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Randomly poled nonlinear crystals as a source of photon pairs
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The generation of photon pairs from randomly poled nonlinear crystals is investigated using an analytically
soluble model and numerical calculations. Randomly poled crystals are discovered as sources of entangled ultra
broadband signal and idler fields. Their photon-pair generation rates scale linearly with the number of domains.
Entanglement times as short as several fs can be reached. A comparison with chirped periodically poled structures
is given and reveals close similarity.
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I. INTRODUCTION

The first experimentally observed nonlinear optical effect,
second-harmonic generation, was investigated more than
40 years ago by Franken [1]. Since then, many other nonlinear
effects have been revealed and understood even at quantum
level. Among them, spontaneous parametric down-conversion
(SPDC) with its production of photon pairs is the most
fascinating. The reason is that two photons comprising a
photon pair generated in one quantum event of this process are
mutually strongly correlated (entangled), as was discovered by
Hong, Ou, and Mandel in the 1980’s [2]. In their experiments
they used nonlinear bulk crystals that later became the most
common sources of photon pairs [3]. In order to observe
spontaneous parametric down-conversion, phase-matching
conditions of the interacting three optical fields have to be
fulfilled. Unfortunately, they cannot be naturally fulfilled
in many highly nonlinear crystals. However, Armstrong [4]
presented the concept of additional periodic modulation of
nonlinear susceptibility that has been practically developed in
periodical poling of nonlinear crystals [5]. In this concept,
the wave vector of the additionally introduced nonlinear
modulation is added to the natural phase-matching condition
and the so-called quasi-phase matching of the interacting
optical fields is reached in this way. Since then, highly
nonlinear materials can be exploited. We note that shortening
of a nonlinear medium such that phase-matching conditions
lose their importance is the only alternative way to periodical
poling. This approach has been applied in photonic-band-gap
structures in which optical interference is crucial for reaching
an efficient nonlinear interaction [6–11].

Periodical poling has proven to be extraordinarily useful.
It has provided not only compensation for the natural phase
mismatch, but has given the ability to tailor the properties of
emitted optical fields. It is based on using ordered nonlinear
domains with variable lengths (chirped periodical poling).
The presence of domains of different lengths in an ordered
structure allows an efficient nonlinear interaction of fields in
a broad spectral range. For example, signal and idler fields
with spectra several hundreds of nm wide can be generated
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in chirped LiNbO3 crystals. On the other hand, domains
with different lengths can also be ordered randomly. A bit
surprisingly, the nonlinear interaction can be efficient even
in this case, sometimes referred as stochastic quasi-phase
matching (SQPM). Similarly, as ordered poled structures, the
randomly poled structures (RPSs) allow spectrally broadband
nonlinear interaction. It is not surprising that the efficiency
of random structures is worse as compared to ordered ones.
However, they usually put smaller requirements to polarization
properties of the interacting optical fields as well as orientation
of the nonlinear medium [12]. Also fabrication of RPSs
is much easier because high precision is required in the
production of ordered periodically poled structures.

The role of SQPM in one dimension (1D) has been already
addressed for the process of second-harmonic generation
[13–17] and the process of difference-frequency generation
[18]. Moreover, full domain random structures allowing
SQPM for transversal second-harmonic generation have been
studied in Ref. [19].

Here, we focus our attention to the generation of pho-
ton pairs in randomly poled 1D nonlinear crystals [20].
It is shown that spectral properties of photon pairs and
photon-pair generation rates are comparable in RPSs and
chirped periodically poled structures (CPPSs) [21–24]. This
is very promising for easy production of broadband and
efficient sources of photon pairs. These broadband sources
are important, e.g., in metrology (quantum optical coherence
tomography [25]) or quantum-information processing [26,27].
We note that broadband photon-pair sources can also be
constructed by using zero group-velocity dispersion conditions
[28]. However, such conditions can be met only for certain
pump frequencies considering a given material.

The paper is organized as follows. In Sec. II, a general
theory of SPDC modified to random structures is presented.
Photon-pair generation rates and intensity spectra are studied
both for random and chirped structures in Sec. III. Section IV
is devoted to temporal properties of the generated photon pairs.
Spatial properties of photon pairs are addressed in Sec. V. The
temperature behavior of the quantities characterizing photon
pairs is analyzed in Sec. IV. Section VI concerns the analysis of
fabrication errors. The role of ordering in chirped structures is
studied in Sec. VIII. Finally, conclusions are drawn in Sec. IX.
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II. SPONTANEOUS PARAMETRIC DOWN CONVERSION
IN POLED NONLINEAR CRYSTALS

The process of SPDC in a nonlinear crystal can be con-
veniently described by the following interaction Hamiltonian
Ĥint [29,30]:

Ĥint(t) = ε0B
∫ 0

−L

dz χ (2)(z)E(+)
p (z,t)Ê(−)

s (z,t)Ê(−)
i (z,t) + H.c.

(1)

L denotes the crystal length. In Eq. (1), the positive-frequency
part of the pump electric-field amplitude is denoted as E(+)

p and

E(−)
s (E(−)

i ) stands for the negative-frequency part of the signal
(idler) electric-field amplitude operator. The z-dependent
second-order susceptibility tensor χ (2) describes poling of the
nonlinear material. Vacuum permittivity is denoted as ε0 and
B means the transverse area of the optical fields. H.c. replaces
the Hermitian-conjugated term.

Electric-field amplitudes occurring in Eq. (1) can be
conveniently decomposed into harmonic plane waves with
frequencies ωa and wave vectors ka:

Ê( − )
a (z,t) = 1

2π

∫
dωaÊ

( − )
a (ωa) exp(−ikaz + iωat),

(2)
a = s,i.

The quantum spectral amplitudes Ê(−)
a (ωa) in Eq. (2) can then

be expressed using photon creation operators â
†
a(ωa):

Ê(−)
a (ωa) = −i

√
h̄ωa

2ε0cna(ωa)B â†
a(ωa); (3)

c is speed of light in vacuum, h̄ is the reduced Planck constant,
and na stands for the index of refraction of field a.

