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Simultaneous electromagnetically induced transparency for two circularly polarized lasers coupled
to the same linearly polarized laser in a four-level atomic system in the W scheme
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Electromagnetic induced transparency (EIT) can be produced in a four-level atomic system in the W scheme
using a linearly polarized optical field for simultaneously slowing down two σ+ and σ− circularly polarized
optical fields. This four-level atomic system can be set up with a |1S0〉 ground state and three Zeeman levels
of the |1P1〉 excited state of any alkali-metal atom placed in a weak magnetic field. We apply our W scheme
to ultracold magnesium atoms for neglecting the collisional dephasing. Atomic coherences are reported after
solving a density matrix master equation including radiative relaxations from Zeeman states of the |1P1〉 multiplet
to the |1S0〉 ground state. The EIT feature is analyzed using the transit time between the normal dispersive region
and the EIT region. The evolution of the EIT feature with the variation of the coupling field is discussed using an
intuitive dressed-state representation. We analyze the sensitivity of an EIT feature to pressure broadening of the
excited Zeeman states.
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I. INTRODUCTION

Electromagnetic induced transparency (EIT) is a quantum
interference phenomenon which occurs in optically thick
media where the atoms are prepared in a coherent super-
position of states as the result of the interaction between
optical fields and atomic states. In EIT, quantum interference
eliminates the absorption of a propagating weak probe field
in resonance to an atomic transition due to a strong coupling
field resonant to another linked transition. Since the pioneering
work done by Harris et al. [1], extensive efforts were dedicated
both in theory and in experiment for enlarging the panel
of possible applications of the EIT phenomenon, including
slow and stopped light [2–4], lasing without inversion [5],
Kerr nonlinearity associated with cross-phase modulation [6]
or spatially modulated transparency [7], quantum entangle-
ment [8], etc. The review article by Fleischhauer et al. [9]
summarizes the achievements generated by the EIT technique
in the field of nonlinear optics and quantum information and
also discusses possible new applications.

In recent years, many extensive studies have been devoted
to three-level atomic systems, such as the V system [8,10],
the � system [11], and the ladder system [12], in which
two optical fields are used and, due to quantum interference,
one of them is slowed down. Recently, the propagation of
a weak probe field in various laser-driven four-level atomic
systems was investigated [13]. Also, a double EIT structure
with controlled group velocity was observed in the interaction
between three laser beams with a four-level atom in a tripod
configuration [14]. The tripod is formed by three lower atomic
states and one upper state interacting simultaneously with three
optical fields incident on the lower states for slowing down one
weak probe field using the other two lasers as coupling fields.
Two group velocities for the probe field were generated when
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different detunings for each coupling field were used in the
calculations from [14]. However, when the detuning of the
two coupling fields was considered the same, they observed
a single transparency window and generated a single group
velocity for the weak probe field, thus reducing their tripod
system to one � system.

Even a five-level atom (M-type) system interacting with two
pairs of near-resonant laser fields was recently proposed [15].
Experimental efforts were devoted in using a four-level system
with a triplet ground state and an excited state interacting
with two lasers and one radio-frequency field resonant to the
transition between one hyperfine level of the ground state and
one of the other two hyperfine levels in a �-type system [16].
A similar tripod system was theoretically predicted by using
two circularly polarized fields driven by a linearly polarized
field [17]. However, the hypothesis of simultaneously creating
two EITs in a four-level atomic system in the W scheme (or
a reverse tripod) has, to the best of our knowledge, never
been explored. We consider this W system to be important
for new applications in quantum information processing,
including binary recording using angular momenta + h̄ and
−h̄ of the photons in two σ+ and σ− circularly polarized laser
beams.

This article will show that a W scheme can be set up so that
it satisfies the necessary conditions [9] for the simultaneous
creation of two stable EIT features. Our W scheme is formed
by a four-level atomic system interacting with two σ+ and σ−
circularly polarized optical fields which are simultaneously
slowed down by a common linearly polarized coupling field.
Solving the density matrix master equation for the coupling
between these optical fields and the atomic system provides
both statistical and quantum mechanical information [18]. This
method is appropriate to be used whenever the wavelength of
the optical field is large enough to enshroud a large number of
atoms.

The article is structured as follows: Section II presents a
four-level atomic system in the W scheme using magnesium
atoms placed in a weak magnetic field. Section III gives details
regarding our quantum model based on the density matrix
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formalism and applied to a bulk of gaseous ultra-cold atoms.
Section IV reports results for atomic coherences, discusses
the criteria for the formation of two stable EITs, describes
the characteristics of the EIT features such as the slope
and the width of the atomic coherences, and shows their
variation with the strength of the B field and the pressure
broadening of the atomic levels. The analysis of the atomic
coherences as a function of the coupling field, in a W scheme,
using an intuitive dressed-state representation, is given in
Sec. V. Our conclusion follows in Sec. VI.

II. A FOUR-LEVEL W SYSTEM

Figure 1 shows an energy diagram of a four-level atomic
system in a W scheme. The four-level atom represents
an alkali-metal atom placed in a weak magnetic field,
which produces a normal Zeeman splitting of a three-
fold degenerate |1P1〉 first excited state into three lev-
els, labeled |1P1; M = −1〉 = |1〉,|1P1; M = 0〉 = |2〉, and
|1P1; M = +1〉 = |3〉. The fourth level is the |1S0〉 ground
state and it will be labeled by |0〉. The strength of the B field
should be weak enough to make the interaction (−�µ · �B) with
the net atomic magnetic moment �µ smaller than the spin-orbit
�L · �S coupling in the atomic Hamiltonian [19]. In such a case,
the operators L2, S2, and J2 (where J = L + S) give good
quantum numbers for atomic states placed in a weak B field.

Figure 1 shows the resonant atomic frequencies for the
three dipole-allowed transitions from the |1S0〉 state to the
|1P1〉 multiplet: ω01 for |0〉 → |1〉, ω02 for |0〉 → |2〉, and ω03

for |0〉 → |3〉. The states |1〉 and |3〉 are separated from |2〉 by
the Larmor frequency

ω̄ = gµBB

h̄
, (1)

where µB = 9.27408 × 10−24 J/T is the Bohr magneton and
g is the Landé factor, which equals 1 for a |1P1〉 state placed
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FIG. 1. Our four-level atomic system in a W scheme. Each
transition |0〉 → |j〉 is characterized by the intensity of the optical
field, Ij and the resonant frequency, ωoj (where j = 1, 2, or 3). �j is
the detuning of an E field resonant to a Zeeman state |j〉.

in a weak B field [19], and h̄ is Planck’s constant divided by
2π . Thus, the atomic frequencies are

ω01 = ω0 − �, ω02 = ω0, ω03 = ω0 + �. (2)

The frequencies of the E field are detuned from the atomic
frequencies ω0j by �j as follows:

ωj = �j + ω0j , (3)

where ω1 (for j = 1) is the frequency of a σ− circularly (−h̄)
polarized field for transition |0〉 → |1〉, ω2 (for j = 2) is the
frequency of a linearly polarized field for transition |0〉 → |2〉,
and ω3 (for j = 3) is the frequency of a σ+ circularly (+h̄)
polarized field for transition |0〉 → |3〉.

