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Response of the polaron system consisting of an impurity in a Bose-Einstein
condensate to Bragg spectroscopy
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We expand the existing polaron response theory, expressed within the Mori-Zwanzig projection operator
formalism applicable for the transfer of arbitrary energy and zero momentum, for the case of finite momentum
exchange. A general formula is then derived that can be used to calculate the response of a system to a probe that
transfers both momentum and energy to the system. The main extension of the existing polaron response theory
is the finite momentum exchange, which was not needed until now, since it is negligible for optical absorption.
However, this formalism is needed to calculate the response of the polaronic system consisting of an impurity in a
Bose-Einstein condensate (BEC) to Bragg spectroscopy. We show that the well-known features that appear in the
optical absorption of the solid-state Frohlich polaron are also present in the Bragg response of the BEC-impurity
polaron. The f-sum rule is written in a form suitable to provide an independent consistency test for our results. The
effect of lifetime broadening on the BEC-impurity spectrum is examined. The results derived here are discussed
in the framework of an experimental realization consisting of a lithium impurity in a sodium condensate.
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I. INTRODUCTION

The experimental realization of impurities in a Bose-
Einstein condensate (BEC) [1-3] and the possibility to produce
quantum degenerate atomic mixtures [4—6] has resulted in an
interest in the physics of impurities in a quantum gas. This
has led to an investigation of the change of the properties
of the bare impurities as a result of the interactions with
the condensate (such as the effective interaction [7,8] and
the effective mass [9—11]) and a study of the self-trapping of the
impurity [12,13]. Also, the system of a spin-down fermion in a
sea of spin-up fermions, usually indicated as the Fermi polaron,
has been investigated, which resulted in good agreement
between theory [14,15] and experiments [16,17]. Furthermore,
it was shown that, when the Bogoliubov approximation is
valid, the system of an impurity in a BEC can be mapped to
the Frohlich polaron system [18-20], which shows that this
system can be added to the list of condensed-matter systems
that can be imitated in the context of quantum gases [21].
The experimental realization of quantum degenerate atomic
mixtures in an optical lattice [22-24] has led to the theoretical
study of the polaronic properties of impurities in a BEC where
the influence of the optical lattice is felt only by the impurities
[25,26] or by both the impurities and the condensate [27].

In the context of solid-state physics, the Frohlich polaron
consists of a charge carrier (electron, hole) interacting with the
phonons in an ionic crystal or a polar semiconductor [28,29].
This Frohlich polaron Hamiltonian cannot be diagonalized ex-
actly, and several approximation methods have been developed
for it. The most general way to study the system is through
a variational principle within the path-integral formalism,
which was developed by Feynman [30]. The internal excitation
spectrum of the Frohlich polaron was revealed through the
calculation of the optical absorption by Devreese et al. [31],
based on the Feynman path-integral method and a response
formalism introduced in Ref. [32]. Recently, the excitation
spectrum of the Frohlich polaron Hamiltonian was also
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studied numerically with diagrammatic quantum Monte Carlo
numerical techniques, and these results showed deviations
in the large coupling optical absorption linewidth with the
theoretical results of Ref. [31], see Ref. [33]. At weak and
intermediate couplings, the analytical theory of Ref. [31]
agrees well with the numerical simulations of Ref. [33], and
this optical absorption spectrum was also studied experimen-
tally [34]. So far, the strong-coupling regime could not be
probed experimentally since the largest attainable Frohlich
polaron coupling constant in any solid is not large enough. The
large coupling behavior remains an important question since a
better understanding of the intermediate- and strong-coupling
regimes might be useful to elucidate the role of polarons and
bipolarons in unconventional pairing mechanisms, e.g., for
high-temperature superconductivity [35]. Furthermore, it was
shown that, at intermediate coupling, the introduction of an
ad hoc lifetime t for the eigenstates of the polaron model
system is an improvement of the theory that is called the
extended memory function formalism [36].

