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Spatial Landau-Zener-Stückelberg interference in spinor Bose-Einstein condensates
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We investigate the Stückelberg oscillations of a spin-1 Bose-Einstein condensate subject to a spatially
inhomogeneous transverse magnetic field and a periodic longitudinal field. We show that the time-domain
Stückelberg oscillations result in modulations in the density profiles of all spin components due to the spatial
inhomogeneity of the transverse field. This phenomenon represents the Landau-Zener-Stückelberg interference in
the space domain. Since the magnetic dipole-dipole interaction between spin-1 atoms induces an inhomogeneous
effective magnetic field, interference fringes also appear if a dipolar spinor condensate is driven periodically. We
also point out some potential applications of this spatial Landau-Zener-Stükelberg interference.
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I. INTRODUCTION

Quantum two-level systems often exhibit an avoided
energy-level crossing which can be traversed using an external
control parameter. If one sweeps the external parameter
through the avoided crossing, a coherent Landau-Zener transi-
tion occurs [1,2]. When traversing the avoided crossing twice
by sweeping the external parameter back, the dynamical phase
accumulated between transitions may give rise to constructive
or destructive interference in the time domain, known as
Stückelberg oscillations [3,4]. When such a two-level system is
subjected to a periodic driving in time, the physical observables
of the system exhibit a periodic dependence on some external
parameters, which is referred to as Landau-Zener-Stückelberg
interferometry [5]. Recently, it was shown that Landau-Zener-
Stückelberg interferometry is of particular importance to
superconducting qubits [6–10], nitrogen-vacancy centers [11],
and quantum dots [12,13], as it provides an alternative means to
manipulate and characterize the structure of two-level systems.

In atomic physics, Stückelberg oscillations were observed
in the dipole-dipole interaction between Rydberg atoms with
an externally applied radio-frequency field [14]. In particular,
for ultracold atomic gases, Stückelberg oscillations were
demonstrated using the internal-state structure of Feshbach
molecules [15,16] and using Bose-Einstein condensates in
accelerated optical lattices [17]. There are numerous theo-
retical works studying Landau-Zener tunneling subject to a
temporal periodic driving for condensates trapped in double-
well potentials [18–20]. Vasile et al. [21] also proposed
an interferometer of spinor condensates using Stückelberg
oscillations.

In this work, we study the dynamics of a spin-1 condensate
subject to a spatially inhomogeneous transverse magnetic
field. When the condensate is driven by a temporally periodic
longitudinal magnetic field, the Stückelberg phases accumu-
lated at different spatial positions are different, resulting in
modulations in the density profiles of all spin components.
Therefore, by imposing a spatially nonuniform transverse field,
we convert the time-domain interference into a space-domain
one, which we refer to as spatial Landau-Zener-Stückelberg
interference (SLZSI). In spinor condensates, the spatially
inhomogeneous transverse field can also be provided by the

magnetic dipole-dipole interaction between atoms. We show
that the SLZSI occurs even in the absence of any external
transverse field. This phenomenon can be used to detect dipolar
effects in a spinor condensate.

For a condensate confined in a Ioffe-Pritchard trap,
Leanhardt et al. [22] experimentally demonstrated that a vortex
can be imprinted by adiabatically inverting the axial magnetic
field. Interestingly, they also swept the axial field back to its
original direction. Due to the adiabaticity of the whole process,
they found that the condensate recovered its original state. The
dynamics of a spin-1 gas subject to a temporally oscillating
field was studied in various papers [23–25]. However, we are
not aware of any work on Stückelberg oscillations subject to a
spatially inhomogeneous magnetic field.

This paper is organized as follows. In Sec. II, we consider
a continuum of two-level systems subject to a nonuniform
transverse field and a periodic driving along the longitudinal
direction. We show that the occupation probabilities are
periodically modulated in the space domain. Section III studies
the SLZSI of a spin-1 condensate in an Ioffe-Pritchard trap. We
show that the positions of the destructive interference points
agree with those presented in Sec. II. In Sec. IV, we study
the SLZSI induced by the magnetic dipole-dipole interaction.
Finally, we present our conclusions in Sec. V.