In this article we investigate the possibility of simultane-
ously generating two stable EITs in a four-level atomic system
in a W scheme, which is in a steady state completely deter-
mined by two static parameters: the detuned laser frequencies
ωj given by Eq. (3) and the intensities Ij of three laser
beams (see Fig. 1). For that, a time-independent atom-field
Hamiltonian

H = H0 + HI (4)

is used. In Eq. (4) the zero-order Hamiltonian is

H0 = h̄ω00|0〉〈0| +
3∑

j=1

h̄ω0j |j 〉〈j |, (5)

to which an interaction Hamiltonian

HI = −h̄

2

3∑
j=1

�je
iφj ei�j t |0〉〈j | (6)

is added. We work within a rotating-wave approximation
which keeps only the energy-conserving terms [18]. In (6),
the terms �1e

iϕ1 , �2e
iϕ2 , and �3e

iϕ3 represent complex static
Rabi frequencies associated to the interaction between E fields
resonant with the three atomic transitions shown in Fig. 1
and the respective atomic dipole moments. According to
Fleischhauer et al. [9], in the rotating-wave approximation
we can represent the interaction Hamiltonian given in (6)
with real-valued Rabi frequencies in a rotating frame. This
corresponds to neglecting propagation effects, as it will be
discussed in Section III, in relation to the master equation.
The Rabi frequency

�j = µjEj

h̄
(7)

represents the energy associated with the E-field–atomic-
dipole interaction, where Ej is the amplitude of the optical
field, Ej = √

2cµ0Ij (where Ij is the intensity of the optical
field, c is the speed of the light in free space, and µ0 is the

permeability of free space), and µj =
√

3h̄c3
j/(4ω3
j ) is the

dipole moment for each atomic state |j 〉 (where j = 1, 2, or 3
and 
j is the natural width of a Zeeman state |j 〉).

The time-dependent Schrödinger equation, including the
time-independent Hamiltonian (4), has as a solution a
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time-dependent interaction wave function:

|�(t)〉 = C0(t)e−iω00 t |0〉 +
3∑

j=1

Cj (t) e
−i(ω0j

−�j ) t |j 〉, (8)

where the temporal part of |�(t)〉 is independent of the time-
independent counterpart {|0〉,|j 〉}.

The four-level atom is created by choosing a B field so
that there is no overlapping between the widths of the Zeeman
levels. This criterion limits the range of the B field, as shown
below. If we consider 
0 as being the rate of spontaneous
emission from the |1P1〉 state to the |1S0〉 state, then the decay
rates of the |1P1; M = +1〉 and |1P1; M = −1〉 states are


1 = 
0

(
ω0 − ω̄

ω0

)3

and 
3 = 
0

(
ω0 + ω̄

ω0

)3

. (9)

The decay rate of the state |1P1; M = 0〉 is labeled as 
2 = 
0.
Equations (9) can readily be proven using the formulas for
radiative decay rates 
j given in Sec. 9.2 of [20], which shows
that 
j is proportional to 4ω3

j /(9h̄c3), where ωj is the angular
frequency for any of the transitions |1P1; M = 0, ± 1〉→|1S0〉.
The decay rate to the |1S0〉 state from the |1P1; M = +1〉
state is 
3 = 4C(ω0 + ω̄)3/(9h̄c3), from |1P1; M = −1〉 it
is 
1 = 4C(ω0 − ω̄)3/(9h̄c3), and from |1P1; M = 0〉 it is

2 = 4Cω3

0/(9h̄c3), where C is a common constant. A simple
mathematical manipulation leads to formulas (9).

In our theoretical model, we choose magnesium atoms,
for which the transition from the |1P1〉 state to the |1S0〉 state
has a vacuum wavelength λ0 of 285.28 nm and an associated
angular frequency ω0 of 6.605 × 1015 Hz [20]. The B field
should be weak enough so that the Larmor frequency from
Eq. (1) is much smaller than the characteristic time of the
spin-orbit interaction:

ω̄ � 1

τS−0
. (10)

For the magnesium atom, the radiative decay between the |1S0〉
and |1P1〉 states is 79 MHz [20]. Because τS−0 is 2.02 ns in our
case, the boundary condition (10) is verified for B < 0.035 T.

Also, the B field should be strong enough to remove the
degeneracy of the |1P1〉 state, and to resolve the |1P1; M〉
sublevels so that no overlapping exists between the absorption
band widths of the Zeeman states. This second boundary
condition can be written as:

ω̄ � 
1 + 
2

2
and ω̄ � 
2 + 
3

2
. (11)

Applying the condition (11) to Mg(1P1) atoms leads to a
value of the B field larger than 0.0058 T. Therefore, the range
of B fields in our calculations should be between 0.0058 and
0.035 T.

III. THEORETICAL MODEL

The linear response of an atomic system to a resonant
optical field is described by the first-order complex suscep-
tibility χ . The imaginary part of the susceptibility, Im[χ ]
determines the absorption of an optical field in an atomic
system, while the real part Re[χ ] determines its dispersion
[9]. The Re[χ ] follows the usual dispersion profile when a

resonant optical field is absorbed by an atomic transition,
showing an anomalous dispersion, with a steep decrease of
the Re[χ ] as a function of the field’s frequency in the central
part of the absorption line of width 
. In the presence of a
second (coupling) field, stronger than the first (probe) field,
the atomic system becomes transparent to the resonant probe
field, because the resonant transition is locked by the coupling
field. Now, EIT is produced with a large enhancement of the
nonlinear susceptibility in the spectral region of the induced
transparency of an atomic system, which leads to a steeper
increase of Re[χ ] within the band width. The evolution of
the atomic system in the optical fields can be well described
using the density matrix formalism. The phase information
associated with the evolution of the atomic states |j 〉 is
contained in “atomic coherences” ρ0j , which are solutions
of the density matrix master equation. For example, the
transitions |0〉 → |1〉 and |0〉 → |3〉 have linear susceptibilities
depending on ρ01 and ρ03 [21] as follows:

χ1 = 2Nµ2
1

h̄�1
ρ01 and χ3 = 2Nµ2

3

h̄�3
ρ03, (12)

where N represents the atomic density. In our model, we
will consider an ultracold atomic gas, so that we can neglect
the collisional dephasing among the Zeeman states and the
Doppler broadening. The atomic density for an ultracold
atomic system is typically about 6 × 1017 atoms/m3 [3].

