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We show how interpenetrating optical lattices containing Bose-Fermi mixtures can be constructed to emulate
the thermodynamics of quantum electrodynamics (QED). We present models of neutral atoms on lattices in
1 + 1, 2 + 1, and 3 + 1 dimensions whose low-energy effective action reduces to that of photons coupled to
Dirac fermions of the corresponding dimensionality. We give special attention to (2 + 1)-dimensional quantum
electrodynamics (QED3) and discuss how two of its most interesting features, chiral symmetry breaking and
Chern-Simons physics, could be observed experimentally.
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I. INTRODUCTION

Planar quantum electrodynamics (QED3) has been of
great theoretical interest for many years. The restriction to
lower dimensionality profoundly changes the structure of the
electromagnetic field and its symmetries [1]. In two spatial
dimensions (2 + 1 D), the electromagnetic potential between
point charges scales as log r instead of r−1, leading one to
expect charge confinement in the appropriate limit. QED3 with
massive fermions is particularly rich. One of the two possible
Lorentz-invariant mass terms breaks parity and time-reversal
symmetry, leading to a topological Chern-Simons term in the
photon action. This term produces a gap in the photon spectrum
and makes the effective interaction between the fermions short
ranged. The other Lorentz-invariant fermion mass term breaks
“chiral” symmetry and is spontaneously generated at low
temperatures. Both confinement and chiral symmetry breaking
occur in quantum chromodynamics; since QED3 is a much
simpler theory, it has been studied as a model system for
these effects [2–7]. Further, QED3 has been proposed as
an effective theory for spin liquids [8,9] and the pseudogap
phase of high-temperature superconductors [10–13]. A direct
experimental realization of QED3 could therefore be relevant
to many areas of both condensed-matter and high-energy
physics.

Recent advances in cold-atom physics and optical lattices
[14] have made the simulation of QED3 a real experimental
possibility. Dirac fermions appear at half filling in a honey-
comb optical lattice [15–19], mimicking the relativistic band
structure of graphene [20]. They also appear in a square
lattice with appropriate complex hopping matrix elements
[21]. This has led to a number of proposals to emulate
relativistic physics with cold atoms [21–29]. Here, we extend
these previous proposals by showing how to emulate QED3
with cold atoms. By combining mixtures of bosons and
fermions on interpenetrating optical lattices with appropriately
tuned densities and interactions, both relativistic fermions
and the full three-component dynamical gauge field can be
constructed, allowing QED3 to be probed directly. The linear
Bogoliubov excitations of three species of bosonic atoms
correspond to the three components of the vector field Aµ.
One of the boson species occupies the same lattice as the
fermions, while the other two sit on alternating bonds between
the fermion sites. These bosons modulate the fermion hopping
amplitudes, leading to an interaction that at low energy has

the form of a gauge coupling eψγµAµψ . Being a lattice
model, higher energy terms in this theory will naturally deviate
from the emergent Lorentz and gauge invariances, but at
low energies, these terms are heavily suppressed, and after
applying the Wilsonian prescription of discarding irrelevant
operators, the resulting Hamiltonian is that of QED3.

It is important to note that in the real-time formalism,
the time (A0) component of the gauge field is canonically
quantized by operators with negative norm, with causality and
Hermiticity preserved in real states by the Ward identity [30].
This is a general feature of vector bosons and cannot be
duplicated with cold atoms. However, in the finite-temperature
(imaginary-time) formalism, all the components of the A

field have positive norm. Thus, we focus on producing a
quantum simulator which reproduces the thermodynamics of
QED3. Many of the most interesting properties of QED3
(such as mass generation and symmetry breaking) can be
probed through equilibrium thermodynamics. Further, some
real-time correlations can be accessed through the fluctuation-
dissipation theorem.

Our construction is very different from traditional examples
of gauge fields in condensed -matter systems [8–13,31].
Typically, these gauge theories arise from using descriptions
with redundant degrees of freedom (such as slave bosons in the
large-U Fermi-Hubbard model). The complicated underlying
physics of these emergent gauge theories makes it difficult to
use them as simulators of gauge physics itself. The approach
that we take is different; instead of formulating a redundant
description of a strongly interacting system, we take a weakly
interacting system with a large number of degrees of freedom
and tune the couplings and particle densities so that the
low-energy physics is identical to thermal QED.

To construct our theory, we necessarily choose a particular
gauge. The Hamiltonian of our theory is identical to that of
QED in the Feynman gauge. Our theory is therefore not a
true gauge theory in the formal sense of being described by
an equivalence class of distinct actions and wave functions;
rather, it is a theory of a relativistic fermion interacting with
three neutral, independent massless bosons through a coupling
of the form ψγµAµψ . All physical observables of QED are
gauge independent, and despite its fixed gauge, our simulator
should correctly reproduce all such observables.

The remainder of the paper is organized in the following
manner. In Sec. II, we describe the canonical quantization
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of QED3 in the Feynman gauge, taking care to denote the
various terms in the Hamiltonian that must be replicated in our
cold-atom system. In Sec. III, we then outline our model and
show that its low-energy limit is identical to the Hamiltonian
formulation of QED3. Following the derivation of our model,
in Sec. IV we describe a series of experimental probes to study
the more dramatic properties of QED3. Finally, in Secs. V –
VII, we offer concluding remarks and discuss extensions of
our theory to 1 + 1 and 3 + 1 dimensions.