If the Bogoliubov approximation is applicable, the Hamil-
tonian of an impurity in a BEC can be written as the sum of
the mean field energy of the homogeneous condensate and the
Frohlich polaron Hamiltonian that describes the fluctuations
[20]:

o~
7 P kP Pt
Hpot = T Y haxbih+ Y Vie* Ty +b ), (1)

k0 k0

which describes the interaction between the impurity and the
Bogoliubov excitations where 7 and p represent the position
and momentum of the impurity with mass m, i)\,; and b! are
the annihilation and creation operators for the Bogoliubov
excitations, wy is the Bogoliubov frequency,

wp = cky/1+ (Ek)?/2, )
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and V7 is the interaction amplitude,

k 2 1/4
Ve = vNo [L} g1s- (3)

(Ek)?+2

In the above expressions, use was made of the definition
of the healing length of the condensate & = 1//8maggng
with ngp = Ny/V as the condensate density and agp as the
boson-boson scattering length. We also used the expression
for the speed of sound in the condensate ¢ ="/ (V2mg§).
In Ref. [20], the Feynman variational path-integral technique
was applied to this Hamiltonian, and an upper bound for
the free energy was calculated by using the Jensen-Feynman
inequality with the Feynman model system. This model
system consists of the impurity mass coupled to another mass
M by a spring with frequency 2. The parameters M and
2 are then used to minimize the free energy. It followed
that the Frohlich polaron coupling parameter in this case is
given by

= i 4)
apgt’

with arg as the impurity-boson scattering length. Together with
the ratio between the masses of the impurity and the bosons,
this coupling parameter fully determines the static properties of
the specific BEC-impurity polaron system. Depending on the
value of this coupling strength, two regimes were identified:
a strong-coupling regime, which has properties that suggested
a polaronic self-trapped state and a weak-coupling regime,
which suggested a free polaron. Since this coupling parameter
depends strongly on the scattering lengths, which can be
tuned externally by a magnetic field through a Feshbach
resonance (see, e.g., Ref. [37]), it may be possible to tune
the system experimentally to the regime of strong coupling.
This technique might enable the experimental realization of the
strong-coupling regime and reveal the internal structure of the
Frohlich polaron Hamiltonian.

Since, as opposed to the original Frohlich polaron in solid
state, the BEC-impurity polaron system is not charged, it is
not helpful to perform optical absorption measurements on
this system. The method to probe the system is addressed in
the present paper and will be shown to be Bragg spectroscopy.
This has proven to be a very successful tool to probe the
structure of BECs (see, e.g., Refs. [38] and [39]). It is realized
by probing the system with two laser beams with wave vectors
k 1 and k, and frequencies w; and w;. An atom can then undergo
a stimulated scattering event by absorbing a photon from beam
1 and emitting it in beam 2, which changes its momentum by
k =k, — k> and its energy by hw = hw; —hw,. See Fig. 1
for a schematical picture of a typical experimental setup. A
possible way to measure the response of the system is by
performing a time-of-flight experiment and count the number
of atoms Nprge that have gained a momentum k. Within
the formalism of linear-response theory, this number is given
by [37]

2 (V\? .
NBragg = ;l (5) tImy (w,k), )
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FIG. 1. Schematical picture of a typical experimental setup for
Bragg spectroscopy. Two lasers with momentum k 1 and k, and energy
hw; and hw, are impinged upon the impurity in the condensate that
gains an energy hw = hw; — hw, and a momentum k= l?. — 122.

with 7 as the duration of the pulse, V as the amplitude of the
laser-induced potential, and x(w,k) as the density response
function, defined by

- 1
k) = __Zfl —BEn
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with py; as the induced density of the impurity, Z as the partition
function, |n) as the eigenstates of the unperturbed system, and
Wnm = (E, — E,;)/h as the transition frequencies. This density
response function can be rewritten as the Fourier transform of
the retarded density-density correlation function:

. o0
xb =3 [ ae 100, ™
The retarded density-density correlation function is needed to
obtain the response of a system to Bragg spectroscopy.

We will start by using the Mori formalism to calculate a
general expression for the density-density correlation func-
tion (7) and then will apply it to the generic polaron system
with arbitrary dispersion and interaction amplitude. Then, we
show that, if we calculate the current-current correlation for
the k = 0 limit from this expression, we find the known result
for the optical absorption of Ref. [31]. Next, we introduce the
dispersion and interaction amplitude for the BEC-impurity po-
laron and obtain results for the response to Bragg spectroscopy.
The result is expressed as a double integral over highly
oscillatory integrands that has to be calculated numerically
and which can give numerical problems. To overcome these
problems, then, we will rewrite our expressions in another
representation that is suitable for numerical work. We then
write down the f-sum rule to check our results and find that, at
low temperatures, there is a relatively large recoil contribution
for @ — 0, which numerically has to be added separately in
the sum rule. This behavior was also found in the optical
absorption of the solid-state Frohlich polaron, and, in that case,
there is a relation with the effective mass of the polaron [40].
Recently, this sum rule was used to experimentally determine
the effective mass of the solid-state Frohlich polaron, see
Refs. [41] and [42]. Next, following De Filippis et al. [36],
we introduce a lifetime t and examine the dependence of
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the theory on this lifetime. The results are analyzed for the
experimental setup consisting of a lithium impurity in a sodium
condensate, which is the same system that was examined in
Ref. [20].

