure fixed-point solutions [22]. The stability of the
limit cycles is indicated by the Floquet multipliers remaining
within the unit circle, and transition out of the unit circle
implies unstable limit cycles. Floquet multipliers associated
with stable and unstable limit cycles (at |y2| = 51 before
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FIG. 8. (Color online) (a) Bifurcation diagram for the field at ω2

as the cavity decay (κ2) is tuned. Time evolution of output field for
κ2 = 0.78, κ2 = 0.30, and κ2 = 0.58, labeled as iii, i, and ii in (a) are
presented in the panels (b),(c) and (d), respectively, for C1 = 1000,
C2 = 100, |y1| = 25, |y2| = 13, θ2 = 0, �2 = 0. Time t ′ is in the
units of κ−1

1 and other parameters are the same as in Fig. 2.

FIG. 9. (Color online) The hump-like feature progressively trans-
forms into a negative hysteresis for comparable values of C1 and C2.
Stable(unstable) regions are indicated in red(black). Parameters are
the same as in Fig. 4.

they coalesce at LPC) are 0.3639 + i0 and −1.7997 + i0
respectively.

The onset of chaos indicated in Fig. 5 occurs as one
decreases the input field |y2| [see inset (ii)]. At first one obtains
the self-pulsing output of period 1, which transforms into a
self-pulsing output of period 2, period 4, and so on, as shown
in Figs. 6(a)–6(c). The genesis of the new frequencies in the
spectrum of the output field (second column) at fP 2 = fP 1/2,
fP 4 = fP 1/4, and its multiples, apart from the dominant
frequency fP 1 = 0.48, clearly indicates a period-doubling
route to chaos. Dashed arrows in Fig. 5 indicate conventional
bistable switching. As both fields switch simultaneously, one
can utilize this system for controllable switching at two distinct
optical frequencies in optical communication applications.
The period-doubling route to chaos is further substantiated by
the three-dimensional phase plot (third column), involving the
population of atomic states that show closed curves involving
one, two, and four loops, respectively. As we decrease the input
field |y2| further, to 32.47 [indicated by thick line with purple
color in Fig. 5(a)], we obtain chaos and the corresponding
two largest Lyapunov exponents are 0.3356 and 0.0031.
The spectrum of the output field becomes continuous and the
population phase plot gets filled up, clearly establishing the
existence of chaos. This is also corroborated by the loss of
stability of periodic behavior (limit cycles) [25] as reported in
Table I, wherein the associated Floquet multipliers cross out of
the unit circle along the negative real axis. Floquet multipliers
having zero imaginary part and a transition out of the unit circle
along the negative imaginary axis preclude the existence of
quasiperiodicity, thus establishing a periodic-doubling route to
chaos. The nonlinear dynamics of both fields closely resemble
each other, and one obtains periodic self-pulsing to chaotic
dynamics for both fields at ω1 and ω2, simultaneously.

This system offers a variety of control mechanisms, which
allows one to access any desired dynamics by merely changing

TABLE I. Floquet multipliers for points P1, P2, and P4, indicating
the periodic-doubling cascade shown in inset (ii) in Fig. 5(a).

|y2| Period 1 Period 2 Period 4

49.78 0.98 + 0i – –
49.01 −1.46 + 0i 0.99 + 0i –
47.70 −2.58 + 0i −1.77 + 0i 0.87 + 0i
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TABLE II. All frequency parameters are scaled with γ2.

Parameter Symbol Range

Atomic detuning �1,2 −10 ↔ 10
Cavity decays κ1,2 0 ↔ 1
Cavity detuning θ1,2 −10 ↔ 10
Cooperative parameters C1,2 100 ↔ 1000
Input field strengths |y1,2| 0 ↔ 150

a few pertinent parameters. The inclusion of finite atomic
detuning �1 could even lead to multistability as shown in
Fig. 7. A detailed analysis of multistable behavior will be
presented elsewhere. We indicate other ways to control the
stability as well as the nonlinear dynamical aspects in this
system. One can obtain all the above-mentioned nonlinear
dynamical features by varying the cavity decay κ1 and/or
κ2. Such control over the nonlinear dynamical response is
illustrated in the bifurcation diagram shown in Fig. 8, which
involves κ2 as the control parameter, which can be used to
switch the chaotic dynamics on or off. It should be noted that
the inclusion of finite cavity detuning (θ2) aids in obtaining
nonlinear dynamical features with values of the cooperative
parameters C1 and C2 comparable to those shown in Fig. 9.

Before we conclude, we indicate the regime of operation
in atomic vapor, such as rubidium, where these effects can be
realized. Considering the ladder transition 5S1/2 ↔ 5P3/2 ↔
5D5/2, at temperatures of about 60◦C one would obtain a
number density of ≈1011 atoms/cm3. With the transmission
coefficient T ≈ 10−2 the resulting cooperative parameter
would be C ≈ 1000. The input power levels could be varied
from ≈0 to 20 mW across a spot size of 100 µm, and one

would realize all the nonlinear dynamical effects as well
as the conventional OB results discussed in this paper. The
cooperative parameter can be varied further by changing either
the number density of atoms or the transmission coefficient
of the cavity. We also explicitly enumerate the range of
parameters varied in this paper (see Table II).

V. CONCLUSIONS

We have demonstrated a new regime of nonlinear dynamical
response at low input light levels for two-photon double-cavity
OB with a three-level ladder atomic system as the active
medium. Independent feedback is applied for both fields
interacting with the atom. We present bifurcation diagrams
that allow one to access the desired regime of nonlinear
dynamical behavior. The system undergoes a period-doubling
route to chaos in this new regime associated with the lower
cooperative branch. A control paradigm based on careful
maneuvering of parameters so as to traverse across phase
space in order to obtain any desired dynamics is demonstrated
through the stability map. The system exhibits a negative as
well as a positive hysteresis bistable response, stable periodic
self-pulsing, and chaotic dynamics, apart from multistability
and conventional switching.
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