II. QED AND GAUGE FREEDOM IN 2 + 1 DIMENSIONS

Our goal is to simulate the Euclidean action for (2 + 1)-
dimensional quantum electrodynamics,

LE = iψγµ∂µψ + eψγµAµψ − 1
4FµνFµν. (1)

We adopt the conventions that space-time indicies which run
from 0 to 2 are represented by Greek letters and objects in
boldface represent the two spatial components of the Lorentz
three-vectors. Our imaginary time metric and γ matricies are

gµν = −δµν, ψ = iψ†γ0, γ0 = iσz,
(2)

γ1 = iσx,γ2 = iσy,

and ψ is a two-component fermionic spinor. The σxyz are Pauli
matricies, and Fµν = ∂µAν − ∂νAµ is the electromagnetic
field strength tensor. Summation is implied for all repeated
indicies, and we have abandoned the standard convention of
raising and lowering indicies to emphasize that our imaginary-
time metric is trivial. In Sec. III, we generalize this action to
massive fermions. We work in the imaginary-time formalism
[32,33] to ensure that the photon propagator Dµν is positive
definite, and therefore all photon states have positive norm
and there are no ghostlike degrees of freedom. We note that
in a non-Abelian theory, negative norm degrees of freedom
will be found even in the imaginary-time formalism. Thus, our
approach is not appropriate for simulating QCD.

We simulate this Hamiltonian by designing an optical-
lattice system that exhibits identical degrees of freedom and
Feynman rules up to lowest order in powers of momenta.
To arrive at a simple enough form of the action for quan-
tum simulation, we employ the Faddeev-Popov gauge-fixing
procedure [30]. This scheme enforces the gauge constraint

∂µAµ = w(x) (3)

and then path integrates over w to remove the gauge degrees of
freedom from the Lagrangian. So long as we restrict ourselves
to calculating only gauge-invariant quantities, the integration
over w can be performed trivially. This alters the Euclidean
action by adding a term of the form

LE → LE − 1

2ξ
(∂µAµ)2, (4)

where ξ is an arbitrary parameter. If we then choose ξ = 1
(the Feynman gauge), the off-diagonal terms in the photon
propagator cancel out, and we are left with the action

LE = iψγµ∂µψ + eψ(γµAµ)ψ + 1
2∂µAν∂µAν. (5)

Within this gauge, our system is described by the Hamiltonian

H = vF ψ(−→σ · k)ψ + eψ(σzA0 + i−→σ · A)ψ + 1
2∂νAµ∂νAµ,

(6)
1

2
∂νAµ∂νAµ =

2∑
r=0

∑
k

ωkα
†
rkαrk.

The αr operators annihilate a photon of polarization r , and
ωk = vs |k|; this is simply the canonical quantization of the
free-photon Hamiltonian. Note that, unlike in Minkowski
space, [αrk,α

†
sp] = δrsδ

2(k − p) describes only positive norm
states, since the negative time-time component of the photon
propagator is made positive by the rotation to imaginary time.
The gauge field A is quantized in terms of these bosons by

Aµ(x) =
2∑

r=0

∑
k

frkµ√
2ωk

[αrke
ik·x + α

†
rke

−ik·x]. (7)

Here, the frkµ are real, three-element polarization vectors
satisfying frk · fsk = δrs . The Ward identity [34] implies that
real photons are transverse, that is, k · fsk = 0 for all physical
states; only transverse photons will be produced or destroyed
in observable processes. The momentum-space propagators
for the fermion and gauge field are

DF = −1

γµkµ + m + iε
, Dµν = −δµν

k2 + iε
. (8)

We now show how cold atoms can be used to directly
implement the Hamiltonian (6).

III. (2 + 1)-DIMENSIONAL OPTICAL-LATTICE QED

We give two alternative geometries for the lattice confining
our fermions. We require that the system exhibits “Dirac
points” instead of a Fermi surface; all zero- or low-energy
fermionic excitations must occur near some finite set of
points K in momentum space and have the dispersion relation

εp = ±
√

v2
F p2 + m2 for small p measured with respect to K.

The most well-known system of this type is the honeycomb
lattice [15–19], realized in condensed matter in graphene [20]
and carbon nanotubes. In cold atoms, the ability to directly
manipulate the phases of lattice hopping amplitudes enables
the creation of Dirac points in a square lattice [21,26–29],
something that has not been realized in materials. We describe
both approaches.

A. Square-lattice implementation

Our square-lattice approach is based on the geometry
proposed by Liu et al. [21] to study the anomalous quantum
Hall effect. Consider noninteracting fermions in an square
optical lattice with nearest neighbor hopping t and lattice
spacing l. We add to the hopping amplitude a set of phases
such that

H = −
∑
jk

tjkψ
†
j ψk;

tjk = t {yj = yk}(horizontal hop), (9)

= it−1xj +yj {yj �= yk}(vertical hop).
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The operators ψj and ψ
†
j destroy or create a fermion at site

j . This structure is mathematically identical to a constant
magnetic field with flux density π (or half of a fundamental
magnetic flux quantum φ0) per plaquette. This effective
magnetic field could be realized through a spatially dependent
Raman coupling to an external laser field [35–38].

To find the band structure, we break the lattice into two
sublattices R and S, depending on whether xj + yj is even or
odd (Fig. 1). The momentum space Hamiltonian can be written
as the dot product of a pair of two-component spinors through
a matrix. This matrix M has no diagonal elements because
nearest neighbor hopping always transfers a fermion between
sublattices,

HD = −2t
∑

k

{ψ†
Rk,ψ

†
Sk} · M · {ψRk,ψSk},

(10)

M =
(

0 cos kxl + i cos kyl

cos kxl − i cos kyl 0

)
.