A first-order perturbation solution of the Schrödinger
equation with the initial vacuum state |vac〉 in the signal
and idler fields results in the following two-photon quantum
state |ψ〉:

|ψ〉 =
∫

dωs

∫
dωi �(ωs,ωi)â

†
s (ωs)â

†
i (ωi)|vac〉. (4)

The two-photon spectral amplitude � introduced in Eq. (4) is
given as follows:

�(ωs,ωi) = g(ωs,ωi)E
(+)
p (ωs + ωi)F (�k(ωs,ωi)), (5)

where g denotes a coupling constant, g(ωs,ωi) = i
√

ωsωi/

[2cπ
√

ns(ωs)ni(ωi)]χ (2)(0), and E(+)
p (ωp) stands for the

pump-field amplitude spectrum. The stochastic function F

introduced in Eq. (5) describes SQPM and is derived in the
form [20]

F (�k) =
∫ 0

−L

dz
χ (2)(z)

χ (2)(0)
exp(i�kz). (6)

�k describes the natural phase mismatch for the interacting
fields, �k = kp − ks − ki .

In a periodically poled structure, neighbor domains differ
in signs of χ (2) nonlinearity, and function F defined in Eq. (6)
can be recast into the form

F (�k) =
NL∑
n=1

(−1)n−1
∫ zn

zn−1

dz exp(i�kz). (7)

NL denotes the number of domains and the nth domain extends
from z = zn−1 to z = zn. Positions zn of domain boundaries
are random and can be expressed as zn = zn−1 + l0 + δln (n =
1, . . . ,NL, z0 = −L) in our model using stochastic Gaussian
declinations δln. The basic layer length l0 is determined such
that quasi-phase matching is reached, i.e., l0 = π/�k0, �k0 ≡
�k(ω0

s ,ω
0
i ), and ω0

a means the central frequency of field a. The
random declinations δln are mutually independent and can be
described by the joint Gaussian probability distribution P :

P (δL) = 1

(
√

πσ )NL
exp(−δLT BδL). (8)

Covariance matrix B is assumed to be diagonal and its nonzero
elements equal 1/σ 2. Stochastic vector δL is composed of
declinations δln; the symbol T stands for transposition. The
characteristic function G of the distribution P in Eq. (8) takes
the form

G(δK) ≡ 〈exp (iδK · δL)〉av =
N∏

j=1

G(δkj ); (9)

the symbol · means the scalar product. Vector δK of parameters
of the characteristic function G is composed of elements
δkj . The 1D characteristic function G(δk) in Eq. (9) equals
exp(−σ 2δk2/4).

In order to obtain analytical formulas, we integrate the
expression for function F in Eq. (7) domain by domain and
modify the contributions of the first and last domains in such
a way that the following simple formula is reached:

F (�k) = 2i

�k

NL∑
n=0

(−1)n exp (i�kzn). (10)

As a typical structure contains hundreds of domains, incorrect
inclusion of fields from the first and the last domains leads
to negligible declinations. The formula in Eq. (10) can be
interpreted such that SPDC occurs only in domains with
positive susceptibility χ (2) at doubled amplitude and domains
with negative susceptibility χ (2) play only the role of a “linear”
filler. This interpretation elucidates why a pair of domains
having one positive and one negative sign of susceptibility
χ (2) forms an elementary unit for understanding the properties
of photon pairs.

III. PHOTON-PAIR GENERATION RATES
AND INTENSITY SPECTRA

The photon-pair generation rate as well as intensity spectra
can be derived easily from the mean spectral density of the
number of generated photon pairs n(ωs,ωi). The mean spectral
density n corresponding to the quantum state |ψ〉 is defined by
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the formula

n(ωs,ωi) = 〈〈ψ |â†
s (ωs)âs(ωs)â

†
i (ωi)âi(ωi)|ψ〉〉av, (11)

where the symbol 〈 〉av means stochastic averaging over an
ensemble of geometric configurations of a RPS. Assuming the
quantum state |ψ〉 written in Eq. (4), we arrive at the formula

n(ωs,ωi) = |g(ωs,ωi)|2|E(+)
p (ωs + ωi)|2〈|F (�k(ωs,ωi))|2〉av.

(12)

Spectrum Ss of, e.g., the signal field and photon-pair generation
rate N , can then be derived using the expressions

Ss = h̄ωs

∫
dωi n(ωs,ωi), (13)

N =
∫

dωs

∫
dωi n(ωs,ωi). (14)

The averaged squared modulus of the phase-matching function
F as determined by the formula in Eq. (10) can be written in
the form:

〈|F (�k)|2〉av = 4

�k2

{
(NL + 1)

1 − |H (δk)|2
|1 − H (δk)|2

−
[
H (δk)[1 −H (δk)NL+1]

[1 − H (δk)]2
+ c.c.

]}
, (15)

δk(ωs,ωi) = �k(ωs,ωi) − �k0. The symbol c.c. replaces
the complex-conjugated term. Function H (δk) occurring in

Eq. (15) is defined as

H (δk) = exp [iδkl0]G(�k0 + δk),
(16)

G(�k) = exp

(
−σ 2�k2

4

)
.

The averaged squared modulus 〈|F (�k)|2〉av of the phase-
matching function given in Eq. (15) determines the averaged
spectral density n and behaves as follows. It holds that |H | � 1
and |H | = 1 for a fully ordered structure. If δk = 0 in a fully
ordered structure, H is real (H = 1) and the averaged squared
phase-matching function 〈|F (�k)|2〉av reaches its maximum
value 4(NL + 1)2. The nonzero phase mismatch δk shifts H

into the complex plane that results in lower values of the mean
value 〈|F (�k)|2〉av. The larger the δk, the smaller the mean
value 〈|F (�k)|2〉av. Inspection of the formula for H in Eq. (16)
also shows that the larger the value of the basic layer length l0,
the faster the decrease of mean values 〈|F (�k)|2〉av for given
δk. According to the formula in Eq. (16), the larger the standard
deviation σ of a random structure, the smaller the value of
|H |. The decrease of values of |H | results in an increase of the
range of values of the phase mismatch δk in which the averaged
squared modulus 〈|F (�k)|2〉av of the phase-matching function
attains non-negligible values [see the formula in Eq. (15)].

