
PHYSICAL REVIEW A 83, 033818 (2011)

Negative and positive hysteresis in double-cavity optical bistability in a three-level atom
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We present dual hysteretic behavior of a three-level ladder system exhibiting optical bistability in a double-
cavity configuration in the mean-field limit. The two fields coupling the atomic system experience competing
cooperative effects along the two transitions. We observe a hump-like feature in the bistable curve arising
due to cavity-induced inversion, which transforms into a negative-hysteresis loop. Apart from negative- and
positive-hysteresis regions, the system offers a variety of controllable nonlinear dynamical features, ranging from
switching, periodic self-pulsing to chaos.
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I. INTRODUCTION

All-optical bistability has been the focus of research
for more than four decades [1,2], apart from its potential
application as a switch [3] in optical communication tech-
nology; it remains a test bed for fundamental research. Issues
related to cooperative phenomena [4] as well as the study of
nonlinear dynamical aspects, such as self-pulsing, instabilities,
and chaos, have been extensively undertaken [5]. A deeper
understanding of issues related to quantum aspects such
as entanglement and cooperative behavior in the presence
or absence of instabilities would be critical in realizing a
functional quantum computer. Due to recent developments
related to cold atoms in optical lattices [6] and atomic chips [7],
the aspects related to cooperative phenomena have become
vital [8]. Design of a smaller trap (<λ) demands a treatment
that allows for cooperative effects, and possibly at multiple
frequencies, which can be realized in multilevel atoms. We
show the onset of instabilities in such systems at low input
light levels. Multilevel atoms have been used recently to
create and control cooperative effects, such as in multiparticle
dark states [9] and Rydberg blockade effects [10] in cold
atoms in a trap. To understand the interplay of multicolored
cooperative effects, we explore the semiclassical dynamics
of two fields coupling two adjacent transitions at which they
exhibit cooperative behavior simultaneously. The atomic level
structure itself provides the coupling between the two distinct
cooperative branches.

In an early work, one of the authors (H.W., with G.S.
Agarwal) showed the possibility of control of optical bista-
bility (OB) [11] in a three-level atomic medium, where
the OB exhibited by one (probe) field is controlled by
another (control) field coupling an adjacent transition. The
field exhibiting bistability experiences conventional cavity
feedback, whereas the control field is held constant without
feedback. The necessary condition for the field to exhibit
cooperative behavior arises from a strong interaction with
the active media accompanied by sufficient feedback. An
external cavity configuration allows effective engineering of
various characteristics of OB, including tailoring of thresholds,
changing the on and off intensities of the output field,
and obtaining multistability [12]. These effects were also
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experimentally realized [13]. Furthermore, the three-level
atom with a control field (without feedback) has been shown
to exhibit instability in the context of OB [14].

In this work, we have two fields that couple to two
adjacent transitions in a three-level atom, however, both the
fields experience feedback via two independent, single-mode,
unidirectional ring cavities, as indicated in Fig. 1. This
system provides independent control over the two cooperative
parameters via the transmission coefficient of the cavity.
This configuration leads to negative hysteresis apart from the
conventional positive bistable hysteresis. The fields are chosen
to be counter-propagating within the active medium in order to
minimize the two-photon Doppler broadening [15], however,
our calculation is undertaken for a homogeneously broadened
atomic gas. Conjoined hysteresis (positive and negative) has
been observed experimentally and may require a theoreti-
cal model involving six-wave mixing within a three-level
λ system [16].

Nonlinear dynamics related to OB has traditionally been
associated with the inclusion of multimodal treatment of
the cavity field [2,17], here, we have just two single modes
corresponding to the two monochromatic fields coupling the
atom. The theory of two-photon amplifiers and absorbers
forms the traditional basis of studying these systems, which
traditionally reduces the problem to an effective two-level
model and has been extensively studied [18]. Along similar
lines, two-photon, double-beam OB has been modeled [19],
however, such an analysis disregards the decay channels
associated with the intermediate state. Our model explicitly
incorporates these effects by considering the single-photon
coupling to the intermediate state. Previously chaos has also
been obtained for atoms interacting with a single mode,
where chaos occurs in the upper branch for extremely large
cooperative parameters accompanied by large atomic and
cavity detunings [20]. There have been other studies relating
to the dispersive regime of two-photon OB, which deals
with the effects of cavity detuning that controls both the
fields simultaneously [21]. Here, the system exhibits chaos
at sufficiently low input light levels in the lower branch of the
OB response without being restricted to any special dispersive
regime. The rich nonlinear dynamical features arise due to the
interplay of the two cooperative phenomena.