II. SPATIAL QUANTUM INTERFEROMETRY
IN THE SINGLE-PARTICLE PICTURE

Let us first briefly summarize the Landau-Zener tunneling
of a single two-level system under temporally periodic driving
[5]. This will allow us to introduce quantities that will be used
afterward. Specifically, we consider the model Hamiltonian

H (1/2)(t)/h̄ = −�

2
σx − ε(t)

2
σz, (1)

where h̄� is a constant representing the level splitting, σx,z are
the Pauli operators, and

ε(t) = A cos �t (2)

is the periodic driving with amplitude A and frequency �. For a
spin- 1

2 atom, � and ε(t) can be induced by a constant transverse
magnetic field and an ac longitudinal field, respectively.
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FIG. 1. (Color online) Schematic plot of the adiabatic energy
levels of a spin- 1

2 system subject to a transverse field and a temporally
periodic driving field along the longitudinal direction.

Throughout this work, we will assume that the longitudinal
periodic driving contains no dc component.

For the model Hamiltonian Eq. (1), we are interested in
the time dependence of the occupation probabilities in the
upper and lower energy levels at time t . Although this problem
can be solved by numerous approaches, here we quote the
results from the adiabatic-impulse model [5]. In Fig. 1, we
schematically plot the adiabatic energy levels of the system;
namely, the instantaneous eigenvalues of the Hamiltonian (1).
The avoided-level crossings (with energy splitting h̄�) at times
t = (n + 1

2 )π/� are induced by the transverse field, where
n = 0,1,2, . . .. The evolution of the system can be divided
into two stages:

(1) Away from the avoided crossings, the system evolves
adiabatically by following the evolution matrix

U =
(

e−iζ/2 0

0 eiζ/2

)
, (3)

where

ζ = 1

2

∫ π/�

0

√
�2 + ε(t)2dt

and ζ/2 is the dynamical phase.
(2) Landau-Zener transitions occur at the avoided crossings,

which can be represented by the transition matrix

N =
(√

1 − p e−iϕ −√
p√

p
√

1 − p eiϕ

)
, (4)

where the transition probability is p = exp(−2πδ), with
δ = �2/4A�, and the phase jump is ϕ = −π

4 + δ(ln δ −
1) + arg	(1 − iδ), with 	(·) being the Gamma function. In
particular, in the fast-passage limit (δ � 1), the dynamical
phase and phase jump become ζ ≈ A/� and ϕ ≈ −π/4,
respectively.

After the two-level system is driven for 
 half periods, one
may take the measurement of the population either at time t1
or t2 as shown in Fig. 1. Correspondingly, the total evolution
matrix becomesU1(UNU)
 orU2U−1(UNU)
+1, respectively.
One immediately sees that, for the purpose of calculating the

transition probability, a very relevant quantity is the transition
matrix [5,26]

(UNU)
 =
(

u11 −u∗
21

u21 u∗
11

)
, (5)

where

u11 = cos(
θ ) − i
√

1 − p sin(ϕ + ζ )
sin(
θ )

sin θ
, (6)

u21 = √
p

sin(
θ )

sin θ
, (7)

cos θ =
√

1 − p cos(ϕ + ζ ). (8)

Assuming that only the upper level is initially populated,
the occupation probabilities at the end of the field sweeping
become

P+ = cos2(
θ ) + (1 − p) sin2(ϕ + ζ )
sin2(
θ )

sin2 θ
, (9)

P− = p
sin2(
θ )

sin2 θ
. (10)

Now we generalize the above single two-level system to a
continuum of isolated two-level systems which are distributed
over the range x ∈ [0,L]. We further assume that the energy
splitting depends linearly on the position x, i.e.,