This Hamiltonian produces a Dirac cone dispersion about
the four K points K±± = {±π/2l, ± π/2l}. Only two of
these points (K++ and K+−) are distinct; the others are
related to them by symmetry. We predominantly focus on

K++ = π/2l {1,1} = K and let k = K + p; the structure at
the other K point is the same up to the signs of the Dirac
γ matricies. With the definitions (2), small p and ψp =
{ψRp,ψSp}, our Hamiltonian becomes

HD = 2t l
∑

p

ψ†
p

(
0 px + ipy

px − ipy 0

)
ψp

= 2t l
∑

p

ψp(γ · p)ψp, (11)

We now add a gauge field to the theory by introducing three
species of lattice bosons. One of the three boson species (a0)
lives on the same lattice as the fermions, and the other two
(a1 and a2) occupy interpenetrating square lattices as shown in
Fig. 1. If the interaction between the bosons and fermions
is repulsive, the presence of a1 bosons between a pair of
neighboring fermion lattice sites acts as an effective potential
barrier that reduces the hopping amplitude between the two
sites. Similarly, the presence of the fermions will modulate
the boson hopping and lead to a nearest neighbor repulsion
term between bosons and fermions. The total Hamiltonian
incorporating all of these effects is

{x ∈ Lf , yb=1,2 ∈ Lb=1,2}
H = −t

∑
x,s

ψ
†
R/SxψS/Rx±se

iφx,s +
∑
b;k

εbka
†
bkabk +

∑
x;b

Vb

2
nbyb

(nbyb
− 1) + g0

∑
x

ψ†
xψxn0x

+
∑

b=1,2;x,s

gbψ
†
R/SxψS/Rx±snbyb=x± s

2
+

∑
b;x

gbnbyb
ψ

†
R/SxψR/Sx +

∑
b=1,2;y

g′
ba

†
byb±2sabyb

ψ
†
R/Sx=yb± s

2
ψR/Sx=yb± s

2
. (12)

The sum over b is over boson flavors (either 0, 1, 2 or 1,
2 as specified), and the vector s joins nearest neighbors and

R S

+

+ +

+

a1

a2

i

i

−i

−i

FIG. 1. (Color online) Square lattice for QED3. The fermions are
confined to the lattice sites R and S, denoted by white and black
circles. The bosons sit on the red triangles and blue squares denoted
by α1 and α2. Overall phases for fermion hopping are labeled in the
figure.

is equal to (±lx̂,0),(0, ± lŷ), where, as previously defined,
l is the lattice spacing. Lf is the fermion lattice, and Lb

is the lattice associated with species b. The operator nby
measures the density of ab particles at y. From left to right,
the terms on the first line are the fermion hopping term, the
boson kinetic terms εbk (which include the boson chemical
potentials), the weak repulsive contact interaction Vb between
bosons, and the local repulsion between fermions and the a0

bosons. The terms on the second line are the boson mediation
of fermion hopping, nearest neighbor Bose-Fermi repulsion,
and fermion mediation of boson hopping. We assume that
there are no direct interactions between bosons of different
species as they are spatially separated. The gb are the effective
interactions between the bosons and fermions, which can be
tuned by manipulating the optical potential depth or through
Feshbach resonances and are calculated from the overlap of
the neighboring Wannier functions [39]. For simplicity, we
assume that gb = g′

b, a situation that we expect can be reached
through appropriate fine-tuning. In the tight-binding limit, next
nearest neighbor hopping and any additional interactions are
vanishingly small. The last two terms in Eq. (12) can lead
to unwanted terms in our low-energy action. As calculated
below, their contributions cancel each other if the b = 1,2
bosons are condensed about K = {π/2l,π/2l}. This can be
engineered, for example, by using the techniques of Ref. [36]
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to introduce phases on the hopping matrix elements. Under
these conditions,

εb=1,2k = +2tb=1,2

(
cos

kx

2l
+ cos

ky

2l
− µb

)
,

(13)

ε0k = −2t0

(
cos

kx

l
+ cos

ky

l

)
− µ0,

where the tb are positive numbers parametrizing the boson
hopping. We now show that, with appropriate choices for the
various parameters, the low-energy excitations of Eq. (12) are
exactly those of QED3.

We first assume that the temperature is low enough that all
of the boson fields have condensed; if this is the case, we can
expand the Bose operators around the condensate expectation
values, dropping terms that are quadratic or higher in boson
fluctuations. For example, if b = 1,2,

nbx = nb + √
nb(−1)x+y (̂a†

bx + âbx) + O

(
1

n

)
≡ nb + √

nb(−1)x+yGbx, (14)

where âbx = abx − √
nb. To treat the bosons’ self-interactions

and vacuum expectation value, we perform a Bogoliubov
transformation [40]. For a given species, this process gives

Hb =
∑

k

Ebkα
†
bkαbk, Ebk =

√
εbk(εbk + 2nbVb),

âbk = ubkαbk − vbkα
†
b−k.

Here, ubk and vbk are real constants satisfying u2
k − v2

k = 1,

ubk =
√

εbk + nbVb

Ebk
+ 1

2
, vbk = −

√
εbk + nbVb

Ekb

− 1

2
.

(15)

Furthermore, at low momenta these coherence factors simplify,

lim
k→0

uk = − lim
k→0

vk =
√

nV/Ek, (16)

allowing us to use the low-energy approximation

Gbk ≈ 2

√
nb

V

Ek
[αbk + α

†
b−k]. (17)

The “speed of light” for these bosons is vb = √
nbVb/mb. We

tune the tb so that the Fermi velocity vF matches each of the
three vb.