Apart from nonlinear dynamics, the system exhibits cavity-
induced inversion and positive as well as negative hysteresis
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FIG. 1. (Color online) Top: Schematic of the three-level ladder
system interacting with the two fields E1 and E2 at frequencies
ω1 and ω2, respectively. Bottom: OB setup with the collection of
atoms (within the length L) that interact with the two fields in two
independent ring cavities.

in distinct input intensity regimes. Our results are in contra-
vention to those reported earlier; in particular, we observe an
enhanced output field resulting from the creation of population
inversion between state |1〉 and state |2〉, in the presence of
concurrent feedback for fields coupling both transitions. The
effects are particularly significant, as they occur at the onset of
the lower branch and could be used as a nonlinear component
in optical circuitry. Details of the nonlinear dynamical studies
are presented in the companion paper [22].

II. MODEL SYSTEM

The atom-field density matrix equations and the field equa-
tions in terms of scaled output field (x1 = d12E

out
1 /h̄γ1

√
T1,

x2 = d23E
out
2 /h̄γ2

√
T2) and input field (yi obtained by replac-

ing Eout
i by Ein

i in xi for i = 1,2) variables governing the
dynamics of the OB system in the mean-field limit are given
as

∂ρ

∂t
= − i

h̄
[Ĥ ,ρ] + ∧Lρ,

∂x1

∂t
= κ1 [−x1(1 + iθ1) + y1 + 2iC1ρ12] , (1)

∂x2

∂t
= κ2 [−x2(1 + iθ2) + y2 + 2iC2ρ23] .

These equations describe the three-level atom coupled to
the two fields at frequencies ω1 and ω2, which experience
feedback through two independent cavities characterized
by cavity decay κ1 and κ2, with cavity detuning δ1 and
δ2 (scaled as θi = δi/Ti), and cooperative parameters C1

and C2 (Ci = αiL/2Ti , where αi is the absorption coeffi-
cient, and Ti is the transmission coefficient for the field
at ωi), respectively. The total Hamiltonian in the dipole
approximation after performing the rotating wave approx-
imation is given as Ĥ = h̄(
1 + 
2)|1〉〈1| + h̄
2|2〉〈2| −
(d12E1|1〉〈2| + d23E2|2〉〈3| + H.c.), where 
1 and 
2 are

the atomic detunings. Relaxation processes like spontaneous
emission and dephasing of the atomic coherence are contained
in the Liouville operator L̂. The detailed density matrix
equations and the scaling of field variables along the lines
of Ref. [2] are all explicitly given in Ref. [22].

We consider the mean-field limit wherein a single pass
through the ring cavity only marginally affects the fields,
and the strong cooperative nature arises due to the extremely
long photon lifetime of the fields within the cavity, as the
transmission coefficient of the cavity mirrors is chosen to
be negligibly small. Under steady-state conditions one can
obtain the bistable behavior for different combinations of the
input and output fields. We first describe the analytical results
pertaining to the absorptive double-beam OB. In the context of
the general solution associated with the three-level system, we
obtain nonlinear dynamics and we discuss the various domains
of stability for different input field strengths through a stability
domain map presented in Ref. [22], wherein regions of stable
switching and unstable regions that exhibit self-pulsing and
chaotic dynamics are clearly identified. The cavity output, the
switching threshold, and the range of input fields exhibiting
bistability are all dependent on parameters such as the decay
rates (both atomic and for the cavity), detunings (both atomic
and for the cavity), and cooperative parameters corresponding
to the two transitions.

III. RESULTS AND DISCUSSION

We begin with the description of absorptive double-cavity
OB, wherein both fields are chosen to be on resonance (i.e.,

i = θi = 0) and thus can be considered real without loss of
generality. For the atomic decay γi = 1, Eqs. (1) can be solved
in the steady state to obtain

y1 = x1

[
1 + 4C1x

2
2(

2 + x2
1 + x2

2

)(
1 + x2

1 + 2x2
2

)
]
, (2)

y2 = x2

[
1 + 2C2(

1 + x2
1 + 2x2

2

)
]
. (3)