�(x) = b′x + b0, (11)

where b′ and b0 are two constants. Without loss of generality,
we assume that b′ > 0 and b0 � 0. Due to the position
dependence of the energy splitting, the transition probabilities
now must depend on the position of the two-level system. To
proceed further, let us focus on the occupation probability P−.
If P− is measured after the periodic driving is applied for q

periods (i.e., 
 = 2q), destructive interference for P− occurs
at 2qθ (x) = kπ , with k being an integer. Using Eq. (8), the
condition for destructive interference becomes

cos

(
kπ

2q

)
=

√
1 − p(x) cos[ϕ(x) + ζ (x)]. (12)

In Fig. 2(a), we schematically plot the left- and right-hand sides
of Eq. (12). The x coordinates of the intersections of the left-
and right-hand sides then represent the positions of different
destructive interferences. As a consequence, nontrivial spatial
structure forms in the transition probability, representing the
SLZSI.

To gain more insight into the spatial structure of the
transition probability, we consider the fast-passage limit
by assuming that δ(x) � 1 for x ∈ [0,L]. The destructive
interference condition can be approximated as

cos

(
kπ

2q

)
� C�(x), (13)

where C = √
π/(2A�) cos(−π

4 + A
�

) is a constant. In the fast-
passage regime, we may assume that �(x) is sufficiently small,
which allows us to focus on the values of k in the vicinity of q.
To this end, we rewrite k as k = q + k′, with k′ = 0, ± 1, ±
2, . . . . By further assuming |k′| � q, Eq. (13) reduces to

k′π
2q

� C(b′x + b0). (14)
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FIG. 2. (Color online) (a) Schematic plot of the right-hand
side (solid line) and the left-hand side (horizontal dashed lines,
corresponding to different values of k for a given q) of Eq. (12).
Destructive interferences occur at the xi coordinates. (b) Spatial
distribution of the transition probability P− [Eq. (10)] for the
following dimensionless parameters: b′ = 0.01A/L, b0 = 0, � = A,
and q = 100.

Apparently, corresponding to different k′, the transition prob-
abilities are spatially modulated with an equal interval

lx = π

2qb′|C| . (15)

In addition, the necessary condition for the range L to
accommodate a destructive interference is L � lx , which
implies that the temporal periodic driving must be applied
for more than π/(2b′L|C|) periods.

In Fig. 2(b), we illustrate an example of the spatial
distribution of P−, which is plotted using Eq. (10) for the set
of parameters b′ = 0.01A/L, b0 = 0, � = A, and q = 100.
As shown there, P−(x) exhibits nice spatial periodicity. The
spatial period readout from Fig. 2(b) is in very good agreement
with that predicted by Eq. (15). The nearly sinusoidal depen-
dence of P− on x can be intuitively understood as follows. In
the limit δ(x) � 1, p (≈1) and θ have a very weak position
dependence such that sin θ is essentially a constant. However,
when 
 is sufficiently large, even a weak x dependence in θ

is significantly amplified in the function sin2(
θ ), which is the
only term in P− contributing to the position dependence.

III. SLZSI OF A SPIN-1 CONDENSATE
IN A MAGNETIC TRAP

In this section, we study the SLZSI of an optically trapped
spin-1 condensate subject to a transverse magnetic field of
the form of a Ioffe-Pritchard trap and a temporally periodic
driving along the longitudinal direction. To this end, we first
consider the spin dynamics of a single atom in the F = 1
hyperfine state subject to a constant transverse magnetic field

Bx and a time-dependent longitudinal field Bz(t) = B0 cos �t .
The Hamiltonian of the system reads