The formula for averaged squared modulus 〈|F (�k)|2〉av

of phase-matching function in Eq. (15) can be substantially
simplified under the assumption σ 2(�k0)2NL/2 � 1:

〈|F (�k)|2〉av = 2NL

(�k0 + δk)2

1 − G(�k0 + δk)

1 − 2G(�k0 + δk) cos(δkl0) + G(�k0 + δk)2
. (17)

Increasing values of phase mismatch δk lead to greater values of the denominator in the fraction on the right-hand side (r.h.s.) of
Eq. (17) that result in the decrease of values of the averaged squared modulus 〈|F (�k)|2〉av of the phase-matching function. On
the other hand, increasing values of deviation σ weaken this behavior.

For comparison, we consider another type of RPS defined such that zn = −L + nl0 + δln, where δln is a random declination
of the nth boundary. These “weakly-random” structures are more ordered as compared to those considered earlier because the
change of length of an nth domain is compensated by the change in length of an (n + 1)th domain. The averaged squared modulus
〈|F w−r(�k)|2〉av of the phase-matching function can be derived in this case as follows:

〈|F w−r(�k)|2〉av = 4

(�k)2

{
NL + 1 + |G(�k0 + δk)|2

[
exp(iδkl0)

1 − exp(iδkl0)

(
NL − exp(iδkl0)

1 − exp[iδkl0NL]

1 − exp(iδkl0)

)
+ c.c.

]}
. (18)

Disorder of the boundary positions manifests itself as a filter for the averaged squared modulus 〈|F w−r(�k)|2〉av of the phase-
matching function, as evident from the expression in Eq. (18). This leads to spectral filtering of the spectral density n. This
behavior is qualitatively different from that observed in RPS as described by the formula in Eq. (15), indicating broadening of
the spectral density n with increasing values of the deviation σ .

Spectral broadening is the most interesting feature of ordered CPPSs that we consider here for comparison. Positions of
boundaries in these structures are described by the formula zn = −L + nl0 + ζ ′(n − NL/2)2l2

0 , ζ ′ = ζ/�k0, and ζ denotes
chirping parameter. The phase-matching function F chirp(�k) then takes the form [22]

F chirp(�k) = 2
√

π√
i�k3ζ ′ l0

exp(i�kNLl0/2) exp

(
− iδk2

4�kζ ′

)
{erf[f (NL/2)] − erf[f (−NL/2)]} ,

(19)

f (x) =
√−i

2

[√
ζ ′(�k0 + δk)xl0 + δk√

ζ ′(�k0 + δk)

]
.
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The error function erf is defined as erf(x) = 2/√
π

∫ x

0 exp(−y2)dy. A detailed inspection of the formula in
Eq. (19) reveals that the larger the value of chirping parameter
ζ ′, the broader the phase-matching function F chirp(�k).

As an example, we consider spectrally degenerate (nearly)
collinear down-conversion from periodically poled LiNbO3

pumped at the wavelength λ0
p = 775 nm by a cw laser

beam. The signal and idler photons thus occur at the fiber-
optics communication wavelength λs = λi = 1.55 µm. The
crystal optical axis is perpendicular to the fields’ propagation
direction and is parallel to the vertical direction. All fields
are vertically polarized and so the largest element χ

(2)
33 of the

susceptibility tensor is used. The natural phase mismatch for
this configuration is compensated by the basic domain length
l0 equal to 9.51535 µm. A structure composed of NL = 700
layers is ∼6.5 mm long and typically delivers 4 × 106 photon
pairs per 100 mW of pumping in case of weakly random
positions of boundaries (small values of variance σ ).

The most striking feature of RPSs is that the photon-pair
generation rate N increases linearly with the number NL of
domains, independently of the standard deviation σ of the
random positions of boundaries [see Fig. 1(a)]. The standard
deviation σ plays the central role in the determination of

(a)

(b)

FIG. 1. (a) Photon-pair generation rate N and (b) signal-field
spectral width �Ss [full width at half maximum (FWHM)] as
functions of the number NL of domains for an ensemble of RPSs
with standard deviation σ equal to 0 m (solid curve), 0.1 × 10−6 m
(solid curve with ×), 0.5 × 10−6 m (solid curve with �), 1 × 10−6

m (solid curve with ◦), and 2 × 10−6 m (solid curve with 
); “arb.
units” stands for arbitrary units.

spectral widths �Ss and �Si of the signal and idler fields.
The larger the value of deviation σ , the broader the signal- and
idler-field spectra Ss and Si , as documented in Fig. 1(b). This
behavior is easily understandable because structures generated
with larger values of σ have statistically a broader spatial
spectrum of the χ (2)(z) modulation, which gives more freedom
for the fulfillment of quasi-phase-matching conditions. It holds
that the broader the signal- and idler-field spectra Ss and
Si , the smaller the photon-pair generation rate N [compare
Figs. 1(a) and 1(b)]. It reflects the fact that constructive
interference of fields from different domains is enhanced in
the area outside the central frequencies ω0

s and ω0
i , whereas

this interference is weakened in the area around the central
frequencies.

The photon-pair generation rate N increases roughly
linearly with the number NL of domains, also in the case of
“weakly random” structures described by the averaged squared
modulus 〈|F w−r(�k)|2〉av of the phase-matching function in
Eq. (18), as shown in Fig. 2. The greater the standard deviation
σ , the smaller the photon-pair generation rate N . As for the
signal-field spectral width �Ss , its values do not practically
depend on the variance σ .