The density matrix master equation

ρ̇ = − i

h̄
[H,ρ] − 1

2
(γρ + ργ ) (13)

is used for a statistical as well as quantum mechanical
description of the interaction between optical fields with
large wavelengths and large ensembles of atoms. In this
case, a vacuum wavelength of 285.29 nm for the transition
|1S0〉 → |1P1〉 enshrouds indeed a very large number of Mg
atoms. In Eq. (13), γ represents the relaxation matrix and H
is the total atom-field Hamiltonian from Eq. (4). For any ijth
density matrix element, Eq. (13) is written as

ρ̇ij = − i

h̄

∑
k

(Hikρkj − ρikHkj ) − 1

2

∑
k

(γikρkj + ρikγkj ).

(14)

In the present calculations done for an ultracold magnesium
atomic system, we include only the radiative dephasing rates
γij = 1

2 (
i + 
j ) as the result of spontaneous emissions:

γ12 = 1
2 (
1 + 
2), γ13 = 1

2 (
1 + 
3), γ14 = 1
2 (
1 + 
4),

γ23 = 1
2 (
2 + 
3), γ34 = 1

2 (
3 + 
4), γ24 = 1
2 (
2 + 
4).

(15)

We are solving Eq. (14) using the most favorable initial
conditions for establishing EIT:

ρ00 = 1, ρ11 = ρ22 = ρ33 = 0, (16)

which in our case effectively traps the population of the atomic
system on the |1S0〉 ground state [22]. The condition (16) is
better fulfilled when the probe field is weaker than the coupling
field [14]. For closeness, we impose that

∑3
j=0 ρjj = 1.
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According to Fleischhauer et al. [9], as long as the propaga-
tion effects are not considered, which corresponds to a steady-
state solution of the master equation (14), we can assume
real-valued Rabi frequencies in the interaction Hamiltonian
given in (6). Indeed, if the Rabi frequencies are real initially,
they should remain real throughout the interaction process
when the propagation effects are neglected. Therefore, we will
neglect the complex phases φj in (6). This approach simplifies
considerably the calculation of the master equation (14),
and it has been adopted in several other publications, including
[23] for a three-level �-type system.

A model with lesser restrictive initial conditions than given
in (16) and including the collisional dephasing in our density
master equation will be subject to future studies. In this
article, we shall limit ourselves to showing the influence of the
pressure broadening of the Zeeman states on the characteristics
of the EIT feature (see Section IV H).

Similar to the three-level models from [18], the total
Hamiltonian from (4) can be written as

H = −
⎡
⎣ 3∑

j=1

(
h̄�j

2
|0〉 〈j | + h̄�j |j 〉 〈j |

)⎤
⎦ +

3∑
i, k=1

(i �=k)

Hik.

(17)

When the collisional dephasing is neglected in (17), the
intramultiplet transitions are neglected and the off-diagonal
terms H12, H13 and H23 (as well as their symmetric
counterparts) can be eliminated. However, these off-diagonal
terms could have contributions from the radiative decay. But
because of Laporte’s rule, which requires the parity of the
atomic states to change during a radiative transition, the dipole
matrix elements between the Zeeman states of the same fine-
structure state should vanish. The atomic states |1〉, |2〉, and |3〉
from Fig. 1 have the same parity and, therefore, the radiative
transitions between these states are electric-dipole forbidden.
Besides the use of real-valued Rabi frequencies, setting the
nondiagonal terms H12, H13, and H23 to zero are the only
approximations included in our calculations. In the density
matrix equation (14), the diagonal terms (for j = 1, 2, and 3) are

Hjj − H00 = h̄(iγj0 + �j ) = h̄βj , (18)

while the rest of the terms are calculated similarly as Eq. (2)
from [24]:

H22 − H11 = h̄[i(γ20 − γ10) + �1 − �2] = h̄β4, (19)

H33 − H22 = h̄[i(γ30 − γ20) + �2 − �3] = h̄β5, (20)

H33 − H11 = h̄[i(γ30 − γ10) + �1 − �3] = h̄β6. (21)

Under these conditions, the steady-state solution of the master
equation (14) leads to the following atomic coherences

ρ01 = �2ρ21 + �3ρ31 − �1

2(�1 + iγ01)
, (22)

ρ02 = �1ρ12 + �3ρ32 − �2

2(�2 + iγ02)
, (23)

ρ03 = �1ρ13 + �2ρ23 − �3

2(�3 + iγ03)
, (24)

ρ12 = �1ρ02 − �2ρ01

2(−�1 + �2 + iγ12)
, (25)

ρ13 = �1ρ03 − �3ρ01

2(−�1 + �3 + iγ13)
, (26)

ρ23 = �2ρ03 − �3ρ02

2(−�2 + �3 + iγ23)
. (27)

Because the Hamiltonian (17) is Hermitian, the coherences
are complex conjugate numbers: ρij = ρ∗

ji . The substitution
of Eqs. (25) to (27) into Eqs. (22) to (24) leads to the following
coherences:

ρ01 = 2�1β4β5

α1
+ �1�2β5

α1
ρ02 + �1�3β4

α1
ρ03, (28)

where

α1 = (
4β1β4β5 + �2

2β5 + �2
3β4

)
, (29)

ρ02 = 2�2β4β6

α2
+ �2�3β4

α2
ρ03 − �1�2β6

α2
ρ01, (30)

where

α2 = (
4β2β4β6 − �2

3β4 − �2
1β6

)
, (31)

ρ03 = 2�3β5β6

α3
− �1�3β6

α3
ρ01 − �2�3β5

α3
ρ02, (32)

where

α3 = (
4β3β5β6 − �2

1β6 − �2
2β5

)
. (33)

The coherences ρ01, ρ02, and ρ03 can be written in terms of αj

coefficients (j = 1, . . . ,11) as follows:

ρ01 = α8

α7
+ α9

α7

(
α10

α11

)
, (34)

ρ02 = α10

α11
, (35)

ρ03 = α5

α4
− α6

α4

(
α10

α11

)
, (36)

where

α4 = (
α1α3 + �2

1�
2
3β4β6

)
, (37)

α5 = (
2β5β6�3α1 − 2�2

1�
2
3β5β6

)
, (38)

α6 = (
�2�3�

2
1β5β6 + �2�3β5α1

)
, (39)

α7 = α4, (40)

