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We study the effects of an external periodic potential on the critical velocity of a superfluid Fermi gas in
the crossover between the Bardeen-Cooper-Schrieffer (BCS) phase and Bose-Einstein condensation (BEC). We
numerically solve the Bogoliubov–de Gennes equations to model a three-dimensional gas of ultracold atoms
in the superfluid phase flowing through a one-dimensional optical lattice. We find that when the recoil energy
is comparable to the Fermi energy, the presence of the periodic potential reduces the effect of pair-breaking
excitations. This behavior is a consequence of the peculiar band structure of the quasiparticle energy spectrum
in the lattice. When the lattice height is much larger than the Fermi energy, the periodic potential makes pairs of
atoms to be strongly bound, even in the BCS regime, and pair-breaking excitations are further suppressed. We
have also found that when the recoil energy is comparable to or larger than the Fermi energy, the critical velocity
due to long-wavelength phonon excitations shows a nonmonotonic behavior along the BCS-BEC crossover.
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I. INTRODUCTION

Ultracold atom gases in optical lattices have been continu-
ously attracting great interest for the last 10 years [1–3]. Recent
developments in the field of ultracold atom gases provide a
new research arena in the physics of quantum fluids: by using
Feshbach resonances of ultracold Fermi atoms, one can study
the crossover from the Bardeen-Cooper-Schrieffer (BCS)
phase to a Bose-Einstein condensate (BEC) of molecules [4].
In the current research frontier, superfluidity of ultracold Fermi
gases in optical lattices is a very intriguing problem which
has interesting connections with similar issues in solid-state
physics, nuclear physics, and astrophysics.

The critical velocity of superflow due to energetic instability
is one of the most important properties of superfluids, an
area of research pioneered by Landau [5]. If the velocity of
superflow exceeds some critical value, the kinetic energy of
the superfluid can be dissipated by creating excitations [5–8].
In uniform superfluid Fermi gases in the BCS-BEC crossover,
excitations which cause the energetic instability are of two
types: fermionic pair-breaking excitations in the BCS regime
and long-wavelength phonon excitations in the BEC regime
[9,10]. In the unitary regime both mechanisms are suppressed
and the critical velocity shows a maximum value [9–11].

Recently, the effects of periodic potentials on the critical
velocity of Fermi superfluids have been studied experimentally
[12]. This experiment has stimulated theoretical investigations
of this problem [13–16]. Most of them have focused on the
BCS regime in tight-binding approximation [13–15]. The
purpose of the present work is to obtain an understanding
of the critical velocity from a unified point of view covering
all regions along the BCS-BEC crossover and both the
strong and weak lattice regime. To this purpose, we use
the Bogoliubov–de Gennes (BdG) equations. This theory
accounts for both types of excitations which are relevant in
this problem. In our previous work [16] we used it for a gas at

unitarity; here we extend the calculations in order to explore
the whole crossover region. As a main result, we find that
when the lattice height is comparable to or much larger than
the Fermi energy, the periodic potential reduces the effect of
pair-breaking excitations. This is due to the periodic structure
of the quasiparticle energy spectrum in the Brillouin zone
and the formation of the bound molecules induced by the
lattice. Another main result is that when the recoil energy is
comparable to or larger than the Fermi energy, the critical
velocity due to long-wavelength phonon excitations shows a
nonmonotonic behavior along the BCS-BEC crossover. These
effects are unique for Fermi superfluids in periodic potentials
and do not exist in the case of single barrier potentials [16–18].

This paper is organized as follows. In Sec. II we explain
the basic formalism employed in the present work, and we
show the results in Sec. III. Finally, a summary and outlook
are given in Sec. IV.

II. BASIC FORMALISM

We want to study the effect of the periodic potential on
the Landau critical velocity of Fermi superfluids in the whole
BCS-BEC crossover in situations where the Fermi energy is
larger or smaller than the lattice height. Toward this end, we
need to use a theoretical framework which can account for
the formation of bound molecules induced by the periodic
potential, which is important when the lattice height is larger
than the Fermi energy [19,20]; the same formalism must also
account for pair-tunneling processes, which are important on
the BEC side of the resonance [20,21]. A suitable approach
consists of the numerical solution of the BdG equations [22]:(

H ′(r) �(r)
�∗(r) −H ′(r)

) (
ui(r)
vi(r)

)
= εi

(
ui(r)
vi(r)