It is clear that in the absence of the ω1 field (i.e., x1 = 0), Eq. (3)
reduces to the well-known Bonifacio-Lugiato OB equation
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FIG. 2. (Color online) (a) Bistable response of the field at ω2

for ω1 fields of various strengths. Solid (red) curves indicate (b) the
population inversion on the |1〉 ↔ |2〉 transition, (c) Im{ρ23}, and
(d) Im{ρ12} for |y1| = 25. Dashed (blue) lines indicate the response
without feedback for the ω1 field (C1 = 0, |y1| = 0.05). Other relevant
parameters are C1 = 1000, C2 = 100, κi = 1, γi = 1, 
i = 0, and
θi = 0 for i = 1,2.
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FIG. 3. (Color online) (a) Negative and positive hysteresis
exhibited by the ω2 field (for C1 = 5000, C2 = 20, |y1| = 50); arrows
indicate the associated switching. Solid (red) and dashed (black)
curves indicate stable and unstable steady-state responses, respec-
tively. (b, c) The critical slowing-down of the negative-hysteresis
loop along N1 and N2 switching, respectively. Dashed (solid) lines
indicate operating points far from (closer to) the threshold. For
switching at N1, |y2|th = 6.13, |y2|op = 6.5 (dashed), |y2|op = 6.2
(solid); for switching at N2, |y2|th = 4.05, |y2|op = 3.5 (dashed),
|y2|op = 3.6 (solid). Time t is in the units of κ−1

1 and other relevant
parameters are the same as in the caption to Fig. 2.

for the two-level atom [23]. To solve Eqs. (2) and (3) self-
consistently, we fix the input field y1 of the upper transition and
obtain the cavity field x2

2 as a function of the x1 field. The two
solutions of x2

2 obtained from Eq. (2) are responsible for the
negative- as well as the positive-hysteresis branches of the (x2

versus y2) OB response. These solutions of x2
2 can be further

substituted in (3) to obtain y2 as x1 is varied, resulting in the
solutions plotted in Figs. 2(a) and 3(a). It is clear from Eq. (3)
that the new bistable roots appear in the lower branch (prior to
the positive bistable threshold), as Eq. (3) involves a positive
definite contribution from the x2

1 term in the denominator. In
the general dispersive case, the above methodology fails, as
these equations involve sixth and seventh powers of the fields
x1 and x2, apart from the fields themselves becoming complex,
and their relative phases play a crucial role in obtaining the
dynamics.

In the context of nonlinear dynamics the corresponding
phase space, as well as the parameter space, is exceedingly
large, owing to 12 physical parameters (γ1,2, 
1,2, θ1,2, κ1,2,
C1,2, and Ein

1,2) all of which can be chosen independently.
With regard to the numerical implementation we express a
note of caution, as this system does not permit an a priori
choice of both the (complex) output fields. In the conventional
computation of OB involving feedback for one field, one
usually specifies the output field (which can be chosen to
be a real value) and calculate the requisite unique (complex)
input field. Such a strategy is conventionally adopted due to
the multivalued nature of the output field for a given input field
(S-shaped OB curve); however, a given output field uniquely
determines the input field. A generalization of this strategy fails
because it is impossible to choose the amplitude and phase of
both the output fields, as the input fields, the cavity fields, and
their interaction with the medium self-consistently determine
the eventual amplitude and phase of the output fields. Without
retaining the identity of the individual fields (x1 distinct from
x2) within the two cavities, one would not obtain the hump-like

feature (discussed below) in the lower branch [24], which is
crucial and eventually transforms into negative hysteresis as
shown in Fig. 2(a). To deal with such numerical constraints
we used, in general, the Newton-Raphson method to obtain
the steady-state solution of the nonlinear atom-field equations
along with the boundary conditions. In the general dispersive
case an arbitrary choice of relative strength and phases of the
output field does not necessarily correspond to a physically
viable input-field variation. The on-resonance case involves
real fields, and as indicated earlier, the solution can be obtained
in the steady state and acts as a check for the solutions obtained
using the Newton-Raphson method.

To mimic a typical experimental situation we use real
values for the input fields and compute the resultant complex
output fields self-consistently along the different branches of
the S-shaped OB response. We also note that, to focus our
attention on the low-input-light OB regime, we have avoided
regimes involving multistability, which is easily obtained in
this double-cavity OB system. We highlight two important
features here; the first is the enhancement of the output
field at ω2 coupling the |2〉 ↔ |3〉 transition. This arises
due to the creation of inversion in the |1〉 ↔ |2〉 transition
and leads to the hump-like response that transforms into the
negative-hysteresis loop. The second is the novel switching
characteristics wherein the output fields exhibit self-pulsing.
The two fields mimic each other in their temporal response.
The hump-like feature in the OB response indicates an
enhancement of the field at ω2 arising due to suppressed
absorption along the |2〉 ↔ |3〉 transition. This occurs in the
lower cooperative branch at low intensities of the ω2 input field,
where initially the population is dominantly in the ground
state |3〉. A large cooperative parameter C1 along the upper
transition |1〉 ↔ |2〉 leads to enhanced interaction with the ω1