α8 = (
2�1β4β5α3 + 2�2

1�
2
3β5β6

)
, (41)

α9 = (
β5�1�2α3 − �2

3�2�1β4β5
)
, (42)

α10 = (2β4β6�2α4 + β4�2�3α5 − �1�2β6α8), (43)

α11 = (α2α4 + β4�2�3α6 + �1�2β6α9). (44)

Equations (34) and (36) show that ρ01 and ρ03 depend
explicitly on ρ02 and will be used to set up EITs in both atomic
states |1〉 and |3〉 using a common coupling field resonant to
the transition |0〉 → |2〉. The remaining coherences are

ρ12 = �2α7

2β4α4
+

(
�2α8

2β4α4
− �1

2β4

)(
α10

α11

)
, (45)
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(a) (b)

FIG. 2. (a) Real [Re(ρ01)] and (b) imaginary [Im(ρ01)] parts of the ρ01 coherence as a function of probe detuning, �1 for B =
0.02 T and I2 varying from 10−10 W/m2 (the last layer in the back) to 4.8 × 10−6 W/m2 (first layer in front).

ρ13 = �2α7

2β5α4
− �1α5

2β5α4
+

(
�2α8

2β5α4
+ �1α6

2β5α4

)(
α10

α11

)
, (46)

ρ23 = �2α5

2β6α4
+

(
�2α6

2β6α4
+ �3

2β6

)(
α10

α11

)
, (47)

and they are not relevant for our present study.
The next section reports and discusses results for the

atomic coherences ρ01, ρ03, and ρ02 obtained as steady-state
solutions of the master equation (14). These coherences
include the essential information regarding the possibility for
the formation of EITs inside the absorption bands of the atomic
states |1〉, |2〉, and |3〉 from Fig. 1.

IV. FORMATION AND EVOLUTION OF TWO
SIMULTANEOUS EITs USING A COMMON

COUPLING FIELD

A. Results for ρ01 and ρ03 coherences

The solutions of the density matrix master equation leads
to the ρ01 and ρ03 coherences reported in Figs. 2 and 3 ,
respectively. We calculate ρ01 from Eq. (34) and ρ03 from

Eq. (36) as functions of probe detuning varying from −2.5 ×
108 to 2.5 × 108 Hz (for best resolution) and at fixed values
of intensities. We choose the probe fields I1 = 10−12 W/m2

and I3 = 10−7 W/m2 and vary the common coupling field of
intensity I2 from 10−10 to 4.8 × 10−6 W/m2. Our choice of
intensities is done so that, in one case, we fulfill the necessary
condition for creating an EIT feature at any value of the
coupling field (I2), because the probe field (I1) is much weaker
than the coupling field for any I2, while for the other probe (I3)
we have two regions: one with the coupling field I3 stronger
than I2 and another one with I2 > I3.

The coherences are complex functions,

ρ01 = Re(ρ01) + iIm(ρ01), (48a)

ρ03 = Re(ρ03) + iIm(ρ03). (48b)

Therefore, in Figs. 2 and 3 we report separately the real
[Figs. 2(a) and 3(a)] and imaginary [Figs. 2(b) and 3(b)]
parts for 28 layers, which are different by the value of I2.
In our calculations the detuning of the coupling field is
set at 3 × 106 Hz and the B field is chosen to be 0.02 T,
which is a value in the middle of the range imposed by the
boundary conditions (10) and (11). Figures 2 and 3 show

(a) (b)

FIG. 3. (Color online) (a) Real [Re(ρ03)] and (b) imaginary [Im(ρ03)] parts of ρ03 coherence as a function of probe detuning �3 for the
same B field and the same values of I2 as in Fig. 2. The thick line (red color in the online version) is the layer 7 (counted from back to front)
for a coupling field with I2 = 2 × 10−7 W/m2, and indicates from where the probe field is weaker than the coupling field and implicitly the
EIT conditions from [9] are fulfilled.
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results for coherences calculated with the lowest value for
I2 of 10−10 W/m2, shown as the last layer in the back and
with the largest I2 value of 4.8 × 10−6 W/m2 shown as the
first layer in front. This choice facilitates the comparison
between the EIT phases of both coherences, which will be
discussed in detail later in Section IV B. The imaginary part
of the coherence gives information regarding the mechanism
which creates absorption or transparency in the atomic system
for a probe E field resonant to an atomic transition, while the
real part tells us about the efficiency in slowing down the probe
field in the absorption band of an upper state [9]. We notice that
the absorption profile for both ρ01 and ρ03 coherences plotted
versus the respective probe detuning looks very similar to the
four-level atomic tripod system shown in Fig. 3 from [16].

For the three-level atom V and � systems, Fleischhauer
et al. [9] have established that EIT exists when the following
two conditions are fulfilled simultaneously: (1) the Rabi
frequency of the coupling field �c should be larger than
the radiative decay rate of the |j 〉 state (�c > 
j ) and (2)
�c should be larger that the Rabi frequency of the probe
field. In our case, the ρ01 coherence fulfills these conditions
for any values of I2 because the probe Rabi frequency �1

of 2 × 105 Hz (for I1 = 10−12 W/m2) is much smaller than
both the radiative decay of 7.9 × 107 Hz and �2. For the ρ03

coherence shown in Fig. 3, we have �3 = 6.3 × 107 Hz for
I3 = 10−7 W/m2 and, therefore, the EIT phase is established
only for �2 � 8.9 × 107 Hz (or equivalently, for I2 � 2 ×
10−7 W/m2).

B. Criteria for formation and evolution of two
simultaneous EIT features

For a very weak coupling field, such as I3/I2 ∼ 103, an
absorption profile is observed in Im(ρ03) coherence of our W
scheme (open squares in Fig. 4 ). As the intensity I2 increases,

FIG. 4. (Color online) Im(ρ03) versus the probe detuning �3.
The formation and evolution of an Autler-Townes doublet in the
absorption profile of the Im(ρ03) coherence, for selected intensities
I2 [from Fig. 3(b)] of the coupling field, given in the legend, and for
a probe field of I3 = 10−7 W/m2. The widths γR and γL measured at
FWHM of each resonance of the Autler-Townes doublet are indicated.
The width 
3 of the atomic state |3〉 is also indicated between vertical
dashed arrows.

a very narrow window with a steep variation and centered on
the atomic resonance starts to form in Im(ρ03). In this case,
the coupling field acts upon the atomic state |3〉 as a weak
perturbation to a stronger probe field [21] and it produces a
very narrow EIT-like feature, which is just a sharp transmission
window with a band width smaller than the natural width 
3

(of ∼7.9 × 107 Hz) of the state |3〉 [see the case I3/.I2 ∼ 102

(full line) in Fig. 4]. This feature gets larger as I2 increases, as
for I3/.I2 ∼ 10 (dots) and I3/.I2 ∼ 1 (triangles) from Fig. 4.