)
, (1)

where ui and vi are quasiparticle amplitudes and εi the
corresponding eigenenergies. The single-particle Hamiltonian

033621-11050-2947/2011/83(3)/033621(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.033621


WATANABE, DALFOVO, PITAEVSKII, AND STRINGARI PHYSICAL REVIEW A 83, 033621 (2011)

is H ′(r) = −h̄2∇2/2m + Vext − µ, where m is the atom mass
and Vext(r) is the external potential. The order parameter (or
gap parameter) �(r) and the chemical potential µ, appearing
in Eq. (1), are variational parameters determined from the gap
equation,

�(r) = −g
∑

i

ui(r)v∗
i (r), (2)

together with the constraint

n0 = 2

V

∑
i

∫
|vi(r)|2 dr, (3)

enforcing the conservation of the average density n0. Here
g is the coupling constant for the contact interaction and V

is the volume of the system. The BdG eigenfunctions obey
the normalization condition

∫
d3r[u∗

i (r)uj (r) + v∗
i (r)vj (r)] =

δi,j . Finally, the energy density e can be calculated as

e = 1

V

∫
dr

∑
i

[2(µ − εi)|vi(r)|2 + �∗(r)ui(r)v∗
i (r)]. (4)

In the present study we consider a three-dimensional (3D)
superfluid Fermi gas which is uniform in the x and y directions
and subject to a one-dimensional (1D) optical lattice along z:

Vext(z) = sER sin2 qBz ≡ V0 sin2 qBz . (5)

Here V0 ≡ sER is the lattice height, s is the laser intensity
in dimensionless units, ER = h̄2q2

B/2m is the recoil energy,
qB = π/d is the Bragg wave vector, and d is the lattice
constant. For practical reasons, throughout this paper we set
s = 1 except for special cases, which we mention explicitly.
The ratio between the Fermi energy and the lattice height is
then varied by changing the average density of the gas.

In the presence of a supercurrent with wave vector Q =
P/h̄ moving in the direction of the periodic potential, one can
write the gap parameter in the form

�(r) = ei2Qz�̃(z), (6)

where �̃(z) is a complex function with period d. Therefore,
from the gap equation we see that the eigenfunctions of
Eq. (1) must have the Bloch form ui(r) = ũi(z)eiQzeik·r and
vi(r) = ṽi(z)e−iQzeik·r. The wave vector kz lies in the first
Brillouin zone, and ũi and ṽi are periodic in z with period d. We
also define the quasimomentum Pedge and quasiwavenumber
Qedge at the edge of the Brillouin zone as Pedge = h̄Qedge ≡
h̄qB/2. This Bloch decomposition transforms Eq. (1) into the
following BdG equations for ũi and ṽi :(

H̃ ′
Q(z) �̃(z)

�̃∗(z) −H̃ ′
−Q(z)

)(
ũi(z)
ṽi(z)

)
= εi

(
ũi(z)
ṽi(z)

)
, (7)

where

H̃ ′
Q(z) ≡ h̄2

2m

[
k2
x + k2

y + (−i∂z + Q + kz)
2
] + Vext(z) − µ.

(8)

Here, the label i represents the wave vector k as well as the
band index. In order to remove the ultraviolet divergences
in the BdG equations with contact potentials, we use the
regularization scheme proposed by Refs. [23,24]. Since we

need to calculate the second derivatives of the energy with
respect to the density and the quasimomentum, we use large
values of the cutoff energy EC , especially in the BEC side,
where the size of the pair is much smaller than the average
interatomic distance (details are described in Sec. III).

As discussed in Refs. [9,10], the energetic instability of
superfluids of dilute Fermi gases can be caused by two
processes [25]: the creation of long-wavelength superfluid
phonon excitations or fermionic pair-breaking excitations. The
critical velocity by the former process can be determined by
the hydrodynamic analysis of the excitations [7,16,28–30].
Starting from the continuity equation and the Euler equation
and linearizing with respect to the perturbations of the density
and the velocity fields, we obtain the dispersion relation of the
long-wavelength phonon,

ω(q) = ∂2e

∂n0∂P
q +

√
∂2e

∂n2
0

∂2e

∂P 2
|q|. (9)

Here, h̄ω and q are the energy and the wavenumber of the
excitations, and n0 and P are the average density and the
quasimomentum of the superfluids. The energetic instability
occurs when ω(q) becomes negative:

∂2e

∂n0∂P
=

√
∂2e

∂n2
0

∂2e

∂P 2
. (10)

In practice, we calculate the energy density e(n0,P ) for a
given n0 and P from Eq. (4) using the solution of the BdG
equations (7). Then the critical quasimomentum Pc at which
the energetic instability occurs is determined by Eq. (10) [31].
We finally obtain the critical velocity vc from

vc = 1

n0

(
∂e

∂P

)
Pc

. (11)

On the other hand, the critical velocity due to the pair-
breaking fermionic excitations can be determined by looking at
the quasiparticle energy spectrum εi . The energetic instability
by the pair-breaking excitations occurs when some quasipar-
ticle energy εi starts to be negative:

εi � 0. (12)

From Eq. (11), evaluated at the critical quasimomentum
determined by this condition, we obtain a critical velocity
for the pair-breaking excitations. The actual critical velocity
of the system is the lowest between the ones obtained from
the above two conditions [32]. We finally note that the gas
becomes unstable also when some excitation energy starts
to have a nonzero imaginary part. This corresponds to a
dynamical instability which causes an exponential growth of
the amplitude of the perturbation. To address the problem
of dynamical instability, short-wavelength bosonic excitations
also should be included. This is beyond the scope of the present
work, in which we instead focus on the energetic instability.
Results of the critical velocity for dynamical instability due to
long-wavelength excitations are given in the Appendix.

III. RESULTS

We study the three cases of EF/ER = 2.5, 1, and 0.1
with a fixed value of s = 1, except for a few cases which
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FIG. 1. (Color online) Density profile n(z) at P = 0 in the BCS-
BEC crossover for EF/ER = 1 and s = 1. Here, n(z) is normalized
by the average density n0.

we shall mention explicitly. Here EF = h̄2k2
F/(2m) and kF =

(3π2n0)1/3 are the Fermi energy and momentum, respectively,
of a uniform noninteracting Fermi gas of density n0. For each
value of EF/ER, we solve the BdG equations for several values
of the parameter 1/kFas along the crossover from the BCS to
the BEC side, namely, 1/kFas = −1, −0.5, 0, 0.5, and 1,
where as is the s-wave scattering length of atoms.

In the x and y directions, we assume periodic boundary
conditions with period L⊥ = 12πk−1

F . We set the cutoff energy
EC as follows: for EF/ER = 2.5, EC = 40EF in the BCS
side and EC = 100EF at unitarity and in the BEC side; for
EF/ER = 1, EC = 50EF in the BCS side and EC = 100EF at
unitarity and in the BEC side; for EF/ER = 0.1, EC = 250EF

in the BCS side, EC = 350EF at unitarity, and EC = 500EF

in the BEC side.

A. Density profiles and gap parameter

In Fig. 1 we show the density profile n(z) = 2
∑

i |ṽi(z)|2
of Fermi atoms at P = 0 along the BCS-BEC crossover for
EF/ER = 1. Moving from the BCS regime (1/kFas = −1) to
the BEC regime (1/kFas = 1), the density n(z) becomes more
inhomogeneous. This behavior is consistent with the fact that
the compressibility of a uniform Fermi gas is known to increase
monotonically with 1/kFas . We observe the same qualitative
behavior for the other values of EF/ER.

In Fig. 2 we show the amplitude |�(z)| of the order
parameter at P = 0 for different values of 1/kFas and EF/ER.
From this figure one can see that, especially in the BCS regime
(1/kFas = −1), the order parameter |�| is enhanced when the
Fermi energy is smaller than the lattice strength, as shown
by the blue curves for EF/ER = 0.1 (i.e., EF/V0 = 0.1).
We understand this fact as due to the formation of bosonic
molecules induced by the external periodic potential. This
process is indeed expected to become significant when the
lattice is strong [20].