The behavior of photon-pair generation as observed in
RPSs can also be found in ordered CPPSs. Also here the
photon-pair generation rate N is linearly proportional to the
number NL of domains, and spectral widths �Ss and �Si

increase with increasing chirping parameter ζ . The main
result of our analysis is that this similarity is both qualitative
and quantitative. For any value of the chirping parameter ζ

there exists a value of the standard deviation σ such that
spectral widths �Ss and �Si of the generated signal and
idler fields are the same. Moreover (and a bit surprisingly),
also photon-pair generation rates N are comparable. This is
illustrated in Fig. 3 for a chirped structure with NL = 700
domains. Its signal-field spectrum Ss is extraordinarily broad
(larger that 1 µm) for sufficiently large values of the chirping
parameter ζ [see Fig. 3(a)]. The signal-field spectra Ss of the
same width can also be generated from RPSs with sufficiently
large randomness (i.e., having large values of the deviation σ ).
Values of the standard deviation σ corresponding to the values

FIG. 2. Photon-pair generation rate N as it depends on the number
NL of domains for an ensemble of weakly-random structures with
standard deviation σ equal to 0 m (solid curve with ∗) and 2 × 10−6 m
(solid curve).
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(a)

(b)

(c)

FIG. 3. (a) Signal-field spectral width �Ss (FWHM) as a function
of chirping parameter ζ . (b) Transformation curve between the
standard deviation σ and chirping parameter ζ assuming the same
spectral widths �Ss . (c) Photon-pair generation rate for chirped
(N chirp, solid curve with ∗) and random (N , solid curve) structures and
their ratio rN (rN = N/N chirp, dashed curve) as functions of chirping
parameter ζ ; NL = 700.

of chirping parameter ζ are plotted in Fig. 3(b). Photon-pair
generation rates N for RPSs and CPPSs are drawn for
comparison in Fig. 3(c) in this case. Whereas CPPSs give better
photon-pair generation rates N for larger values of chirping
parameter ζ , RPSs even slightly overcome on average CPPSs
for smaller values of ζ . Moreover, the signal-field spectra Ss

of individual realizations may be even broader, which results
in sharper temporal features. On the other hand, these spectra

)b()a(

FIG. 4. Signal-field spectrum Ss for (a) one typical realization of
RPS (solid curve) and (b) CPPS (solid curve with ∗) and an ensemble
of RPSs (solid curve with 
). Spectra Ss are normalized such that one
photon is emitted; σ = 2.1 × 10−6 m, ζ = 2.5 × 106 m−2, NL = 700.

are typically composed of many local peaks (see Fig. 4). RPSs
thus represent an alternative broadband and efficient source of
photon pairs with properties comparable to CPPSs. We note
that histograms of domain lengths corresponding to RPSs are
broader compared to those characterizing CPPSs.

Alternatively, RPSs and CPPSs can be compared under
the requirement of equal photon-pair generation rates N .
Values of the photon-pair generation rate N decrease with
the increasing values of chirping parameter ζ [see Fig. 3(c)].
The transformation curve between standard deviation σ and
chirping parameter ζ stemming from the requirement of equal
generation rates N is monotonous and is plotted in Fig. 5(a)
in the considered case. The corresponding signal-field widths
�Ss plotted in Fig. 5(b) reveal that CPPSs provide broader
spectra for the most of values of chirping parameter ζ .
However, the difference in spectral widths in CPPSs and RPSs
is not dramatic.

The above presented results for RPSs represent an ensemble
average. In practical applications, properties of individual
realizations of a given RPS are naturally important. In Fig. 6,
we show generation rates N and signal-field widths �Ss for
10 000 realizations of the RPS. Histograms of the generation
rates N and signal-field widths �Ss plotted in Figs. 6(b)
and 6(c) are close to Gaussian distributions, in accordance
with the central limiting theorem.

It holds that the larger the deviation σ , the smaller the
relative quadratic fluctuations δN and δ�Ss of photon-pair
generation rates N and signal-field spectral widths �Ss ,
respectively [δx =

√
〈(�x)2〉av/〈x〉av, �x = x − 〈x〉av] (see

Fig. 7). However, we should note that these relative fluctuations
are quite large and can even approach 40%.

IV. TEMPORAL CORRELATIONS
AND ENTANGLEMENT TIME

There occurs a strong correlation between possible de-
tection times of a signal photon and its twin from one
photon pair because both photons are generated inside the
nonlinear medium at one instant. A finite distance between
the detection times of both photons is a consequence of
dispersion properties of the nonlinear medium through which
both photons at different frequencies propagate before they
leave the crystal. Temporal correlations of the signal and idler
photons can be conveniently described using a two-photon
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(a)

(b)

FIG. 5. (a) Transformation curve between the standard deviation
σ of RPSs and chirping parameter ζ assuming the same photon-pair
generation rates N . (b) Signal-field spectral widths (FWHM) for
random (�Ss , solid curve) and chirped (�Schirp

s , solid curve with ∗)
structures and their ratio rS (rS = Ss/S

chirp
s , dashed curve) as functions

of chirping parameter ζ ; NL = 700.

temporal amplitude A defined as

A(ts,ti) = 〈vac|Ê(+)
s (ts)Ê

(+)
i (ti)|ψ〉. (20)

This amplitude A(ts ,ti) gives the probability amplitude of
detecting a signal photon at time ts and an idler photon at
time ti .

The simplest experimental method for the estimation of
a typical constant characterizing the temporal width of the
two-photon detection window (entanglement time) uses a
Hong-Ou-Mandel interferometer. In this interferometer, the
signal and idler fields mutually interfere on a beam-splitter and
photons leaving the beam splitter at different output ports are
subsequently detected in a coincidence-count measurement.
The coincidence-count rate Rn depends on a mutual time
delay τ introduced between the signal and idler photons. It
holds that the measured temporal extension of the interference
part in the coincidence-count rate Rn is shorter or equal
to the entanglement time. This behavior originates in the
phase modulation along the two-photon spectral amplitude.
This modulation naturally broadens the temporal two-photon

0
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600

N
r

1 2 3 4 5 6 7

N (arb. units)

0

100

200

300

400

500

600

N
r

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Ss (10
-6

m)

Ss (10
-6

m)

(b)

(a)

(c)

1

2

3

4

5

6

7

N
(a

rb
. u

ni
ts

)