Now consider the first term on the second line of Eq. (12).
Expanding the fields in momentum space and summing over
k and b yields∑

b=1,2;x

gbψ
†
R/SxψS/Rx±lnbx±lb/2

= +
∑

b=1,2,k,p,q

√
nbgb(Gbkψ

†
pγbψq)δk+p−q

+
∑

b=1,2;k

gbnb(ψ
†
kγbψk) + O

(
1

n
,lk,lp,lq

)
. (18)

Here, the momenta in G and ψ are expanded about
{π/2l,π/2l} and K, respectively. Similarly, the local repulsion
term adds two terms of the form

g0

∑
x

ψ†
xψxn0x = n0g0

∑
k

ψkγ0ψk

+ g0
√

n0

∑
k,p,q

(G0kψ
†
pγ0ψq)δk+p−q

+O

(
1

n
,lk,lp,lq

)
. (19)

We can account for the remaining two terms on the second
line of (12) through a similar expansion. Assuming that gb =
g′

b, we find that with our choice of boson dispersion (with a
minimum at {π/2l,π/2l}) these two terms precisely cancel
each other to lowest order in k. No such cancellation occurs
if the bosons are condensed about k = 0. The resulting low-
energy theory is

H = vF

∑
k

ψkγ · kψk +
2∑

b=0

∑
k

ωkα
†
bkαbk

+
2∑

b=0

∑
k,p

gb(
√

nbGbk + nb)ψpγbψk+p

+O

(
1

n
,lk,lp,lq

)
. (20)

Comparing Gbk in (17) to the canonical quantization of the
gauge field A in (7) leads us to write

Gbx = 2
√

2nbVbAbx. (21)

Provided that vb = √
nbVb/mb = vF and 2nb

√
2Vbgb = e for

all three boson species, we finally see that (20) reduces to (6)
with the addition of a constant shift of the gauge

ψγµAµψ → ψγµ(Aµ + Bµ)ψ, Bµ = 1√
Vb

. (22)

This constant shift has no effect on the overall physics of the
theory and simply shifts the location of the Dirac points in k
space.

For K40 fermions and Rb87 fermions with a lattice depth of
4ER (where ER is the recoil energy) for each lattice, an average
boson density of unity, and a Bose-Fermi scattering length
of −177a0 [41], the coupling constant e (in units of square
root temperature) is approximately 2 nK1/2. This value can
be tuned considerably through Feshbach resonances, optical-
lattice tuning, and adjusting the boson filling.

B. Honeycomb lattice

Our theory can also be realized on a honeycomb optical
lattice [15–20]. Assume that the spacing between vertices in
the hexagons is l. The basis vectors δ connecting a pair of
nearest neighbor sites are

δ1 =
( −l√

3
,0

)
, δ2 =

(
l

2
√

3
, − l

2

)
, δ3 =

(
l

2
√

3
,
l

2

)
.

(23)
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After dividing the lattice into two triangular sublattices R and
S (see Fig. 2), we arrive at the fermion hopping Hamiltonian

H = −t
∑

k

3∑
j=1

[eik·δj ψ
†
RkψSk + H.c.]. (24)

The coefficients
∑

j=1 eik·δj vanish at six points K, of which
only two are unique—the other four are related by reciprocal
lattice vectors. We choose K± = ± 2π

l
(0, 2

3 ). For small k
defined relative to one of these two K points, the Hamiltonian
is the familiar Dirac cone:

HD = t l
√

3

2
iψ−→σ · kψ. (25)

As in the previous section, ψ = {ψR,ψS} is a two-component
spinor and ψ = ψ†γ0. We again construct the gauge field by
adding three BEC fields, as shown in Fig. 2. The boson a0 sits
on the same lattice as the fermions, but a1 and a2 are instead
on the links between the fermion lattice sites. Specifically,
a1 is chosen to occupy sites separated by δ1 and δ2, and a2

occupies sites separated by δ1 and δ3. This structure breaks the
C6 symmetry of the lattice, but if the coefficients are chosen
properly, the low-energy theory will be rotationally invariant.
As in the square-lattice case, we require that the hopping matrix
elements for b1 and b2 to be opposite in sign to those of b0.
This will again allow the unwanted nearest neighbor repulsion
and fermion mediation of boson hopping to cancel each other.
Ignoring these terms, we are left with

Hint =
∑

x

[
gδ1ψ

†
RxψSx+δ1

(
n1x+ δ1

2
+ n2x+ δ1

2

) + gδ2ψ
†
RxψSx+δ2n1x δ2

2
+ gδ3ψ

†
RxψSx+δ3n2x δ3

2
+ H.c.

]
. (26)

The couplings g are determined from the fermion-boson
scattering amplitudes and from the geometric position of the
bosons relative to the fermion lattice sites.1 Repeating the steps
in Eqs. (14)–(20) and setting

gδ2 = gδ3 = g,gδ1 = 1
2 (1 +

√
3)g (27)

yields the QED Hamiltonian (6) with an effective charge e =
2
√

3V ng and a speed of light vF = t l
√

3/2.