II. APPLICATION OF THE MORI FORMALISM TO THE
DENSITY-DENSITY CORRELATION

The Mori-Zwanzig projection operator technique (see
Refs. [43] and [44]) is a well-established technique to
calculate correlation functions and has been applied before
to the Frohlich polaron Hamiltonian to calculate the optical
absorption by Peeters and Devreese [45] (for a detailed
description, we refer to Ref. [46]). This technique can also
be applied to the calculation of the density-density correlation
function. However, there is one obstacle that we encountered
when defining the Mori projection operator. The reason is that
the common definition of this operator is ill defined since it
leads to a vanishing density-density commutator. This problem
was already noticed by Ichiyanagi [47], and he suggested
the following definition for the action of the Mori projection
operator P on an arbitrary operator A:

([A.10)
A= —"—p. (8)
(Lo £1)

In our calculations, we have followed this suggestion and have
found that the density response function can be written as

¥

-
k) = — =, 9
x(@k) h?+ 0 — S(w,k) ®
with
¢ = ([pp-p1D), (10)
0 = ~(lLog.pfD). an

. 1 [® , .
Eka)=-—;l/ dt(1 — ") ([By(®),B;1),  (12)
0

where L is the Liouville operator and Z(w,%) is known as
the memory function or self-energy. Furthermore, we also
introduced the operator B;(¢) defined as

B; = Ly (13)

with Q as the complementary Mori projection operator
Q =1— P. The time dependence of B;(¢) is governed by
a new Liouville operator defined by £ = QL Q. Here, it is
important to note that, until this point, no approximations
were made, and the result (9) for the linear density response
function is exact. Also, to derive the formula (9), we have not
introduced a specific system, and so, it is a general result
for the density response function and can also be applied
to calculate the response of other systems to probes with
an arbitrary energy and momentum exchange. For example,
the final state of neutron scattering is also determined by
the density response function [48]. We now consider the
Frohlich polaron Hamiltonian and follow an approach similar
to that used in Ref. [45]. This consists of replacing the new
Liouville operator £ by the sum of the Liouville operator of
free Bogoliubov excitations Lp,g and the Liouville operator of
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the Feynman model system Ly: £ — Lo, + L. Within this
approximation, we can calculate the different quantities in the
expression (9), which gives O = 0 and

hk?
(p=lm—N, (14)
1

where N is the number of impurities. The memory function is
then given by

. 2 (k-g)? [~
X(w.k) = > 1Vl
(@.%) WNh#Jq| 2

xIm{[e/“i" + 2 cos(wzt)nz]expl—(k + §)* D(D)]},
(15)

di(1 — &'

with n; as the Bose-Einstein distribution, i.e., the number of
Bogoliubov excitations with frequency w; and D(t) describes
the Feynman model system and is given by
12 ) h - M
—1
28(m 4+ M) 2(m + M) 2mQ(m + M)

x[l—e@ﬁQﬂ+4ﬁﬁ<%¥)MQﬁ, (16)

D(t) =

with M and 2 as the variational parameters. The values of
these parameters are deduced from the minimalization of the
free energy [20].