0.0 0.5 1.0 1.5 2.0 2.5

FIG. 6. (a) Photon-pair generation rates N and signal-field spec-
tral widths �Ss for 10 000 realizations of RPSs (each realization is
depicted as a point). Histograms of rates N (b) and widths �Ss (c); Nr

gives the number of samples with given properties. Solid curves in (b)
and (c) are best-fit Gaussian curves; σ = 2.1 × 10−6 m,NL = 700.

amplitude. However, the coincidence-count rate Rn is not
sensitive to the spectral modulation in the cw regime
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[21,31,32]. Only if the spectral modulation is not present, the
temporal width measured in the Hong-Ou-Mandel interfer-
ometer gives the correct entanglement time. The coincidence-
count rate Rn as a function of relative time delay τ is described

by the following formula:

Rn(τ ) = 1 − 
(τ ), (21)

where

ρ(τ ) = 1

2R0

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2Re[〈A(t1,t2 − τ )A∗(t2,t1 − τ )〉av], (22)

R0 = 1

2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2〈|A(t1,t2)|2〉av. (23)

Inserting Eqs. (20) and (4) for the two-photon temporal amplitude A and quantum state |ψ〉, respectively, into Eqs. (22) and (23),
we arrive at the expressions

ρ(τ ) = πh̄2

4ε2
0c

2B2

1

R0
Re

[ ∫ ∞

0
dωs

∫ ∞

0
dωi ωsωi〈�(ωs,ωi)�

∗(ωi,ωs)〉av exp(iωiτ ) exp(−iωsτ )

]
, (24)

R0 = πh̄2

4ε2
0c

2B2

∫ ∞

0
dωs

∫ ∞

0
dωi ωsωi〈|�(ωs,ωi)|2〉av. (25)

For simplicity, we further assume cw pumping with amplitude ξp at frequency ω0
p, i.e., E(+)

p (ωp) = ξpδ(ωp − ω0
p). Formulas

in Eqs. (24) and (25) can be simplified in this case and recast into the following form:

ρ(τ ) = h̄2

8ε2
0c

2B2

|ξp|2
R0

Re

[
exp

(
iω0

pτ
) ∫ ∞

0
dωsωs

(
ω0

p − ωs

)∣∣g(
ωs,ω

0
p − ωs

)∣∣2

× exp(−2iωsτ )F
(
�k

(
ωs,ω

0
p − ωs

)
,�k

(
ω0

p − ωs,ωs

))]
, (26)

R0 = h̄2|ξp|2
8ε2

0c
2B2

∫ ∞

0
dωs ωs

(
ω0

p − ωs

)∣∣g(
ωs,ω

0
p − ωs

)∣∣2∣∣F(
�k

(
ωs,ω

0
p − ωs

)
,�k

(
ωs,ω

0
p − ωs

))∣∣2
. (27)

Function F introduced in Eqs. (26) and (27) incorporates phase-matching conditions into the description of temporal properties
of photon pairs and is defined according to the formula

F(�k,�k′) = 〈F (�k)F ∗(�k′)〉av; (28)

phase-matching function F has been introduced in Eq. (10).
Considering RPSs with fluctuations of boundaries described by a Gaussian distribution in Eq. (8), function F in Eq. (28) takes

the form

F(�k,�k′) = 4

�k�k′ F̃(�k,�k′) exp[−i(�k − �k′)NLl0], (29)

F̃(�k,�k′) = 1 − H (Dk)NL+1

1 − H (Dk)

[
H (�k)

H (�k) + H (Dk)

(
−H (�k)

1 − [−H (�k)]NL

1 + H (�k)

−H (Dk)
1 − [H (Dk)]NL

1 − H (Dk)

)
+ (�k ←→ −�k′)

]
; (30)

Dk = �k − �k′. Function H occurring in Eq. (30) has been defined in Eq. (16). The symbol (�k ←→ −�k′) in Eq. (30)
replaces the term that is obtained by the indicated exchange applied to the preceded term inside the brackets.

Considering weakly random structures, the following form of the function F̃ can be derived:

F̃w−r(�k,�k′) = G(Dk)
1 − exp[iDkl0(NL + 1)]

1 − exp(iDkl0)

+
[

G(�k)G(�k′)
1 − exp(−i�k′l0)

(
1 − exp(i�kNLl0)

1 − exp(−i�kl0)
+ 1 − exp(−iDkNLl0)

1 − exp(−iDkl0)

)
+ (�k ←→ −�k′)

]
. (31)
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FIG. 7. Relative quadratic fluctuations δ�Ss of the signal-field
spectral width (solid curve) and relative quadratic fluctuations δN of
the photon-pair generation rate (solid curve with ∗) as they depend
on standard deviation ζ ; NL = 700.

On the other hand, function F̃ chirp attains a simple form in
the case of CPPSs:

F̃ chirp(�k,�k′) = F chirp(�k)F chirp∗(�k′), (32)

where the formula for F chirp is written in Eq. (19).
The true characteristics of temporal correlations (entan-

glement time) between the signal and idler fields can be
reached in the measurement of sum-frequency intensity in
a nonlinear medium combining the signal and idler photons
and having a sufficiently high value of χ (2)sum nonlinearity.
This process allows us to determine the temporal correlation
function I sum of the intensities of the signal and idler fields.
The intensity I sum of the sum-frequency field is given along the
formula

I sum(τ ) = ηsum
∫ ∞

−∞
dt |〈vac|Ê(+)

s (t)Ê(+)
i (t − τ )|ψ〉|2, (33)

where constant ηsum incorporates the value of χ (2)sum nonlin-
earity and quantum detection efficiency.

The general formula in Eq. (33) can be recast into the
following form using the expression for function F in
Eq. (28):

I sum(τ ) = ηsumh̄2

4ε2
0c

2B2

∫ ∞

0
dωp|E(+)

p (ωp)|2
∫ ∞

0
dωs

√
ωs(ωp − ωs)

∫ ∞

0
dω′

s

√
ω′

s(ωp − ω′
s)g(ωs,ωp − ωs)g

∗(ω′
s ,ωp − ω′

s)

× exp[−i(ωs − ω′
s)τ ]F(�k(ωs,ωp − ωs),�k(ω′

s ,ωp − ω′
s)). (34)

When deriving Eqs. (33) and (34) we have assumed that the
nonlinear medium in which sum-frequency generation occurs
is ideally phase matched for frequencies present in the signal
and idler fields.