1For example, one could reduce these amplitudes by staggering
some of the boson lattice sites in the z direction out of the plane.

a1

a2

(a1, a2)

FIG. 2. (Color online) Honeycomb optical lattice for QED3.
The fermions and a0 bosons sit on the vertices of the honeycomb
lattice (in black). The two other boson species a1 and a2 are
on the interpenetrating orthorhombic lattices (a1 bosons are confined
to the blue squares, a2 bosons are confined to the red triangle), and
the green circles indicate sites shared by the two lattices. The hopping
parameters of these lattices can be tuned so that the low-energy
dispersion εk is simply k2/2m∗ for each of the three species.

IV. EXPERIMENTAL PROBES OF QED3

The successful realization of our QED3 simulator in
an optical lattice would allow for a number of interesting
experiments to study the properties of QED3. In this section,
we outline three of these properties and propose experiments
to measure them. (A) We describe the consequences of real and
virtual photon polarizations. (B) At low temperatures, massless
QED3 undergoes a phase transition to massive fermions. In
our simulator, this phase transition leads to a spontaneous
charge density wave, and we outline probes of this charge
density wave order. (C) We describe an experiment which
generates a topological photon mass (Maxwell-Chern-Simons
electrodynamics), an effect only possible in 2 + 1 dimensions.
We demonstrate how an alteration of the fermion lattice could
lead to such a term and show how it could be measured
through two-photon Bragg scattering or rf spectroscopy. (D)
Finally, we discuss the stability of QED3 against experimental
inhomogenieties and perturbations, and demonstrate that
perturbations which preserve the emergent Lorentz and gauge
symmetries can be ignored.

A. Physical and virtual photons

An important property of QED3 is the fact that there is only
a single physical polarization for the photon. This means that
in any experiment neither timelike nor longitudinal photons
can be created or destroyed. Consequently, in our emulation
of QED3, no perturbation of the fermions will produce these
“unphysical” photons. This is a dramatic observable, and one
which could be studied through the introduction of optical
perturbations which act on the fermions but which would
leave the bosons unchanged in the absence of the Fermi-Bose
interaction.

B. Spontaneous symmetry breaking and density wave order

At sufficiently low temperatures, thermal QED3 is expected
to undergo a phase transition to a state with broken chiral
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symmetry and a finite fermion mass [2–7,42–44]. Chiral
symmetry relates the two Dirac points of our lattice model,
and as we show below, chiral symmetry breaking on our
square lattice corresponds to a commensurate {π,π} charge
density wave. A number of experimental techniques have been
developed to measure density waves in optical lattices. Chief
among these is light scattering [45], a cold-atom analog of the
Bragg scattering of x rays or neutrons in solid-state materials.
Alternately, the density wave order could be detected through
in situ imaging of the cloud density [46].

To understand the origin of chiral symmetry breaking and its
subsequent manifestation as a density wave order, we must first
define the chiral symmetry itself. We choose a new notation
to combine the fermions at the two Dirac points into a single
four-component Dirac spinor. Defining k = K± + p, we write

H = iψ(
 · p),ψ,

ψp = {ψRK++p,ψSK++p,ψRK−+p,ψSK−+p},


0 =
(

σz 0
0 σz

)
, 
x =

(
σx 0
0 σx

)
, (28)


y =
(

σy 0
0 −σy

)
.

The photon coupling becomes eψ
µAµψ , and we have simply
obtained a larger representation of the Dirac algebra. This
theory is invariant under transformations of the form

ψ → exp (iε1C1) exp (iε2C2)ψ, (29)

for any real constants ε1 and ε2 and 4 × 4 chiral matricies C1

and C2 defined by

C1 =
(

0 σy

σy 0

)
, C2 = i

(
0 −σy

σy 0

)
. (30)

These matrices anticommute with each other and with all
three 
 matrices. They are the generators of a symmetry
transformation that simultaneously flips between the two
sublattices and the two K± points.

As described in detail in [2–7,42–44], the vacuum structure
of (naively massless) QED3 at low temperature is nontrivial
and spontaneously breaks this symmetry. This manifests as a
vacuum expectation value 〈∑k ψ̄kψk〉 �= 0. In the variables of
our real-space lattice, this order parameter is a charge density
wave of the form〈∑

k

ψ̄kψk

〉
=

∑
x∈LS

ψ
†
SxψSx −

∑
x∈LR

ψ
†
RxψRx, (31)

where R and S are the two fermionic sublattices. As previously
emphasized, this order can be observed using light scattering
or through single-site imaging of the fermions. Unfortunately,
the transition temperature for this spontaneous symmetry
breaking is Tc ∼ 10−2e2 [6,47]. Using our previous estimate
e ∼ 3 (nK)1/2, we find that Tc ∼ 100 pK is beyond the reach
of current experiments. However, the Bose-Fermi interaction
could potentially be increased through Feshbach resonances,
pushing Tc to higher values.

C. Construction and probes of a topological photon mass

For many reasons, electrodynamics in 2 + 1 dimensions
is richer than its (3 + 1)-dimensional manifestation. One of
the most dramatic effects of this dimensional reduction is the
possibility of a topological photon mass, or Chern-Simons
term [1–3,48–50], which both alters the structure of gauge
invariance in the theory and opens an excitation gap to the
creation of photons. Below, we describe how to generate this
term through the addition of next nearest neighbor hopping to
the fermions and suggest probes to detect the resulting photon
mass.