B. Critical velocity

Before presenting the numerical results for the critical
velocity, let us discuss the conditions upon which the periodic
potential can produce significant effects on the behavior
of long-wavelength phonons and pair-breaking excitations.
For long-wavelength phonons the condition is EF/ER >∼ 1 or
s � 1. In fact, in the opposite case, EF/ER � 1 and s <∼ 11,
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FIG. 2. (Color online) Amplitude |�(z)| of the gap parameter at
P = 0 in the BCS-BEC crossover: 1/kFas = −1 (a), 0 (b), and 1 (c).
The horizontal dotted lines show the amplitude of the gap parameter
for the uniform system at the same value of 1/kFas .

the right-hand side of Eq. (10), which coincides with the sound
speed at P = 0, is much smaller than the maximum value
of the left-hand side of Eq. (10), which is of order qB/m

(see also Fig. 5 in Ref. [16]). Thus Eq. (10) is satisfied at
P 	 0 and the critical velocity is basically determined by the
sound speed at P = 0, which is also close to the sound speed
in the uniform system. Consequently, the critical velocity
due to long-wavelength phonons is almost unaffected by the
presence of the lattice if EF/ER � 1 and s <∼ 1, even though
the lattice height V0 is large compared to the Fermi energy EF.
On the other hand, the sufficient condition for pair-breaking
excitations to be affected by the periodic potential due to the
formation of bound molecules is EF/V0 � 1. This condition
can be satisfied either by decreasing EF/ER or by increasing
s. When EF/ER 	 1, the critical velocity for pair-breaking
excitations is also affected by a peculiar band structure of the
quasiparticle spectrum.

Our results for the critical velocity vc are shown in Fig. 3
for s = 1. Let us first concentrate on the results at high density,
EF/ER = 2.5, in panel (a). The open circles correspond to the
critical velocity for long-wavelength phonons, which exhibits
a nonmonotonic behavior. In particular, in the BCS regime
(negative 1/kFas) this critical velocity is strongly reduced
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FIG. 3. (Color online) Critical velocity vc of the energetic instability for EF/ER = 2.5 (a), 1 (b), and 0.1 (c) with s = 1 in the BCS-BEC
crossover. Open circles and filled squares show the critical velocity due to long-wavelength phonons and fermionic pair-breaking excitations,
respectively. The horizontal dotted line in panel (c) represents the value of the sound velocity c(0)

s of uniform system at unitarity, c(0)
s /vF =

(1 + β)1/2/
√

3 	 0.443. The red solid lines and the black dashed lines are guides to the eye.

compared to the one in a uniform gas (see, e.g., Fig. 8 in
Ref. [10]). This is a peculiar effect of the lattice. However,
for the parameters of Fig. 3(a), the actual critical velocity
in the BCS regime is still given by fermionic pair-breaking
excitations (filled squares). The latter are almost unaffected
by the lattice and therefore, the overall behavior of the critical
velocity in the crossover is qualitatively similar to that of a uni-
form gas, already discussed in Ref. [10]. Namely, in the BCS
regime vc increases when approaching unitarity (1/kFas = 0),
because the intrapair attraction becomes stronger and thus the
amplitude of the gap parameter increases; in the opposite
BEC regime (1/kFas > 0) the critical velocity is given by
long-wavelength phonons and an increase of the interpair
repulsion leads to a larger sound speed and, again, a critical
velocity vc increases toward unitarity. As a consequence, vc

takes a maximum value at 1/kFas 	 0.
When the recoil energy is comparable to the Fermi energy,

the periodic potential causes qualitative changes in the results
of the critical velocity. For EF/ER = 1 [Fig. 3(b)] we observe
that at 1/kFas = −0.5, the critical velocity is given by
long-wavelength phonon excitations rather than pair-breaking
excitations even in the BCS regime. We understand this effect
as mainly due to a peculiar band structure of the quasiparticle
energy spectrum. In Fig. 4 we show the lowest band of the
quasiparticle energy spectrum εi for the first radial branch with
k2
⊥ ≡ k2

x + k2
y = 0 at P = 0 and 1/kF a = −0.5. In general,

the quasiparticle spectrum near the center of the Brillouin zone,
at |kz| 	 0, is only weakly affected by the periodicity of the
system and hence the change of εi with increasing P is close to
that in the uniform system, given by the Doppler term Ph̄kz/m.
On the other hand, close to the zone edge, at kz 	 ±Qedge,

the change of εi with increasing P is much smaller than
Ph̄kz/m because of the periodicity of the Brillouin zone
(εi at kz = ±Qedge must be identical). In the case of EF/ER =
1, the minimum of εi is indeed located close to the edge of
the Brillouin zone, unlike the other two cases of EF/ER = 2.5
and 0.1. Therefore, the reduction of the minimum value of εi

with increasing P is relatively small for EF/ER = 1, and this
is why we find that vc is determined by phononic instead of
fermionic excitations in this case.