A detailed analysis has shown that the time �τHOM

measured in a Hong-Ou-Mandel interferometer is inversely
proportional to the spectral widths �Ss and �Si of the signal
and idler fields despite their complex profiles. This behavior
originates in the insensitivity of the coincidence-count rate Rn

to phase variations along the signal- and idler-field spectra in
the cw regime. This property is manifested in nonlocal dis-
persion cancellation [31,33]. The time �τHOM determined by
a temporal extension [full width at half maximum (FWHM)]
of the coincidence-count interference pattern in the rate Rn(τ )
thus shortens with increasing values of the standard deviation
σ for RPSs. The dependence of time �τHOM on the deviation σ

for an ensemble of RPSs composed of 700 domains is shown in
Fig. 8. We can see in Fig. 8 that the times �τHOM can be as short
as several fs for sufficiently large values of the deviation σ . This
indicates that temporal quantum correlations can be confined
into an interval characterizing one optical cycle provided that
the spectral phase variations in the signal and idler fields are
compensated. The times �τHOM of CPPSs with the same
signal-field spectral widths �Ss are plotted in Fig. 8 for com-
parison, which reveals a nearly identical behavior of both types
of structures. Typical coincidence-count interference patterns
given by the rate Rn for photon pairs generated in both types

of structures are compared in Fig. 9. They demonstrate a close
similarity of photon-pair behavior in a Hong-Ou-Mandel inter-
ferometer. There occur typical oscillations at the shoulders of
the interference dips. Whereas regular oscillations characterize
CPPSs, irregular oscillations with larger amplitudes occur for

FIG. 8. Time �τHOM (FWHM) characterizing correlations in a
Hong-Ou-Mandel interferometer as a function of chirping parameter
ζ for an ensemble of RPSs with standard deviations σ derived from
the curve in Fig. 2(b) (solid curve) and CPPSs (solid curve with ∗);
NL = 700.
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FIG. 9. Coincidence-count rate Rn as it depends on relative time
delay τ for one realization of RPS (solid curve), CPPS (solid curve
with ∗), and an ensemble of RPSs (solid curve with 
); σ = 2.1 ×
10−6 m, ζ = 2.5 × 106 m−2, NL = 700.

individual realizations of RPSs. However, the widths of the
interference dips remain practically unchanged for different
realizations of RPSs.

Correlation times �τ sum emerging from sum-frequency
generation are in general longer than times �τHOM observed in
a Hong-Ou-Mandel interferometer because of a strong phase
modulation along the wide signal- and idler-field spectra Ss and
Si (see Fig. 10). Correlation times �τ sum can be even an order
of magnitude greater as compared to times �τHOM measured
in a Hong-Ou-Mandel interferometer for structures with
ultrabroadband spectra. However, the phase modulation along
the spectrum can be compensated to certain extent, which gives
shorter correlation times �τ sum. CPPSs have a more regular
spectral phase behavior (as demonstrated in Fig. 10) and the
quadratic phase compensation is usually sufficient to provide
wave packets several fs long. As for individual realizations
of RPSs, the quadratic compensation is less efficient because

FIG. 10. Phase ϕ of the two-photon spectral amplitude
�(ωs,ω

0
p − ωs) as it depends on normalized signal-field frequency

2ωs/ω
0
p for one realization of RPS (solid curve) and CPPS (solid

curve with ∗); σ = 2.1 × 10−6 m, ζ = 2.5 × 106 m−2, NL = 700.

(a)

(b)

FIG. 11. Sum-frequency field intensity I sum as a function of
relative time delay τ for one realization of RPS (solid curve),
CPPS (solid curve with ∗), and an ensemble of RPSs (solid curve
with 
). In (a) the quadratic chirp in the signal-field amplitude
spectrum is compensated for one realization of RPS and CPPS; in
(b) a complete spectral phase compensation is assumed. The curves
are normalized such that

∫ ∞
−∞ dτ I sum(τ ) = 1; σ = 2.1 × 10−6 m,

ζ = 2.5 × 106 m−2, NL = 700.

of more irregular phase spectral behavior. Despite this, the
values of temporal constants typical for chirped structures
can be approached [see Fig. 11(a)]. Provided that an ideal
phase compensation is reached, both types of structures
give comparable results [see Fig. 11(b)] and are capable of
generating photon pairs with wave packets extending over the
duration of one optical cycle. Experimentally, pulse shapers
have been developed for this task and their capabilities in the
area of photon pairs have already been demonstrated [34].
Comparison of the results obtained with the quadratic and
ideal compensations reveals that correlation times �τ sum are
approximately two times larger if we restrict ourselves to the
quadratic compensation. Also, the value of quadratic chirp
that needs compensation differs for individual realizations of
a RPS. This requires an adaptive phase compensator. On the
other hand, the phase compensation in case of a CPPS can
be reached in a simpler way, e.g., by inserting a piece of
suitable material of defined length [35,36]. Despite this, RPSs
are challenging both for basic physical experiments as well as
metrology applications.
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FIG. 12. Geometric scheme for the description of spatial proper-
ties. Direction of the signal-(idler-)field wave vector ks (ki) is given
by radial ϑs (ϑi) and azimuthal ϕs (ϕi) emission angles.