An EIT phase exists for I2 � 2 × 10−7 W/m2, where
a two-photon resonance structure, called an Autler-Townes
doublet [25], can be observed in the absorption region of the
Im(ρ03) coherence. An EIT feature is defined as being the
region between the two-photon resonance of an Autler-Townes
doublet [9]. When the coupling field is much stronger than the
probe field, the total full width at half maximum (FWHM) of
the Autler-Townes doublet, defined as γ = γL + γR in Fig. 4,
becomes constant with the variation of the coupling field.
Indeed, as Fig. 4 shows, the FWHM γ varies from 6.2 × 107

Hz (with γL = 3.5 × 107 Hz and γR = 2.7 × 107 Hz) for I2 =
10−8 W/m2 (dots), to 3.6 × 107 Hz (with γL = 1.9 × 107 Hz
and γR = 1.7 × 107 Hz) for I2 = 10−7W/m2 (triangles), and
has a constant value of 3.4 × 107Hz (with γL = 1.9 × 107 Hz
and γR = 1.5 × 107 Hz) for I2 � 2 × 10−7 W/m2 (open cir-
cles). An EIT phase is characterized by a constant value of the
total width γ of the Autler-Townes doublet with the increase in
the intensity of the coupling field. Using a different approach,
Scully and Zubairy [18] reached the same conclusion for the
formation of an “EIT-like” structure, which becomes an EIT
feature for a coupling field stronger than the probe.

C. Transit time from a normal dispersive region into an EIT
region

The Autler-Townes doublet separates the normal dispersive
region from the EIT region: outside the two-photon resonance,
the normal dispersive region is driven by the probe field,
while the EIT region is driven by the coupling field which
completely eliminates the absorption of the probe field, thus
creating transparency. In our case, the Zeeman state becomes
transparent to the probe field in the region where Im(ρ) ∼ 0.
The reciprocal of the width (γ ) measured at the FWHM of
an Autler-Townes doublet represents the transit time from the
normal dispersive region into the EIT region. Figure 5 shows
EITs for ρ01 [Fig. 5(a)] and ρ03 [Fig. 5(b)] when a common
coupling field I2 of 4 × 10−7W/m2 is used.

The interaction between the E field and a bulk of atoms can
be understood using the classical Lorentz model for E-field–
electric-dipole interaction [26]. Outside an Autler-Townes
doublet, the ensemble of atomic dipoles oscillates with the
detuned frequency of the probe field, and therefore intense
probe fields should produce larger oscillations. Indeed, in the
region of normal dispersion, the Re(ρ03) coherence is larger
than the Re(ρ01)coherence, as shown in Fig. 5. In the EIT
region and for a coupling field much stronger than the probe
field (the ρ01 coherence case), the transit time between the
two regions is shorter, while for a stronger probe field, as for
ρ03 when I2 < 10−7 W/m2 [shown in Fig. 3(b)], the transit
time between the two regions is longer (or the two-photon
resonance is narrower). In the latter case, a “hump” appears
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(a) (b)

FIG. 5. Two examples of EIT features in the (a) ρ01 and (b) ρ03 coherences for a coupling field of intensity I2 = 4 × 10−7 W/m2. The full
line represents the real part (left vertical axis) and the dotted line represents the imaginary part (right vertical axis) of the coherences. The width

EIT;j of each EIT feature in Im(ρ01) (j = 1) and Im(ρ03) (j = 3) is indicated by a double-headed arrow.

on the outside wings of the Autler-Townes doublet, as one
can see in Fig. 3(b). This “hump” feature does not appear for
Im(ρ01) because the probe field is too weak and the coupling
field blocks efficiently the absorption of the probe field near
the atomic resonance.

On the other hand, when the probe field is much weaker than
the coupling field, like for ρ01, then the sum of the FWHM for
the two-photon resonances in the Autler-Townes doublet, γ =
γL + γR, equals the natural width 
j of the atomic state |j 〉
and the two-photon resonances of the Autler-Townes doublet
have the same width and amplitude, as shown in Fig. 6. If
the probe field is weaker than the coupling field but is very
close in magnitude (see the ρ03 case for I2 � 2 × 10−7 W/m2),
then the Autler-Townes doublet becomes asymmetric, γL �= γR

(with γL = 1.9 × 107 Hz and γR = 1.5 × 107 Hz), and the net
FWHM of the two-photon resonance γ of 3.4 × 107 Hz is
smaller than the width of a Zeeman state, 
3 of 7.9 × 107 Hz.
The asymmetry can be attributed to a shift of state |2〉 closer
to the dressed state |3〉, which makes the transit time from
the normal dispersive region into the EIT region shorter. Our

FIG. 6. (Color online) Variation of Im(ρ01) with the probe detun-
ing �1 for several intensities of the coupling field (I2): 10−7 W/m2

(full black line), 2 × 10−7 W/m2 (dashed red line), 4 × 10−7 W/m2

(dotted green line), and 6 × 10−7 W/m2 (dot-dashed blue line).

results are consistent with those obtained by Wielandy and
Gaeta [21] for the ladder system.

In conclusion, when a probe field is very weak the transit
time from the normal dispersive region to the EIT region is the
shortest and equals the lifetime of the atomic state γ = 
j ,
but as the probe field gets stronger, the transit time increases
due to a stronger interaction between the atomic dipoles and
the probe field near the atomic resonance.

D. Width of EIT region

The width 
EIT of the EIT feature is the separation distance
between the two-photon resonance of an Autler-Townes
doublet. An analysis of our data for the case of a probe field
much weaker then the coupling field (i.e., ρ01 coherence) leads
to the well-known formula for the V or � systems [9,11]:


EIT = �2. (49)

For a nonperturbative probe field (i.e., ρ03 coherence), the
probe detuning, �p should be also included:


EIT =
√

�2
2 + �2

p. (50)

Equation (50) is consistent with the result reported by
Wielandy and Gaeta [21] for the ladder system (where the
width was named the generalized Rabi frequency). In the limit
of small probe detuning, Eq. (50) converges to Eq. (49).

The widths of the ρ01 and ρ03 coherences in the EIT
region calculated with Eqs. (49) and (50), increase linearly
with the Rabi frequency �2, as shown in Fig. 7. A similar
linear variation was observed in the four-level atomic tripod
system from [16]. Experiments done with Zeeman sublevels
of Rubidium atomic vapors in a three-level atomic system
proved that indeed the width of an EIT region increases with
the intensity of the coupling field when the probe field is
kept constant [27]. In our W system, for a strong coupling
field (I2 � 2 × 10−6 W/m2), the widths of both coherences
converge (within 1% difference) toward a common value
of 2.8 × 108 Hz. In this case, the system behaves like two
independent V systems driven by a strong coupling field (I2).