For smaller density (EF/ER = 0.1), we observe a signif-
icant increase of vc in the whole crossover [Fig. 3(c)]. In
our previous article [16] we showed that in a unitary Fermi
superfluid with EF/ER � 1, the phononic critical velocity is
almost unaffected by the lattice if s <∼ 1 and remains close to
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FIG. 4. (Color online) Lowest band of the quasiparticle energy
spectrum εi for P = 0 and 1/kF a = −0.5. Here, we show the first
radial branch with k2

⊥ ≡ k2
x + k2

y = 0. For EF/ER = 1, the minimum
of εi is located close to the Brillouin zone edge kz = Qedge ≡ qB/2.
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FIG. 5. (Color online) Critical current jc = n0vc for the same
cases in Fig. 3. Here we show the lowest value of jc, given either by
long-wavelength phonon excitations or by fermionic pair-breaking
excitations. The curves connecting symbols are guides to the eye.

the speed of sound of a uniform gas with the same density [33].
This can be understood by recalling that phonons always have
wavelength larger than the healing length of the superfluid,
which is the order of k−1

F or greater. When EF/ER � 1, the
healing length becomes much larger than the lattice spacing
d = π/qB, and this makes the phonons insensitive to the lattice
itself. In the present work, we find that the same is true even
away from unitarity, leading to a larger critical velocity in
the whole crossover [empty circles in Fig. 3(c)]. The critical
velocity due to pair-breaking excitations (filled squares) is also
increased because a lattice strength V0 much larger than the
Fermi energy gives a stronger attraction between paired atoms.

In Fig. 5 we show the critical current jc = n0vc for the
same cases of Fig. 3. Due to the low density at EF/ER = 0.1,
the critical current is much smaller than the other cases
even though vc in units of vB = qB/m for EF/ER = 0.1 is
comparable to that of EF/ER = 1.

C. Dependence on lattice height

All results shown in Figs. 1–5 have been obtained by fixing
the lattice height to s = 1 and varying the density in order to
change the key parameter EF/ER. If we increase s keeping the
average density fixed, the superfluid flow is suppressed and vc

is also reduced in general.
A systematic analysis as a function of s, which would be

natural from an experimental viewpoint, is computationally
very demanding and is beyond the scope of this work.
The choice of s = 1 is not accidental, however. It turns
out, in fact, that around s = 1 the effects of the lattice on
the critical velocity are the most pronounced as far as the
interplay between pair-breaking and long-wavelength bosonic
excitations is concerned. For lower values of s these two types
of excitations behave qualitatively the same as in a uniform
superfluid, as a function of 1/kF a, being scarcely affected
by the lattice, at least within the range of EF/ER considered
in this work. On the other hand, at larger s values the pair-
breaking instability is quickly suppressed and long-wavelength
excitations become dominant along the crossover.

The reason a strong lattice prevents the pair-breaking
processes can be understood by looking at Fig. 6, where we
show the quasiparticle energy spectra at various values of
P in the case of s = 5, EF/ER = 0.1 (i.e., EF/V0 = 0.02),
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FIG. 6. (Color online) Lowest band of the quasiparticle energy
spectrum εi for large lattice height with s = 5 and EF/ER = 0.1 (i.e.,
EF/V0 = 0.02) in the BCS regime at 1/kFas = −1. Here, we show
the first radial branch with k2

⊥ ≡ k2
x + k2

y = 0, which always gives
the smallest values of εi in this case. The inset shows the amplitude
|�(z)| of the order parameter at P = 0. The horizontal dotted line
shows the amplitude of the order parameter for the uniform system
at the same values of 1/kFas = −1.

and 1/kFas = −1. The spectrum for P = 0 shows a quadratic
dependence of kz with a positive curvature at around kz = 0
and there are no minima at kz �= 0. Even though the figure
represents a case in the deep BCS regime, the structure of εi

is consistent with the formation of bound pairs. In the inset
of the same figure, we show the amplitude |�(z)| of the gap
parameter at P = 0. First, we note that the minimum value
of |�(z)| at z/d = ±1 is smaller than but still comparable
to the value of |�| in the uniform case, suggesting that the
system is indeed in the superfluid phase. More importantly,
one sees a large enhancement of |�(z)|, near z = 0, compared
to the uniform system, which shows the formation of bosonic
bound molecules. A consequence of this lattice-induced
molecular formation is that the energetic instability due to pair-
breaking excitations is suppressed and does not occur at any
values of P .