III. LINK WITH THE OPTICAL ABSORPTION OF THE
SOLID-STATE FROHLICH POLARON

A well-known result from linear-response theory and the
Kubo formalism is that the optical absorption of a system can
be expressed as a current-current correlation function [49].
Since the current and the density are related to each other
through the continuity equation, it is possible to calculate the
current-current correlation function from the density-density
correlation function. For the process of optical absorption, the
photon momentum is negligible in comparison to the other
momenta involved in the polaron problem, which is not the
case for Bragg spectroscopy. To obtain the optical absorption,
we have to take the limit k — 0, which gives, for the memory
function,

2 o0 .
S(w,0) = wzzf dr(1 — &'
(@,0) 3m1Nh;| ilq 0 ( e

xIm{[e'¥i" + 2 cos(wgt)ng] exp[—qu(t)]}.
(17)

This is just the memory function X (w) calculated in Ref. [45]
multiplied by w:

2 (@,0) = 0X(w). (18)

For the solid-state Frohlich polaron, it is the current-current
correlation that is needed for the optical absorption. By
applying two partial integrations and making use of the
continuity equation, one can find a simple relation between
the two:

7 i *© iot 1. = P
X(w,k)z—ﬁ/; die™ (k- 0.k - JID. (19)
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‘We now make use of the standard Kubo formula for the optical
conductivity (see, e.g., Ref. [49]):

2

_ | o '
Re[o(w)] = Re | i — +—/ dte“”([jx(t),jx])]
| Vmo  ho Jy
. hw >
= I%Tg)lm [—ﬁx(a),k)}
M1 1 i|
=Im|—————|. (20)
L m;o— X(w)

This is the result that was found in Ref. [31] from the Feynman
path-integral formalism and rederived in Ref. [45] using Mori’s
formalism.

IV. RESULTS FOR THE BEC-IMPURITY POLARON

In this section, we will introduce the dispersion and
the interaction amplitude for the BEC-impurity system and
will obtain an expression for the response of the system
to a Bragg pulse. From expression (5), it follows that
the response of the system is characterized by the imagi-
nary part of the density response function, which can be
written as

Im[x (@,k)]
k2 Im[Z(w,k)]

om0 — Re[S(w, 0] + {Im[ (@, )12
(21)

This particular form for the response function is general for
the Frohlich polaron and was first introduced in Ref. [31]. The

R 8 12
exp[—(k + @)*D(1)] = <m) exp [ -

Furthermore, the memory function can be written as

7 - OO iwt P : I
Y(w,k) = —/ dte / dx(Bp(t — lh)\)B]—(»>
0 0

X

(1+ n(Q)]} [

T 2\2
]exp {it[h<k+q> +
2(m + M)
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memory function for the BEC-impurity system is given by
(with polaronic units, i.e.,h =m; =& = 1)

1 Ol(m3+1>/
N4z \ " my ﬁ?‘

X / d’f(l—eiwf)lm[[ewq + 2 cos(wg)ng]
0 [2kqg D(1)1?

x (exp[—(k — ¢)*D()I{[1 — 2kqg D(1)]* + 1}

Y(w, k)

— exp[—(k + ¢)*D(ON[1 + 2kg D()]* + 1})}.
(22)

The double integral in expression (22) could not be calculated
analytically, and it was computed numerically.

V. SECOND REPRESENTATION FOR THE IMAGINARY
PART OF THE MEMORY FUNCTION

Due to the highly oscillatory behavior of the integrand, it
turns out that expression (22) is not of a form efficient for
numerical calculation of the imaginary part of the memory
function. Therefore, we develop an alternative representation
for the memory function that allows performing the time
integration analytically. This provides a representation for the
imaginary part that is well suited for numerical calculations.
The real part of the memory function turns out to be far
more involved, but it seems that, in this case, we can use
expression (22). We will follow a similar approach as used
in Ref. [31] and also in Ref. [45]. We start by rewriting
Eq. (16) as

12 . h - hM
2m+ M) 2m+ M) | 2mSm + M)

npR .
X [coth (T) — [1 + n(2)] exp(i2t)

D(t) =

— exp(—iQt)i|. (23)

After two Taylor expansions for the two exponentials
and writing the term with 7> as a Gaussian integral,
we obtain

(l; +g)? nM coth npQ
D 5mQm + M) 2
11 M
x Z Eﬁ[zmg(m M)

o) ’3p2
X - dpexp — m

’

Q /-é =>\2(n+n")
amm + )" )} (k+4)

plk + G| ,
oy —I—(n—n)Q“. (24)

k 2 . B . . . . - N
Z| q|2( ) / dte” f dAL(1 + ng)e™ ™M) 4 pgel i~ exp[—(k + §)*D(—t + ihA)].
0 0

(25)
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Now, the time integration is straightforward,

PHYSICAL REVIEW A 83, 033631 (2011)