According to Ye and Zibrov [28], studies of the width of EIT
feature may lead to a better understanding of various processes
which can influence the atomic coherences, such as collisional
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FIG. 7. Variation of the EIT widths of ρ01 (full squares, j = 1)
and ρ03 (open squares, j = 3) coherences with Rabi frequency �2

associated to an adjustable coupling field.

relaxations, spontaneous transfer of coherence, and Doppler
broadening. Therefore, our present results could be used as
reference for future studies which will include decoherence
effects.

E. Influence of coupling field’s detuning on position
of Autler-Townes doublet

Figure 8 shows the shift in the position of the two resonances
of the Autler-Townes doublet in the ρ01 coherence for a
few values of the coupling detuning. Although no change
in 
EIT was observed for any change in the value of the
coupling detuning, the location of Im(ρ01) = 0 does change.
The Im(ρ01) coherence is indeed close to zero in the region
near the zero detuning of the probe field, but it is exactly zero at
�p = �c, which indicates that the middle of an Autler-Townes
doublet is driven by the coupling field. When the detuning �c

changes by �̃, the EIT feature shifts by the same �̃. Figure 8
shows an increase of �c from 3 × 106 to 9 × 106 Hz. This
change shifts the EIT feature to the right by 6 × 106 Hz.

F. Variation of slope for Re(ρ) with the coupling field

For an atomic system in an EIT phase, the group velocity of
the probe field varies inverse proportionally with the slope of
Re(ρ) measured with respect to the probe detuning (�p) [13].
In a narrow interval of �p where Im(ρ) ∼ 0 [see Figs. 2(b) and
3(b)], Re(ρ) from Figs. 2(a) and 3(a) varies linearly with �p.
Figure 9 shows the variation of the slopes dRe(ρ0j )/.d�j near
Im(ρ0j ) ∼ 0 with �2 of the coupling field, for both ρ0j , where
j = 1 or 3. We observe that, in the EIT phase, the slope of
Re(ρ) decreases rapidly as the intensity of the coupling field
increases, reaching a threshold value when the net coupling
field is much stronger than the probe field. The slope of
Re(ρ01) decreases rapidly with �2, starting from very low
values for I2, while for Re(ρ03), the slope first increases sharply
at low values of the coupling field, reaching a maximum at
I2 = 8 × 10−9 W/m2, and decreases fast, reaching a threshold

(a)

(b)

(c)

FIG. 8. Shift of Im(ρ01) with the coupling detuning for �2 =
�3 = 3 × 106 Hz (stars), 6 × 106 Hz (circles), 9 × 106 Hz (triangles),
and −6 × 106 Hz (dots). Here, we use I2 = 10−8 W/m2. Case (a)
shows the (virtual) photon located at the left-hand side of the Autler-
Townes doublet, (b) shows the (virtual) photon located at the right-
hand side, while (c) is the central part of the EIT region near the
zero probe detuning. The shift between adjacent cases is shown in
the central part of Im(ρ01) (e.g., calculations done with �2 = �3 =
3 × 106 Hz and −6 × 106 Hz give a shift of 9 × 106 Hz).

033804-8



SIMULTANEOUS ELECTROMAGNETICALLY INDUCED . . . PHYSICAL REVIEW A 83, 033804 (2011)

FIG. 9. (Color online) Variation of dRe(ρ01)/.d�1 (dots) and
dRe(ρ03)/.d�3 (open squares) with the Rabi frequency �2 of
the coupling field. In order to compare the slopes, we rescale
dRe(ρ01)/.d�1 by 103. The inset shows the variation of the slope
dRe(ρ03)/.d�3 for small values of �2 and for B fields of 0.01 T
(triangles), 0.02 T (open squares), and 0.03 T (stars).

value for I2 � 2 × 10−6 W/m2. The difference in magnitude
between the slopes for Re(ρ01) and Re(ρ03) [dRe(ρ03)/.d�3

is about 103 times larger than dRe(ρ01)/.d�1] is due to the
difference between the intensities of the probe fields. The
slope for Re(ρ03) has a steeper variation than for Re(ρ01)
because the probe field is stronger in the former than the latter
case. Our calculations suggest that a stronger probe field can
be slowed down more efficiently than a weaker probe.

Another interesting aspect is the invariance of the EIT
feature to the change of the B field. The inset to Fig. 9 shows
that, once the system is inside an EIT phase, whether the B
field is weaker (0.01 T) or stronger (0.03 T) than the reference
value of 0.02 T used in our calculations reported in Figs. 2
and 3, the change in the slope of Re(ρ) is negligible. Thus, for
I2 < I3 only a small change of a few percent can be observed
in the slope of Re(ρ03). In conclusion, we have observed that
when the B field takes on values in the range established by
the boundary conditions (10) and (11), there is no significant
change in the transit time from the normal dispersive region
to EIT region (see Section IV C), or in the width 
EIT from
Section IV D.

G. Evolution of ρ02 coherence when ρ01 and
ρ03 are in an EIT phase

Figure 10 shows the imaginary part of the ρ02 coherence
calculated from Eq. (35). We see that Im(ρ02) develops a
narrow EIT-like feature due to the coupling field I1 + I3

∼= I3

(since I3 � I1) inside the absorption region of the transition
|0〉 → |2〉 at low probe fields, I2. When I2 reaches a value
of 2 × 10−7W/m2, making I2 > I3, the state |2〉 becomes
opaque. The variation of Im(ρ02) agrees with the interpretation
based on atomic oscillations induced by the strongest E field
from Sec IV C. Our results from Fig. 10 indicate that a
four-level atomic W system cannot have three simultaneous
EITs.

FIG. 10. (Color online) Im(ρ02) coherence versus the probe
detuning �2 for a few selected probe intensities I2: 10−9 W/m2 (full
blue line), 10−8 W/m2 (dotted red line), 10−7 W/m2 (dashed magenta
line), and 6 × 10−7 W/m2 (dot-dashed black line).

H. Influence of pressure broadening on
characteristics of EIT features

The inclusion of the collisional dephasing in the master
equation (13) will be reported in a future work because of
the elaborate calculations involved. However, we can report
here the influence of the atomic collisions on the EIT feature
though the inclusion of the pressure broadening on the Zeeman
levels. It is known that collisions enlarge the width of the
atomic states, thus decreasing their lifetime [19] according to
the uncertainty principle. It is interesting to see the variation
of the slope of the coherences, as well as the width of the
EIT features with increasing the width of the excited Zeeman
state |j 〉.