V. CORRELATIONS IN THE TRANSVERSE PLANE

In order to describe the spatial properties of the signal and
idler beams (in the transverse plane), a simple generalization
of the model presented in Sec. II has to be developed. The
inclusion of phase-matching conditions also in the directions
along the x and y axes and the assumption of a spectrally flat
transverse pump-beam profile Ep⊥(x,y) result in the following
separable form of a two-photon spectral amplitude � that
additionally depends on radial (ϑs , ϑi) and azimuthal (ϕs , ϕi)
signal- and idler-field emission angles (see Fig. 12):

�(ωs,ωi,ϑs,ϕs,ϑi,ϕi)

= �z(ωs,ωi,ϑs,ϕs,ϑi,ϕi)�xy(ωs,ωi,ϑs,ϕs,ϑi,ϕi), (35)

where function �z arises from phase-matching conditions in
the z direction and function �xy originates in phase-matching
conditions in the transverse xy plane (see Fig. 12). Function
�z can be derived in analogy with the formula in Eq. (5):

�z(ωs,ωi,ϑs,ϕs,ϑi,ϕi)

= g(ωs,ωi)E
(+)
p (ωs + ωi)F (�k(ωs,ωi,ϑs,ϕs,ϑi,ϕi)),

(36)

where the stochastic function F has been introduced in Eq. (6).
Phase-matching conditions in the xy plane give the function
�xy in the following form:

�xy(ωs,ωi,ϑs,ϕs,ϑi,ϕi)

=
∫ ∞

−∞
dx

∫ ∞

−∞
dy Ep⊥(x,y) exp(i�kxx + i�kyy), (37)

which includes a pump-beam amplitude profile Ep⊥(x,y) in
the transverse plane. Assuming normal incidence of the pump
beam, the Cartesian components of nonlinear phase mismatch
in Eqs. (36) and (37) can be written as

�kx = ks(ωs) sin(ϑs) sin(ϕs) + ki(ωi) sin(ϑi) sin(ϕi),

�ky = ks(ωs) sin(ϑs) cos(ϕs) + ki(ωi) sin(ϑi) cos(ϕi), (38)

�kz = kp(ωs + ωi) − ks(ωs) cos(ϑs) − ki(ωi) cos(ϑi).

We assume a Gaussian pump-beam transverse pro-
file in numerical calculations: Ep⊥(x,y) = 1/(π�xp�yp)

exp[−(x/�xp)2 − (y/�yp)2] and �xp (�yp) stands for the
pump-beam width along the x (y) direction.

We first pay attention to transverse properties of the signal
beam only. Its spectral density ss , defined as

ss(ωs,ϑs,ϕs) = sin(ϑs)
∫

dωi

∫
dϑi sin(ϑi)

×
∫

dϕi |�(ωs,ωi,ϑs,ϕs,ϑi,ϕi)|2, (39)

depends on the signal-field radial (ϑs) and azimuthal (ϕs)
emission angles. As we study photon-pair emission near the
collinear geometry, the signal beam (as well as the idler beam)
has rotational symmetry along the z axis. The dependence
of spectral density ss on signal-field radial emission angle
ϑs is shown in Fig. 13. Investigating one realization of
RPS, we observe a typical “striplike” behavior depicted in
Fig. 13(a). Fixing the value of radial emission angle ϑs ,
spectrum ss(ωs) is composed of many peaks occurring at
positions specific for the studied realization [compare also
with Fig. 4(a)]. Each peak changes its central frequency
continuously as the radial emission angle ϑs moves. We
note that this is typical also for layered structures that form
band gaps [6]. Averaging over many realizations of RPSs
smoothes this striplike behavior [see Fig. 13(b)] and leads
to that resembling CPPSs [compare Figs. 13(b) and 13(c)].
In these cases spectral splitting is observed [37]. This be-
havior originates in phase-matching conditions along the z

direction.
Integration of spectral densities ss over the signal-field

frequency ωs gives us densities ns of photon-pair numbers
that are plotted in Fig. 14 for the structures studied in Fig. 13.
Whereas the profile of density ns(ϑs) is complex for one
realization of RPS, typical shapes with one maximum around a
nonzero value of ϑs characterize the profiles of density ns(ϑs)
for an ensemble of RPSs and CPPS.

The correlated area gi of an (idler) photon in a pair
represents spatial analogy to entanglement time and character-
izes correlations of photon twins in the transverse plane. By
definition, it gives the probability of emitting an idler photon
into radial emission angle ϑi and azimuthal emission angle
ϕi provided that its signal twin has been emitted in a fixed
radial emission angle ϑs and azimuthal emission angle ϕs ,
i.e.,

gi(ϑi,ϕi ; ϑs,ϕs)

= sin(ϑs) sin(ϑi)
∫

dωs

∫
dωi |�(ωs,ωi,ϑs,ϕs,ϑi,ϕi)|2.

(40)

Because we mainly pay attention to beams propagating in
the vicinity of the z axis, we assume that the signal photon
is emitted along the z axis (ϑs = ϕs = 0◦). The correlated
area as described by function gi in Eq. (40) then has a
rotational symmetry and its profiles along the radial emission
angle ϑi for CPPS and an ensemble of RPSs nearly coincide,
as documented in Fig. 15(a). On the other hand, broader
profiles are typical for individual realizations of RPSs. These
individual realizations form compact correlated areas without
large local peaks (compare with Fig. 4 where spectrum Ss

for one realization of RPS is plotted). The width �ϑi of the
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(a)

(b)

(c)

arb. units

arb. units

arb. units

FIG. 13. Map of signal-field spectral density ss as it depends on
signal-field radial emission angle ϑs for (a) one realization of RPS,
(b) an ensemble of RPSs, and (c) CPPS; ϕs = 0◦, σ = 2.1 × 10−6 m,
ζ = 2.5 × 106 m−2, NL = 700.

correlated area along the radial angle ϑi depends in general
on phase-matching conditions along the z and ϑi axes. Thus
the length of the structure, the pump-field (temporal) spectral
width, as well as the width of the pump-beam waist determine
together the width �ϑi (for more details, see Ref. [37]). For
example, focusing the pump beam, the values of the radial
width �ϑi can be varied nearly by one order of magnitude
[see Fig. 15(b)]. This behavior can be easily explained by the
fact that the more the pump beam is focused, the wider its

0.0

0.2

0.4

0.6

0.8

1.0

n s
/n

sm
ax

0 1 2 3 4 5 6

s (deg)

FIG. 14. Profile of density ns of signal-field photon numbers
as a function of signal-field radial emission angle ϑs for one
realization of RPS (solid curve), CPPS (solid curve with ∗), and an
ensemble of RPSs (solid curve with 
); nmax

s = maxϑs
[ns(ϑs)]. Plane-

wave pumping is assumed; ns(ϑs,ϕs) = ∫
dωs ss(ωs,ϑs,ϕs); ϕs = 0◦,

σ = 2.1 × 10−6 m, ζ = 2.5 × 106 m−2, NL = 700.

spatial spectrum in the transverse plane, and so the weaker the
phase-matching conditions in this plane.