In 2 + 1 dimensions, there are two linearly independent,
Lorentz-invariant terms which lead to a massive fermion
dispersion relation ω =

√
v2

F k2 + m2
0 + m2

c ,

Hm = m
∑

k

ψkψk, HC = imC

∑
k

ψkC1C2ψk. (32)

The first, Hm, breaks chiral symmetry and can be experimen-
tally engineered by introducing a superlattice potential. In
terms of the original fermionic sublattices R and S, we can
write Hm as

Hm = m

[ ∑
x∈LS

ψ
†
SxψSx −

∑
x∈LR

ψ
†
RxψRx

]
. (33)

This term leaves the photon modes qualitatively unchanged
and, as explained in the previous section, generates an
experimentally measurable density wave.

The chiral mass term HC is more interesting, as it has
dramatic consequences for the photons. In the presence of
chiral-massive fermions, the resummation of one-loop cor-
rections to the photon propagator introduces a Chern-Simons
term [1] in the action of the form

LCS = �

4
AβFαγ εαβγ , (34)

with � ∼ mC . This term is not found in (3 + 1)-dimensional
theories. Further, there is no transition temperature above
which � = 0 (although the value of � does tend to decrease
with increasing T ), making it more experimentally accessible
than the chiral symmetry breaking of the previous section.
Within the Feynman gauge, the Chern-Simons term (34) yields
a modified photon propagator:

DAµν = −1

p2 + |�|2
(

δµν − pµpν − i�εµναpα

p2

)
− pµpν

p4

(35)

with a photon mass gap |�|. The action LCS is only gauge
invariant up to a boundary term, reducing the symmetry of
the system to a subset of all possible gauge transformations.
The properties of QED3 with a chiral mass term are therefore
sensitive to the topology of the (2 + 1)-dimensional space.

Surprisingly, the requisite chiral fermion mass is straight-
forward to implement. In terms of the two sublattice fermion
operators, the chiral mass term HC is

HC = mC

∑
p

(ψ†
RK++pψRK++p − ψ

†
SK++pψSK++p

−ψ
†
RK−+pψRK−+p + ψ

†
SK−+pψSK−+p). (36)
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R S

--

-- +

+

+

+

FIG. 3. Hopping terms that lead to a chiral mass HC . The phase
factors of (±1) are labeled in the figure; the phase of a hopping term
changes sign when rotated by π/4 and between sublattices R and S

for the same direction. These phases correspond to a virtual magnetic
flux of π per plaquette (half a flux quantum). Since this virtual flux
was already introduced to create the Dirac fermions, a chiral mass
could be introduced simply through allowing next nearest neighbor
hopping.

HC is invariant under a transformation which simultaneously
switches the two sublattices and rotates between the two
K points but is not invariant under either transformation
individually. The simplest perturbation which obeys this
symmetry is a next nearest neighbor hopping term with
direction-dependent phases, shown in Fig. 3. The Hamiltonian
for this term is

HNNN = mC

4

∑
x,j

(−1)x+y(−1)jψ†
R/SxψR/Sx+sj

, (37)

where the four sj vectors join a site and its next nearest
neighbors. The phases of these hopping terms change sign
under a π/4 rotation and between the two sublattices R and S.
Such hopping phases are natural in our model, Eq. (12), where
the fermions experience an effective magnetic flux of π per
plaquette: The phases correspond to a flux of π/2 through each
triangular half-plaquette. To lowest order in p, HNNN reduces
to HC . Tuning the lattice to allow nearest neighbor hopping
would therefore introduce a chiral mass gap into the model.

Engineering this chiral mass in our optical lattice would
allow us to study Maxwell-Chern-Simons electrodynamics
[1–3,48–50]. As seen in Eq. (35), there will be a gap in the
photon spectrum. Since the photon in our model can be iden-
tified with excitations about a BEC, this photon mass implies
the existence of a neutral Bose condensate with a gapped
spectrum. This unusual spectral feature could be detected
through rf spectroscopy [51] or through its thermodynamic
consequences. The most effective probe, however, would
likely be two-photon Bragg scattering [52–54]. This technique
has been used to probe the dispersion εk and coherence factors
of the Bogoliubov quasiparticles of a BEC and thus would be
able to directly measure the photon mass gap.

Another interesting property of the chiral fermion mass is
its potential relationship to phenomena in theories of high-
temperature superconductivity. Given that p in Eq. (36) is
small compared to K±, one can write, in terms of the d-density
wave operator �,

Hc � 2mc

∑
R,S

ψ
†
R/Sk+{π/l,π/l}ψR/Sk sin 2θk = 2mc�, (38)

FIG. 4. The signs of the hopping amplitudes in Eq. (39) for a
given sublattice in the honeycomb lattice. All signs are reversed for
hopping within the other sublattice. Properly implemented, this term
yields a chiral mass and will create gaps in the spectra of the three
BEC fields.

where tan(θk) = ky/kx . Several authors, including
Chakravarty et al. [55], have proposed that such d-density wave
order plays a role in the pseudogap phase of high-temperature
superconductors.

Connection to the Haldane model. On the honeycomb
lattice, the hopping term, analogous to Eq. (37) and leading to
a chiral mass (Fig. 4), is

−i
mC

4

j=6∑
k,j=1

(−1)j (ψ†
Rrk

ψRrk+rj
− ψ

†
Srk

ψSrk+rj
). (39)

The sum on k runs over all lattice sites in a given sublattice,
and rj are the six vectors which join a site and its next nearest
neighbors. This construction is analogous to the Haldane
model [56] for realizing conductance quantization in the
absence of an external magnetic field in a honeycomb lattice.
The contribution to the low-energy theory from this mass is the
same as in the square lattice. In an experiment, the appropriate
phases could be engineered through the use of light-assisted
hopping, allowing the hopping elements to pick up local phases
from an external laser beam [38].