Figures 11 and 12 show the evolution of real and imaginary
parts of the ρ0j coherences when the width 
j of the
atomic state |j 〉 increases by a factor N, the B field is
0.02 T, and for a combination of intensities (I1 = 10−12 W/m2,
I2 = 10−6 W/m2, and I1 = 10−7 W/m2) which allows us to
have EIT for both ρ01 and ρ03. We show 30 layers defined by
values of N varying from 1 to 15 and take an even increment
of 0.5 added to the width 
j used for the previous layer as we
linearly increase 
j from one layer to the next. We see that a
linear increase of 
j changes both the slope dRe(ρ0j )/.d�j

and the width 
EIT. Figure 13 shows the exponential decrease
of the slopes for the ρ01 and ρ03 coherences, with a steeper
variation for slow collisions and shallower variation for fast
collisions. Therefore, the group velocity of the probe field
increases with the increase of the frequency between atomic
collisions.

The variation of 
EIT for ρ01 and ρ03 from Fig. 14 shows that
for very weak probe fields (such as in the ρ01 case) the width

EIT increases linearly with a linear increase of the atomic
width (and so does the transit time from the normal dispersive
region to the EIT region), while for a stronger probe field (such
as for the ρ03 case) the width 
EIT increases logarithmically for
slow atomic collisions and slightly linear for faster collisions.
When the atomic widths of the transparent states |0〉 and |3〉 are
both exactly 4 times the natural width 
j of the respective state
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(a) (b)

FIG. 11. (Color online) (a) Real [Re(ρ01)] and (b) imaginary [Im(ρ01)] parts of ρ01 coherence plotted as a function of the probe detuning �1

for several widths 
1 increasing by a factor N. We choose the probe intensity I1 = 10−12 W/m2 and the coupling intensity I2 = 10−6 W/m2,
while I3 is 10−7 W/m2. The B field is 0.02 T. We show 30 layers using values of N from 1 (the last red layer in the back) to 15 (the first layer
in front) with an even increment of 0.5, as we go from one layer to the next.

(which is for N = 4) we get the same value of 
EIT for both the
ρ01 and ρ03 coherences (
EIT;1 = 
EIT;3). Larger increments
of 
j increases 
EIT faster for ρ01 than for ρ03. This means
that an increase in the frequency of collisions allows a weaker
probe field to form a wider EIT region than a stronger probe
for the same coupling field.

V. ANALYSIS OF EIT REGION USING A DRESSED-STATE
REPRESENTATION

The evolution of ρ01 and ρ03 coherences can be understood
in several equivalent ways. One way considers the EIT
features as the result of destructive interference between two
(virtual) photons of the Autler-Townes doublet (see Fig. 4) [9].
Another way is by analyzing the eigenvalues of the atom-field
interaction Hamiltonian from (6) [9,18]. Our preliminary
studies revealed the complexity of interpreting EIT structures
using these eigenvalues and, therefore, we plan to present such
an analysis elsewhere.

A third way is by adopting the picture of destructive
interference between the direct pathway created by one

(circularly polarized) probe field and the combination of
indirect pathways induced by the other two fields (the other
circularly polarized field and the linearly polarized field). For
ρ01 and ρ03 coherences, the direct pathway corresponds to
the atomic transitions |0〉 → |1〉 or |0〉 → |3〉, respectively,
reported in Section IV. In this approach, the direct pathway
|0〉 → |1〉 of the σ− polarized probe field interferes destruc-
tively with the pathways |0〉 → |3〉 → |1〉, |0〉 → |2〉 → |1〉,
and |0〉 → |3〉 → |2〉 → |1〉. Similarly, the direct pathway
|0〉 → |3〉 of the σ+ polarized field interferes destructively
with |0〉 → |1〉 → |3〉, |0〉 → |2〉 → |3〉, and |0〉 → |1〉 →
|2〉 → |3〉. The many indirect pathways that need to be
considered make such an analysis very difficult. Because our
master equation (13) does not include the collisional dephasing
due to the intramultiplet transitions between Zeeman states of
the |1P1〉 state, a model based explicitly on the interference
between pathways is not actually adequate for interpreting the
EIT features from Figs. 2 and 3. Instead, we shall look for a
meaningful way to interpret these two EITs.

Our approach is based on the fact that the density matrix
master equation (13) is basis-set independent as long as the

(a)
(b)

FIG. 12. (Color online) (a) Similar to Fig. 11, but for ρ03 coherence as a function of probe detuning �3. We use the same intensities
(I1 = 10−12 W/m2, I2 = 10−6 W/m2, I3 = 10−7 W/m2) and B field value of 0.02 T as in Fig. 11.
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FIG. 13. Variation of the slopes of ρ01 (full squares) and ρ03(open
squares) coherences for values of N varying from 1 to 15 with an
increment of 0.5, selected from Figs. 11 and 12, respectively. The
results for the ρ01 coherence are rescaled by 103 to compare with the
ρ03 case.

chosen basis is complete and orthogonal. Therefore, we prefer
to adopt a dressed-state representation with three coupling
states |C1〉, |C2〉, and |C3〉 and one noncoupling state |NC〉.
These four dressed states should form an orthogonal basis
set constructed as linear superposition of atomic “bare” states
{|0〉,|1〉,|2〉,|3〉} and should include the couplings between the
probe and coupling fields with the atomic dipole moments.

According to [9], the state |NC〉 of the atom-field interaction
Hamiltonian, H from Eq. (17) should have zero eigenvalue.
Also, |NC〉 should be orthogonal on the population trapped
ground state |0〉 [18]. We choose to define the noncoupling
dressed state as

|NC〉 = �2�3|1〉 − 2�1�3|2〉 + �1�2|3〉
�D

, (51)

where �D = (�2
1 �2

2 + 4 �2
1 �2

3 + �2
2 �2

3)1/2 represents a
normalization constant. One can easily check that the require-
ments: H |NC〉 = 0 [9] and 〈0 |NC〉 = 0 [18] are simulta-
neously verified. The state |NC〉 is built upon the idea that
a noncoupling state should not include the atomic ground
state |0〉, but should include the interaction between the other
three excited atomic states |j 〉 (with j = 1, 2, or 3) with the
two fields nonresonant to the atomic transition |0〉 → |j 〉.
For example, in the state |NC〉, the bare atomic state |1〉
interacts only with the coupling fields “2” and “3”, etc. Such
a criterion implicitly accounts for the quantum interference
between various pathways in the W-type system. The state
|NC〉 includes explicitly the coupling terms responsible for
the creation of an EIT feature. Our procedure of building the
state |NC〉 was inspired in part from an article by Gu et al. [15]
regarding a five-level M-type atom.