field resulting in the extraction of a significant fraction of the
population into the excited states. Furthermore, as the upper
state (|1〉) population builds up, this results in a lowering of
the influence of ω2 field on these atoms. This leads to the
creation of population inversion between |1〉 and |2〉, that is,
ρ11 > ρ22 [25]. This dynamics occurs due to the asymmetric
choice of the cooperative parameters C1 > C2 at the cavity
resonant condition θ1 = θ2 = 0. However, similar dynamics
can be obtained for comparable values of C1 and C2 in the
bad-cavity limit, that is, with finite cavity detuning θ2 [22].
An enhancement of the ω2 field can be associated with a
decrease in absorption [Im{ρ23}] accompanied by enhanced
absorption [Im{ρ12}] of the ω1 field, with and without the
feedback for the ω1 field; this clearly demonstrates the reliance
of the enhancement on the cavity-assisted inversion [see
Figs. 2(b)–2(d)]. With increasing incident field strength y1, the
above effects are enhanced and the hump-like feature becomes
quite exaggerated, eventually resulting in a negative-hysteresis
loop as indicated in Fig. 2(a). A similar scenario is observed
with increasing cooperative parameter C1.

We describe in detail the negative-hysteresis loop arising
in this system (Fig. 3). As discussed above the field at ω2

is enhanced, however, upon further increase in the input
field y2, the population from the upper states is drawn back
into the lower levels |2〉 and |3〉, ultimately leading to large
absorption of the ω2 field, and the output switches to the off
state [indicated by N1 in Fig. 3(a)]. In the reverse direction,
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as the input intensity y2 is decreased the output field switches
from the off state to the on state along N2 (different from N1),
thus encompassing within it a negative-hysteresis loop. This
hysteresis is exactly opposite to the conventional bistability
(we denote as the positive hysteresis), wherein low input
intensities lead to a low output intensity, and only for higher
input intensities is the transition saturated (for zero atomic
detuning), leading to a large output field and the corresponding
reverse loop, which encloses a positive hysteresis [labeled
P1 and P2 in Fig. 3(a)]. Positive hysteresis occurs at higher
input field intensities, distinct from the low-input intensity
negative-hysteresis region.

The nature of threshold points associated with the negative
hysteresis are similar to the positive hysteresis of conventional
OB and displays critical slowing-down. The study of the time-
dependent switching indicates that, choosing an operating
point |y2|op closer to the threshold of switching results in an
increase in the time required to switch to the steady state
[Figs. 3(b) and 3(c)]. Note that this behavior occurs at all four
threshold points |y2|th associated with the switching transitions
N1,2 and P1,2. Variation of any other parameter results in
shifting of the threshold point itself and, thus, the associated
change in the switching times due to critical slowing-down.

Apart from such multicolored stable switching, the system
also exhibits a wealth of dynamics like periodic self-pulsing,
wherein a constant input intensity results in periodic output
at both frequencies. The periodicity can be controlled using
cavity parameters such as κ1,2 and θ1,2 [22]. We would like
to point out that the nonlinear dynamics can be obtained in a

robust manner for a wide variety of operational regimes. Before
we conclude we indicate that the regime of experimental
implementation, for example, in rubidium atomic vapor (along
the ladder transition 5S1/2 ↔ 5P3/2 ↔ 5D5/2), would involve
a number density of ≈1011 atoms/cm3, with a transmission
coefficient T ≈ 10−1–10−3 giving rise to C ≈ 1000, and
with an input power varying from ≈0 to 20 mW across
a spot size of 100 µm. The cooperative parameter can be
varied by changing either the number density of atoms or the
transmission coefficient of the cavity.

IV. CONCLUSIONS

In conclusion, we have demonstrated a simple all-optical
double-cavity bistable system that exhibits negative as well
as positive hysteresis. We self-consistently determine the
amplitude and phases of the two output fields. A region of
response involving a hump-like feature in the S-shaped OB
curves transforms into a negative-hysteresis loop. These effects
are a consequence of the cavity-induced inversion arising from
the simultaneous cooperative coupling and their interplay at
the two frequencies ω1 and ω2. The system also exhibits a
range of nonlinear dynamical features such as self-pulsing and
chaos.
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