5( ]—Cv) w ﬁ 172 Z v, |2 —(k+§)2a>(B) (]_é : 6)2 io: B(B /)(]; + *)2(n+n/)
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oo 2(M + m) hv_ w—v_+ie vy, w—vy+ie
with the following notation: nk+3?  plk+ql
= tw; -n)Q. (29
Vi wq+2(m+M) M +@m—n) (29)

2( )= h—M th (@) 27)

O = mamrm "\ )
11 ,

B(B.n,n') = ;ﬁ{az[l + n( @' [a*n(]",  (28)

mB+1
mp

l o

N 8

Im[Z(w,k)] = —

(

The memory function is now split in an imaginary and a real
part with the formula of Plemelj. The integral over p in the
imaginary part of Eq. (26) can be performed easily by using the
§ function. Taking the dispersion and the interaction amplitude
into account, this yields (with polaronic units)

2 1/2 poo 1 2
Bl + M) / 2/ q —(K24a? 2
d d (k*+q~+2gkx)a*(B) 2
) ( o | daq” | dx e (gx)

o0
x Y BB ) + g7 + 2qkx)" 721 — 7P

BM + 1A, (w)*
X [ngexpy—
2(k* + g* + 2gkx)

with

(k +§)?

Af(w) = to; + —
2 (@) w”+2(l+M)

+(n—-n)Q —w.

As shown in Ref. [45], this expression has a very natural
interpretation: Every term in the double sum corresponds
to a well-defined physical process. The (n,n')th term in the
summation represents a scattering process of the polaron
where, in the initial state, the polaron is in the n’th internal
Franck-Condon (FC) state of the Feynman polaron model
system and is then scattered to the nth internal FC state with
the absorption of an energy iw and a momentum k through
the Bragg scattering and with the emission (or absorption) of
a Bogoliubov excitation with energy fiw;.

}-i—(l +n5)exp{

_ BM + DA (w)?
2(k* + g* + 2qkx)

(30)

I

V1. SUM RULE

As a consistency check of our results, we can apply the
f-sum rule to our results, this can be written as

oo
J

At small w and as temperature tends to zero, a § peak appears
in the integrand for which, in numerical calculations, we have
to add the contribution separately. This feature was found for
the solid-state Frohlich polaron, where the contribution of the
6 peak can be used to determine the effective mass of the
polaron [40]. The § peak can be revealed if we look at the
o — 0limits of the imaginary and real parts of expression (22)
for the memory function,

2

- Tk
doolmx(w,k)]=N=—. 31
2m1

lim Im[Z(w,k)] =0, (32)

Re [Z(w,k)]
m e —

li
w?

w—0

— R(a,k), (33)
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with
2 2 o0 00 2 iwit
oWy o mp+1 / —— 4 2/ ” |:[e i 42 cos(w;t)ng] P
Rle.k) = =7~ — (—mB ) ; dqq NeEal dt—Im kg DO (exp[—(k — g)"D(1)]
x{[1 = 2kgD(1))* + 1} — exp[—(k + q)*D®I{[1 + 2kq D(1)])* + 1})] ) (34)

Now, if we look at the w — 0 limit of the density response
function, we find

2

lim I K] = —————78(?), 35

sy Imlx o) = R 53

where we used the following representation for the § function:
1

8(x) = lim (36)

n0 nmr 1+ (x/n)?
So, at temperature zero, the sum rule becomes
/4 k*N
2 my[1 = Rie.b)]

o) N k2
+/ doolm[x(w,k)] = Nz—,
& 2 my

(37

where ¢ is a positive infinitesimal. Care has to be taken at finite
temperatures since the 6 peak will then broaden and will start
to overlap with other contributions of the spectrum. At low
enough temperatures, we will see that our results agree well
with Eq. (37).

VII. EXTENDED MEMORY FUNCTION FORMALISM

In Ref. [50], it was noticed that the Feynman polaron model
system does not satisfy the sum rule for the density-density
correlation. This limitation can be removed by introducing
a finite lifetime t for the eigenstates of the Feynman model
system that mimics scattering events with the bosonic bath,
which can be done by replacing exp(i 2¢) with (1 4 it /1)
in Eq. (16). This technique is called the extended memory
function formalism and was applied in Ref. [36] for the
solid-state Frohlich polaron. It was shown that, at intermediate
coupling, this gives a better agreement between the theory and
the diagrammatic quantum Monte Carlo numerical techniques.