D. Robustness

An important issue with our proposal is that of stability:
How robust is our construction against symmetry-breaking
perturbations? Inevitably, any realization of QED through this
or a similar scheme must contend with anisotropies in the
couplings, unequal or anisotropic Fermi and Bose velocities,
and residual interactions which violate our emergent gauge
invariance. Further, we have ignored the effect of the harmonic
trapping potential required to confine the atoms; the long-
ranged forces of QED could be disrupted if the trap were not
shallow (although recent work has shown that stability of the
Dirac points themselves are robust; see, for example [57,58]).

These are difficult issues, and we are unable at this point
to quantify all of them. Each of these effects would have
to be treated in detail, and their importance will inevitably
hinge on technical details in the experiment. Some particular
perturbations have been studied. For example, we have already
seen that at low temperatures, QED3 is unstable toward
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spontaneous chiral symmetry breaking. Near the transition
temperature, small perturbations which break chiral symmetry
can be quite important. Other perturbations are less destructive:
For example, Vafek et al. [59] showed that anisotropy in
the Fermi velocity is an renormalization group-irrelevant
perturbation at low energies.

We do have some additional knowledge of the robust-
ness of this model against Lorentz-invariant perturbations.
Through a simple power counting, we argue that any generic
Lorentz-invariant perturbation will have a vanishingly small
contribution to the low-energy physics of our system. For this
argument, we work in units with the dimensionality [energy] =
[momentum] = [length]−1 = [time]−1 and label any quantity
by the number of powers of energy that make it up. For
example, energy will have dimension +1 and length dimension
−1. By noting that the action must be dimensionless, the
dimensionality of ψ is 1, and A is 1/2. According to the
standard Wilsonian RG argument [30], only coupling constants
with non-negative dimension will contribute to the low-energy
physics. For example, mass terms and the gauge coupling e are

relevant perturbations. Along with the Chern-Simons term and
the fermion masses, the terms in the QED3 action (1) are the
only relevant and marginal operators consistent with Lorentz
and gauge symmetries that can be constructed from ψ and A

fields.

V. (1 + 1)-DIMENSIONAL OPTICAL-LATTICE QED

We now discuss the (1 + 1)-dimensional analog to the
model discussed in Secs. II and III.

The Feynman-gauge Hamiltonian for (1 + 1)-dimensional
QED (QED2) is

H =
∑

k

ψγ1(vF k + eA1)ψ + 1

2
∂µAν∂µAν, (40)

where ψ is a two-component fermionic spinor, Aν are
bosonic fields, ν = 0,1, and γ1 = σy . Following our previous
arguments, one would expect this to be emulated by the
(1 + 1)-dimensional generalization of our planar Hamiltonian
(12),

{x ∈ Lf ,y ∈ Lb}
H = −t

∑
x

ψ
†
R/S↓x±lψS/R↓x + g0

∑
x

ψ
†
R/S↓xψR/S↓xn0x + g′′

1

∑
x

ψ
†
R/S↓x±lψS/R↓xn1y=x±l/2 +

∑
b=0,1;k

εbknbk

+
∑

b=0,1;x

Vb

2
nbx/y(nbx/y − 1) + g′

1

∑
〈yx〉

a
†
1y + 2lay(ψ†

SxψSx +ψ
†
Rx+lψRx+l) + H.c. + g′′

1

∑
〈xy〉

ψ
†
R/SxψR/Sxn1y=x±l/2. (41)

The lattice for this model is shown in Fig. 5. Here, the x

represent fermion lattice sites (Lf ), and the y represent the
boson lattice sites (Lb) associated with every other bond
between fermion lattice sites. εbk is the boson kinetic term
and chemical potential, and it has a minimum at K = π/2l.
Bosons of species a0 are confined to the fermion lattice sites,
and bosons of species a1 occupy the y sites.

Unfortunately, the Hamiltonian in Eq. (41) does not yield
QED2. While this Hamiltonian trivially has fermions with
a Dirac dispersion, the boson-mediated fermion hopping term
does not lead to a Bose-Fermi coupling of the form in Eq. (40).
Instead, the resulting coupling, eψA1γ2ψ , has an erroneous
extra phase factor of eiπ/2 and violates Lorentz invarience.
This same phase factor was also found in the two-dimensional
(2D) case, but there it was benign: it simply meant that Ax

is produced by bosons on the y bonds, and Ay is produced
by bosons on the x bonds. In the one-dimensional (1D)
case, however, we cannot make such a relabeling (since no

↑↑

R ↓R ↓ S ↓S ↓
{ψ, a0}

a1

FIG. 5. (Color online) Lattice for the 1D theory, with sublattices
labeled by spin and by the particles that inhabit them. Bold lines
represent ordinary hopping terms and dashed lines indicate hopping
facilitated by optical transitions, as described in the text.