VI. THE ROLE OF TEMPERATURE

We have seen that an ensemble of RPSs and a CPPS have
similar properties. This close similarity is preserved also when
studying temperature dependences [21] that are in general
weak. On the other hand, behavior of individual realiza-
tions of RPSs manifests a stronger temperature dependence.
However, the influence of temperature varies from realization
to realization. Whereas properties of the realization of RPS
studied above do not considerably change with temperature
(see Fig. 16 for the signal-field spectral width �Ss in the
temperature range from 284 to 300 K), other realizations
are more prone to a change in temperature. This can be
conveniently used for efficient temperature modifications
of properties of photon pairs. We note that these effects
have their origin in temperature dependence of indexes of
refraction [21].

VII. THE ROLE OF SMALL RANDOM
(FABRICATION) ERRORS

In the fabrication process, a small random error necessarily
occurs [38]. This error is sometimes called a duty cycle error
and, in general, leads to lowering of photon-pair emission rates
[18]. Considering spectral widths, they are resistant against
this error in uniformly periodically poled crystals [38] [see
also Eq. (18), valid for weakly-random structures]. On the
other hand, spectral widths are slightly reduced in CPPSs as
documented in Fig. 17. We can see in Fig. 17 that a (large)
fabrication error with variance σer = 5 × 10−7 m results in
the reduction of signal-field spectral width �Ss only ∼10%.
Individual realizations of RPSs are much more sensitive to the
fabrication error. The observed spectral changes depend on
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FIG. 15. (a) Radial profile gi(ϑi) of the correlated area for
�yp = 1 × 10−5 m and (b) radial width �ϑi of the correlated area
as it depends on pump-beam width �yp for one realization of RPS
(solid curve), CPPS (solid curve with ∗), and an ensemble of RPSs
(solid curve with 
); ϑi = ϑ0

i + δϑi ; gmax
i = maxϑi

[gi(ϑi)]. A radially
symmetric pump beam is assumed, i.e., �xp = �yp; ϕs = ϑs = 0◦,
ϕi = 180◦, ϑ0

i = 0◦; σ = 2.1 × 10−6 m, ζ = 2.5 × 106 m−2, NL =
700.

individual realizations. As an example, the signal-field spectral
width �Ss of the sample analyzed above decreases with the
increasing variance σer of the fabrication error. This is natural,
because the spectrum of this realization is broader as compared
to the ensemble mean value. We note that it holds also here
that the narrower the signal-field spectrum, the greater the
photon-pair generation rate N and vice versa.

VIII. THE ROLE OF ORDERING IN CHIRPED
PERIODICALLY POLED STRUCTURES

The benefit of ordering of individual domains by their
lengths in CPPS can be quantified as follows. We take an
ordered structure and divide it into segments containing d

domains. We then randomly position these segments in a
new artificial structure and finally obtain mean values of
physical quantities after averaging over random positions. In

0.5
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2.0

2.5
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)

284 288 292 296 300

T (K)

FIG. 16. Signal-field spectral width �Ss as it depends on tem-
perature T for one realization of RPS (solid curve), CPPS (solid
curve with ∗), and an ensemble of RPSs (solid curve with 
);
σ = 2.1 × 10−6 m, ζ = 2.5 × 106 m−2, NL = 700.

the limiting case of d = 1, we have a completely random
structure similar to those studied above. It can be shown
that the signal-field spectral width �Ss decreases with the
decreasing segment length d (see Fig. 18). This is accompanied
by an increase of photon-pair generation rate N . This behavior
reflects the fact that spectra of the fields coming from
individual domains are combined in a more constructive way
in the central spectral area with the increasing randomness
(decreasing value of segment length d). The graph in Fig. 18
also demonstrates that the requirement for the same spectral
widths �Ss of RPSs and CPPS inevitably implies that the
histogram of the domains’ lengths for RPSs is broader than
that obtained for CPPS.
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FIG. 17. Signal-field spectral width �Ss as a function of variance
σer of the fabrication error for one realization of RPS (solid curve)
and CPPS (solid curve with ∗). Averaging over the fabrication error
was done in 1000 randomly chosen positions; σ = 2.1 × 10−6 m,
ζ = 2.5 × 106 m−2, NL = 700.
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FIG. 18. Signal-field spectral width �Ss (solid curve with •) and
photon-pair generation rate N (solid curve with �) as functions of
segment length d . Averaging over 1000 random positions of segments
was used in calculations. ζ = 2.5 × 106 m−2, NL = 700.

IX. CONCLUSIONS

Properties of photon pairs generated in randomly poled
structures have been found to be quantitatively similar to
those characterizing chirped periodically poled structures.
Especially, ultrabroadband signal and idler fields can be

emitted in randomly poled structures. The accompanying
sharp mutual temporal correlations of the signal and idler
fields can even reach the duration of a single-photon cycle
(several fs) provided that the spectral phase modulation is
compensated. The phase compensation has to be tailored
individually for each random structure. Photon-pair generation
rates depending linearly on the number of domains are specific
to random structures. Stronger temperature dependences of
parameters characterizing photon pairs in random structures
(their individual realizations) compared to those found in
chirped periodically poled crystals have been observed. In
general, the application potential of randomly poled structures
similar to that of chirped periodically poled structures has been
revealed. Contrary to chirped periodically poled structures, the
randomly poled structures do not require high precision in their
fabrication. This shows great promise for the use of randomly
poled structures.
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