—B =100
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FIG. 2. (Color online) The Bragg response of the polaron system
consisting of an impurity in a BEC polaron in the weak-coupling
regime (o = 0.1) with momentum exchange k = 1 for different
temperatures.

This extension also solves the problem of the inconsistency of
the linewidths at strong coupling with the uncertainty relation
for the solid-state Frohlich polaron, which was first mentioned
in Ref. [31]. It seems that the second representation for the
imaginary part of the memory function (30) is not suitable for
the introduction of a lifetime. To obtain a qualitative picture
of the dependence of the results on the lifetime, we can work
with the real and imaginary parts of the memory function as
expressed in Eq. (22).

VIII. RESULTS AND DISCUSSION

The results we obtain in this section are for a system
consisting of a sodium condensate with a single lithium
impurity, this means that we use, for the bosonic mass,
mp = 3.8221, which is in polaronic units as are all the results
in this section.

We begin by looking at the weak-coupling regime. In Fig. 2,
the Bragg response (21) is presented as a function of the
transferred energy hw for different temperatures and for a
momentum exchange k = 1. At low temperatures (8 = 100),
we clearly see a peak that represents the weak-coupling
scattering process and can be understood as the emission
of Bogoliubov excitations. Also, the contribution of the
temperature broadened § peak at low w is seen. This is the
anomalous Drude peak (see Ref. [51]). If we look at higher
temperatures, the zero-temperature § peak broadens, and there
is a larger overlap with the weak-coupling scattering peak.
At B = 10, this peak has become indistinguishable from the
anomalous Drude peak. For g = 100, a distinction between
the two contributions can still be made, and the f-sum rule can
be applied, as will be done below.

o
o

N = -
o
!

FIG. 3. (Color online) The Bragg response of the polaron system
consisting of an impurity in a BEC in the weak-coupling regime (o =
0.1) at temperature 8 = 100 for different momentum exchanges.
The inset shows the frequency of the maximum as a function of
the exchanged momentum k. The curve gives a least-squares fit of
the Bogoliubov spectrum (38), with fitting parameter m = 3.9534.
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FIG. 4. (Color online) The Bragg response of

the polaron system consisting of an impurity in a
BEC at different values for the coupling param-
eter « at temperature § = 100 and a momentum
exchange k& = 1. In the strong-coupling regime,
the imprint of the RES resonance appears. The
inset shows the first three FC peaks at o = 8.
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The dependence of the spectrum on the exchanged mo-
mentum k is presented in Fig. 3 for« = 0.1 and g = 100. For
larger momentum exchange, the scattering peak is shifted to
higher frequencies, and a broadening is observed. The inset of
Fig. 3 shows the frequencies wyax at which the maximum of
the peak occurs as a function of the exchanged momentum k
together with a least-squares fit to the Bogoliubov spectrum,

k
w=—k*+2, (38)
2m

where m is determined as a fitting parameter to be as follows:
m = 3.9534; which is in good agreement with the bosonic
mass of the condensate (mp = 3.8221). This shift, according
to the Bogoliubov dispersion, is plausible since the peak
corresponds to the emission of Bogoliubov excitations.

In Fig. 4, the high-frequency tail of the Bragg spectrum
is shown for different coupling strengths « at § = 100 and
k = 1. In the strong-coupling regime, a resonance is seen that
is absent in the weak-coupling regime. This feature is well
known from the solid-state Frohlich polaron and corresponds
to a transition to the relaxed excited state (RES); it was first
proposed in Ref. [52]. This resonance appears at a frequency
wgEs such that a)]%ES = Re[Z(wRES,Iz)] with the supplementary
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FIG. 5. (Color online) The RES peak in the Bragg response
of the polaron system consisting of an impurity in a BEC in
the strong-coupling regime (o = 8) at temperature § = 100 for
different momentum exchanges. The inset shows the frequency of the
maximum as a function of the exchanged momentum k at 8 = 100.
The curve is a least-squares fit to the quadratic dispersion (39), with
fitting parameters v = 40.76 and m* = 3.84.

condition Im[E(wREs,l_c')] <« 1. From Eq. (21), it is clear that
these conditions cause a peak in the spectrum. This resonance
corresponds to a transition from the polaron ground state
to an excited state in the polaronic self-trapping potential
that has been relaxed consistent with the new excited wave
function of the impurity. The coupling strength where the
RES appears in the Bragg spectrum is slightly below o = 4.
This is in agreement with the prediction in Ref. [20] that,
for a BEC impurity, the transition between the weak- and the
strong-coupling regimes occurs around o =~ 3 for 8 — o0. In
the strong-coupling regime, other peaks are present that are
indicated for « = 8 in the inset of Fig. 4. These are the FC
peaks and represent a transition to the RES together with the
emission of Bogoliubov excitations. They only appear in the
strong-coupling regime, which was also observed in the case
of the acoustic polaron [53].