For the same parameters of Fig. 6, the energetic instability
due to long-wavelength phonons instead occurs at P =
0.226h̄qB = 0.452Pedge and the corresponding critical velocity
at 1/kFas = −1 is vc = 0.0662vF. We also find vc = 0.0429vF

at unitarity and vc = 0.0302vF at 1/kFas = 1. This means
that in the whole crossover, the critical velocity at s = 5 is
largely reduced compared to the red line in Fig. 3(c) for s = 1
and does not exhibit a maximum anymore. The behavior of
vc as a function of s at unitarity has been already discussed
in Ref. [16].

IV. SUMMARY AND OUTLOOK

We have studied the effects of a periodic potential on
the Landau critical velocity of a Fermi superfluid in the
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BCS-BEC crossover. We have considered a 3D superfluid
Fermi gas flowing in a 1D periodic potential produced by an
optical lattice. Using the Bogoliubov–de Gennes equations,
we have obtained a unifying picture both for weak and strong
lattices and in the whole BCS-BEC crossover. We have found
that when the recoil energy is comparable to the Fermi energy,
energetic instability due to fermionic pair-breaking excitations
can be less effective as a consequence of the periodic structure
of the quasiparticle energy spectrum. When the lattice height is
much larger than the Fermi energy, pair-breaking excitations
are prevented because the lattice potential gives a stronger
attraction between paired atoms, eventually forming bound
bosonic molecules. We have also found that when the recoil
energy is comparable to or larger than the Fermi energy, the
critical velocity due to the long-wavelength phonon excitations
is drastically reduced by the lattice in the BCS regime, leading
to its nonmonotonic behavior along the BCS-BEC crossover.

A further interesting issue is the possible existence of roton-
like minima in the bosonic dispersion curve. This excitations
are obtained at low filling fractions and within a tight-binding
attractive Hubbard model [14,15,26,27]. The rotonlike minima
arise from strong charge-density wave fluctuations. These
fluctuations are expected to be less favored in our system,
where the gas is uniform in the transverse directions. However,
if such rotonlike excitations exist also in the our case (3D gas in
a 1D lattice), they would lower the critical velocity in the BCS
regime and for strong lattices. To address this issue, one should
use, for instance, a quasiparticle random phase approximation
(QRPA) on top of the stationary solution of the Bogoliubov–de
Gennes equations. This is an interesting challenge for future
investigations.

Finally, we would like to discuss a similarity between the
present system and nuclear “pasta” phases [35–37] in crusts
of neutron stars. The pasta nuclei are those of exotic shapes
such as rodlike and slablike structures. In neutron star crusts,
the pasta nuclei are immersed in background electrons and
a gas of dripped neutrons, which is regarded to be in the
superfluid phase. The setup considered in the present work
resembles superfluid neutrons in the pasta phase with slablike

nuclei which are in the normal phase and provide a 1D periodic
potential for superfluid neutrons [38].
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APPENDIX: DYNAMICAL INSTABILITY WITHIN
HYDRODYNAMIC ANALYSIS

In this appendix we show the results of the critical
velocity vc for dynamical instability due to long-wavelength
excitations. This instability occurs when a nonzero imaginary
part appears in the excitation energy (9). The condition is

∂2e

∂n2
0

∂2e

∂P 2
< 0. (A1)

Even though the long-wavelength excitations in general do not
give the lowest critical velocity of the dynamical instability,
this condition becomes useful at V0 � EF, when the P

dependence of e is almost sinusoidal and the critical velocity
depends rather weakly on the wavelength of the excitations. In
this case the above condition gives an onset of the dynamical
instability at P = Pedge/2, which coincides with the condition
e(P + h̄q) − e(P ) = e(P ) − e(P − h̄q) for V0 � |�| [39].
This corresponds to the energy and momentum conservation
for two particles decaying into two different Bloch states with
e(P ± h̄q).

In Fig. 7 we show the critical velocity for the dynamical
instability determined by the condition (A1). The most striking
feature is the large values of vc in the case of s = 1 and
EF/ER = 0.1. As in the case of the energetic instability, this
is because phonons are insensitive to the lattice when s <∼ 1
and EF/ER � 1, i.e., the healing length is much larger than
the lattice spacing. Note that even for the same value of
EF/ER = 0.1, the critical velocity can be rather small provided
s � 1. This tendency is confirmed by the results for s = 5 and
EF /ER = 0.1 shown by crosses in Fig. 7.
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