γ2 matrix appears in the fermion kinetic term). We can fix
Eq. (41) by implementing additional phase factors into the
mediated hopping matrix elements. Conceptually, the best way
to implement these phases is to work in a larger space, allowing
the fermions to hop onto the y sites, with a total energy
cost of U relative to the x sites. Using the techniques from
[21,23,36,38], one can engineer a spatially dependent phase
on the hopping matrix elements and produce a Hamiltonian,

{x ∈ Lf ,y ∈ Lb}
H = −t

∑
x

ψ
†
R/S↓x±lψS/R↓x + U

∑
x

ψ
†
↑yψ↑y

+ g0

∑
x

ψ
†
R/S↓xψR/S↓xn0x + g1

∑
x

ψ
†
↑yψ↑yn1y

+
∑

b=0,1;k

εbknbk +
∑

b=0,1;x

Vb

2
nbx/y(nbx/y − 1) + g′

1

×
∑
〈yx〉

a
†
1y+2lay(ψ†

SxψSx + ψ
†
Rx+lψRx+l) + H.c. + Hmed

(42)

Hmed = ωt

∑
〈xy〉

eiQxψ
†
↑yψR/S↓x + H.c. (43)

Here ωte
iQx is the matrix element for a fermion to hop onto a

boson site, with Q = π/2l, and U is the onsite energy. Working
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to lowest nontrivial order in ωt/U , we integrate out the y sites,
obtaining

Hmed = ω2
t

U

∑
x

[
(ψ†

Rx+lψSxe
iQx + ψ

†
SxψRx+le

−iQx)

×
(

1 + g1

U
n1y

)
+ ψ

†
R/SxψR/S

(
1 + g1

U
n1y

)]
, (44)

which gives the desired low-energy Hamiltonian.

VI. 3 + 1 DIMENSIONS

Full (3 + 1)-dimensional QED can be simulated by com-
bining the schemes which we have presented for one and two
dimensions. We work with a cubic lattice formed by layering
the 2D square lattice of Sec. III, with lattice spacing lz between
each layer. Each 2D layer is the same as the lattice of Sec. III,
containing three bosons and one fermion distributed between
the various sublattices. Between the layers we add a fourth
boson species a3, which occupies the space between every
other layer and can only interact with the fermions through a
light-assisted transition as in the 1D case. We then implement
additional phases to change the sign of the hopping amplitudes
tz between planes; we choose the phases such that vertical
hopping between sites on the R sublattice gets no additional
phase but z-directional hopping matrix elements between sites
on the S sublattices are opposite in sign. We ignore any vertical
hopping beyond nearest neighbors. Under those conditions,
our free particle Hamiltonian is

H = −2
∑

k

ψ
†
kMψk,

(45)

M =
(

tz cos kzlz t cos kxl + it cos kyl

t cos kxl − it cos kyl −tz cos kzlz

)
.

This Hamiltonian exhibits eight Dirac points, located at
k = π {±1/2l, ± 1/2l, ± 1/2lz}, though many of these are
degenerate. We can obtain the necessary bispinor represen-
tation by simply combining pairs of them; for example, the
combination of K = π {1/2l,1/2l,1/2lz} and −K yields the
following representation for the Lorentz group:


0 =
(

0 12×2

12×2 0

)
, 
j = i

(
0 σj

−σj 0

)
. (46)

The Az component of the gauge field is derived from the
a3 bosons in the same manner as in Sec. V. Other than
ensuring that the sign flips between sublattices are preserved

when adding the gauge interaction, the derivation is essentially
unchanged.

VII. SUMMARY AND OUTLOOK

We have proposed a number of experiments involving
neutral atoms in optical lattices which will emulate the
properties of relativistic quantum electrodynamics. These
models are technically very difficult to realize, requiring a large
number of lasers and atomic species that all must be fine-tuned
to produce the desired behavior. However, the necessary
technologies (optically induced phases, interpenetrating spin-
dependent lattices, and tunable Bose-Fermi mixtures) for our
model have all been separately realized in recent experiments.
Further, as a weakly coupled route from a lattice model to a
Lorentz-invariant thermodynamical gauge theory, the scheme
we have proposed here is also of significant theoretical interest.

Finally, it would be interesting to establish whether this
scheme could be extended to simulate more complicated gauge
theories, such as non-Abelian theories or perturbative gravity.
Given the importance of these theories in high-energy physics,
a method for simulating them in cold atoms would be a very
significant development. The difficulty of this process should
not be underestimated. These theories intrinsically have a very
large number of degrees of freedom; in 2 + 1 dimensions, an
SU(2) theory has nine gauge boson modes (three components
of space-time with three SU(2) generators associated with
each), and an SU(3) theory has twenty-four! Further, non-
Abelian gauge theories have boson self-interactions that must
be finely tuned to avoid breaking gauge invariance. Worse
yet, the gauge fields exhibit ghostlike degrees of freedom
with negative norm. Accounting for all of these effects in
any scheme would be a daunting challenge. Nonetheless,
quantum simulation of non-Abelian dynamical gauge theories
is a fascinating prospect, and the theory we have described
here could be an important first step in that direction.
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Nature (London) 462, 74 (2009).
[47] M. He, H. T. Feng, W. M. Sun, and H. S. Zong, Mod. Phys. Lett.

A 22, 449 (2007).
[48] S. Coleman and B. Hill, Phys. Lett. 159, 184 (1985).
[49] Y. Hoshino and T. Matsuyama, Phys. Lett. B 222, 493 (1989).
[50] B. M. Pimentel, A. T. Suzuki, and J. L. Tomazelli, Int. J. Theor.

Phys. 33, 2199 (1994).
[51] G. K. Campbell et al., Science 313, 649 (2006).
[52] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn,

D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569
(1999).

[53] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys. Rev.
Lett. 88, 120407 (2002).

[54] R. Ozeri, N. Katz, J. Steinhauser, and N. Davidson, Rev. Mod.
Phys. 77, 187 (2005).

[55] S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phys.
Rev. B 63, 094503 (2001).

[56] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[57] J. K. Block and N. Nygaard, Phys. Rev. A 81, 053421 (2010).
[58] L. H. Haddad and L. D. Carr, e-print arXiv:1006.3893.
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