The dependence of the RES peak on the exchanged
momentum is depicted in Fig. 5. The inset shows the frequency
of the maximum of the RES peaks as a function of the
exchanged momentum ¢ together with a least-squares fit to
a quadratic dispersion,

k2

w=v+ (39)

2m*’

where v and m* are the fitting parameters. This suggests that
the RES is characterized by a transition frequency v and an
effective mass m*.

As a consistency test, it was checked whether the above
results satisfy the f-sum rule (37). Filling out the expression
for the imaginary part of the density response function (21)

TABLE 1. Results of a numerical calculation of the left-hand
side of expression (40) with a cutoff w. = 500 introduced for the w
integral.

k o =1 4 8
1 1.5442 1.6845 1.5532
3 1.5482 1.6419 1.5355
5 1.5506 1.5555 1.4979
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FIG. 6. (Color online) The RES peak in the Bragg response
of the polaron system consisting of an impurity in a BEC in
the strong-coupling regime (« = 8) at temperature f = 100 with
different lifetimes t.

and dividing by the common factor, the f-sum rule takes the
form

21— R@ b)) Je

Im[Z(w,k)] n
X = = =—. (40
{0? — Re[Z(w, )]} + {Im[Z(w,k)]}> 2
It is impossible to integrate numerically to infinity, and for
this reason, a cutoff, w. = 500, is used. A calculation of the
left-hand side of Eq. (40) results in the values in Table I for
different values of & and k at 8 = 100. These results should be
compared with the rigorous value 7 /2 = 1.5708, ..., which
gives good agreement with small deviations.

We now give a qualitative analysis of the dependence of
the results on the lifetime 7, which was introduced in Sec. VII
within the extended memory function formalism. In Fig. 6, the
RES peak is presented at different values for 7 in the strong-
coupling regime (o = 8). It is observed that the inclusion of
a lifetime parameter on the order of the polaronic time unit
results in a broadening of the peak, where a smaller lifetime
corresponds to a broader peak. When a lifetime on the order of
a hundredth of the polaronic time unit is introduced, the peak
cannot be distinguished anymore.

IX. CONCLUSIONS

We have derived a general formula for the density response
function as a function of the transferred energy and momentum

PHYSICAL REVIEW A 83, 033631 (2011)

with the Mori-Zwanzig projection operator formalism. This
provides a general result that can be used for Bragg spec-
troscopy but also for other probes that exhibit an arbitrary
energy and momentum exchange as, for example, neutron
scattering where the output is also determined by the density
response function [48]. This is applied to the Frohlich polaron
Hamiltonian for which the well-known results from Ref. [31]
for the optical absorption are found. We then extend the
analysis to Bragg scattering of impurity polarons in a Bose-
condensed gas, where the Bogoliubov excitations play the role
of the phonons in the polaron formation. The f-sum rule is
checked.

To analyze the results, we introduced the specific system
of a lithium impurity in a sodium condensate and calculated
the spectra in the different coupling regimes and for different
momentum exchanges and temperatures. It is seen that these
spectra possess similar features as also found in the optical
absorption of the solid-state Frohlich polaron. Furthermore, it
was shown that the weak-coupling scattering peaks follow
the Bogoliubov spectrum as a function of the exchanged
momentum. In the strong-coupling regime, the RES emerges,
and we derive the transition frequency and the effective
mass associated with the RES. This is of importance for
the comparison with diagrammatic quantum Monte Carlo
numerical techniques, which, in the case of the optical
absorption of the solid-state Frohlich polaron, has led to new
results concerning the linewidth and oscillator strength of the
RES and FC transitions. The FC peaks were also observed.

Our results were tested using the f-sum rule, which resulted
in good agreement with small deviations.

The influence of the introduction of a lifetime within the
extended memory function formalism was also qualitatively
investigated, and it was shown that this results in a broadening
of the RES peak.
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