The orthogonal coupling states |Cj 〉 are built so that each Ej

field couples with a linear combination of the dressed atomic
states. Each state |Cj 〉 includes an interaction term between the
excited state |j 〉 and the ground state |0〉 (through a coefficient
κj ), as well as the term �j�̃ which represents the field-atomic
states interaction mixing:

|Cj 〉 = κj |0〉 + �j�̃

�D

, (52)

FIG. 14. Variation of width 
EIT;j of ρ01 (full squares, j = 1)
and ρ03(open squares, j = 3) for values of N from 1 to 15 with an
increment of 0.5, selected from Figs. 11 and 12, respectively.

where �̃ is a linear combination of dressed atomic states:
�1|1〉 + �2|2〉 + �3|3〉. The conditions

〈NC|Cj 〉 = 0 and 〈Ci |Cj 〉 = 0 (when i �= j ) (53)

are verified if both dressed states |NC〉 and |Cj 〉 include the
same constant �D .

Our new orthogonal basis set allows us to understand the
mechanism responsible for the formation simultaneously of
two EIT’s in our W scheme using a one-to-one correlation
between bare atomic states |j 〉 and coupling states |Cj 〉. For
example, the atomic state |1〉 is associated with the dressed
state |C1〉 because it allows a stronger interaction with the
(probe) field E1 (resonant to the transition |0〉 → |1〉) than any
other state through the term �1�̃. Similarly, the dressed states
|C2〉 and |C3〉 are correlated to the atomic states |2〉 and |3〉,
respectively.

We will interpret the formation of EITs in our W system
by projecting the dressed states |NC〉 and |Cj 〉 on the atomic
states. Thus, the coupling between a Zeeman state |j 〉 and
|NC〉 is given by

γ 2
j = 〈j | NC〉2 ∝

(
�i�k

�D

)2

, (54)

where i and k �= j , while the coupling between the ground
state |0〉 and the state |Cj 〉 is given by

κ2
j = 〈0|Cj 〉2 = �2

j

∑3
l=1 �2

l

�2
D

, (55)

and indicates the absorption of the Ej field by state |j 〉. The
interpretation of the coefficients defined in Eqs. (54) and (55)
is that an atomic state |j 〉 becomes transparent to a probe field
when it strongly couples with the dressed state |NC〉 and γ 2

j

is large. If the ground state |0〉 couples with a dressed state
|Cj 〉, then the coefficient κ2

j is large and the atomic state |j 〉 is
opaque to (or absorbs) the Ej field.

The coefficients γ 2
j and κ2

j are not probability amplitudes,
because our coupling states |Cj 〉 are not normalized to 1.
However, they provide a clear physical meaningful interpre-
tation for the evolution of the ρ01 (from Fig. 2), ρ03 (from
Fig. 3) and ρ02 (from Fig. 10) coherences in our W system
consistent with our quantum results. It is worthwhile to note
that, for each |j 〉 state, the coefficients κ2

j and γ 2
j have opposite
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(a)

(b)

(c)

FIG. 15. The variation of coefficients γ 2
j = 〈j |NC〉2 (full

squares) and κ2
j = 〈0 |Cj 〉2(open circles), where j = 1, 2, or 3, as

defined in Eqs. (54) and (55) respectively, for (a) ρ01, (b) ρ03,
(c) and ρ02.

variations. This property is consistent with the transparency
or opacity of a certain atomic state |j 〉 to a probe field.
For example, the variation of coefficients κ2

1 and γ 2
1 from

Fig. 15(a) explains well the formation and the evolution of an
EIT feature in state |1〉, and it is consistent with the variation
of our quantum coherence ρ01 reported in Fig. 2. Similarly, the
coupling coefficient κ2

3 has a variation with I2 opposite to γ 2
3 , as

shown in Fig. 15(b). This is consistent with our results for ρ03

from Fig. 3.
Our basis set {|NC〉, |C1〉, |C2〉, |C3〉} provides a qualita-

tive explanation for the formation and the evolution of two
simultaneous EITs in two atomic states, while the third state
typically shows opacity [see Fig. 15(c)]. The rate of variation
of the coefficients γ 2

j and κ2
j with an increase in the intensity of

the coupling field(s) is consistent with the evolution of an EIT
phase, as discussed in Section IV B; thus, when the coupling
field is not very strong, the coefficients γ 2

j have a sharp increase
with the increase of I2. Once the system is inside the EIT
phase, the coefficients γ 2

j have a much shallower variation
with the increase of I2 [see Figs. 15(a) and 15(b)]. The opacity
of state |2〉 [Fig. 15(c)] is indicated by an increase of the
interaction coefficient κ2

2 with the increase in intensity I2 of
(now) the probe field. We believe that our present method could
be generalized to any other multi-level, multi-laser system.

VI. CONCLUSION

This article provides a detailed presentation of the for-
mation and evolution of two simultaneous EIT features in
a four-level atomic W system interacting simultaneously with
three optical fields. Also, it presents the necessary criteria
for establishing EIT in a W scheme. Our results suggest that
a W scheme could be eventually used in storage of optical
information in dense atomic media using binary recording
with two (opposite) circularly polarized photonic beams driven
by a linearly polarized coupling field. Our W scheme could
be considered as the reverse of a tripod system, such as the
one reported in [14], but here we predict two simultaneous
EITs for two distinctive probe fields induced by a stronger
coupling field, while Paspalakis and Knight [14] proposed a
setting which allowed slowing down a single probe field with
two different group velocities by using simultaneously two
coupling fields with different detunings.

We have observed that, when the coupling field is only
a perturbation to a strong probe field, a narrow transmission
window forms and gradually enlarges with the increase in
intensity of the coupling field. When the coupling field is
stronger than the probe field, the EIT phase can be reached and
an Autler-Townes doublet forms with a constant width γ mea-
sured at FWHM, while the group velocity becomes stationary
with an increase in strength of the coupling field. A qualitative
analysis for the formation of EIT features in our four-level
atomic W system can be done using an intuitive dressed-
state representation, including a descriptive account of the
interaction between three E fields and four atomic levels. We
simulate the collisional relaxation by including the pressure
broadening of the excited Zeeman states and we observe when
the width of these states increases linearly, the slope of the
atomic coherences decreases exponentially and the width 
EIT

of the Autler-Townes doublet increases linearly for a very weak
probe, while for a stronger probe field, 
EIT shows a slower
logarithmic increase. We believe that the methods proposed in
this article can be applied to more sophisticated systems.
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