H (1)(t)/h̄ = −�Fx − ε(t)Fz, (16)

where � = −gF µBBx/h̄ and ε(t) = −gF µBB0 cos �t/h̄,
with gF = −1/2 the Landé g factor of the atom, µB the
Bohr magneton, and F = (Fx,Fy,Fz) the angular momentum
operator. Note that a spin-1 atom contains three Zeeman
sublevels, corresponding to the magnetic quantum number
α = 1, 0, and −1. Utilizing the Majorana representation [4,27],
the spin dynamics of the Hamiltonian (16) can be easily derived
from that of a spin- 1

2 particle. Specifically, the evolution matrix
after 
 half periods becomes

⎛
⎜⎝

u2
11 −√

2u11u
∗
21 (u∗

21)2

√
2u11u21 |u11|2 − |u21|2 −√

2u∗
11u

∗
21

u2
21

√
2u11u21 (u∗

11)2

⎞
⎟⎠ , (17)

where u11 and u21 are given, respectively, in Eqs. (6) and (7).
For an initial state with only the α = 1 spin component
populated, the occupation probabilities then become P1 =
|u11|4, P0 = 2|u11|2|u21|2, and P−1 = |u21|4. Obviously, there
exists a relation

P0 = 2
√

P1P−1 (18)

among the occupation probabilities of different spin
components.

For an ultracold atomic gas, atoms interact with each other
and are free to move. Therefore, to strictly realize the SLZSI
obtained from isolated two-level systems, the effects of the
kinetic and interaction energies have to be eliminated. To
achieve this, one may load the atoms into an optical lattice
potential. If the depth of the optical potential is so high that
the system is in the Mott insulator phase, the kinetic energy
can be safely ignored. Furthermore, in the case where each
lattice site is only occupied by a single atom, the atom-atom
interaction can also be eliminated. However, as we shall show
below, for typical experimental parameters, even for a singly
trapped spinor condensate, SLZSI can be well described by
the model introduced in Sec. II.

Now we proceed to study the SLZSI of a spin-1 condensate.
Atoms interact with each other via the short-range potential
[28,29]

V0(r − r′) = (c0 + c2F · F′)δ(r − r′), (19)

where c0 = 4πh̄2(a0 + 2a2)/3m and c2 = 4πh̄2(a2 − a0)/3m,
with af (f = 0,2) being the s-wave scattering length in the
combined symmetric channel of total spin f . For the sodium
atoms considered in this section, a0 = 50aB and a2 = 55aB ,
with aB being the Bohr radius. Note that the parameters c0 and
c2 represent, respectively, the strength of the spin-independent
and spin-exchange collisional interactions. The spin-exchange
interaction of the sodium atoms is antiferromagnetic. Atoms
also exist whose spin-exchange interaction is ferromagnetic
(e.g., rubidium). However, for the magnetic field considered
in this section, the Zeeman energy is much larger than the
spin-exchange interaction energy such that the spin-exchange
interaction is unimportant to the spin dynamics.
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We assume that the transverse magnetic field takes the
form of a Ioffe-Pritchard trap, such that the total external field
becomes

Bext(r,t) = B ′(xx̂ − yŷ) + Bz(t)ẑ, (20)

where B ′ is the gradient of the transverse magnetic field. Fur-
thermore, to stably confine the condensate, a spin-independent
optical trap

Uopt(r) = 1
2mω2

⊥(x2 + y2 + λ2z2)

is also applied, where ω⊥ is the radial trap frequency and
λ is the trap aspect ratio. For the numerical simulations
presented below, we shall choose B ′ = 15 G/cm, B0 = 1 G,
ω⊥ = (2π )100 Hz, and λ = 6.

Within the framework of mean-field theory, a spin-1
condensate of N atoms is described by the wave functions
ψα(r) (α = 0, ± 1), which satisfy the dynamic equations

ih̄
∂ψα

∂t
= [T + Uopt + c0n(r)]ψα + gF µBBeff · Fαβψβ,

(21)

where T = −h̄2∇2/2m is the kinetic energy term, n(r) =∑
α ψ∗

αψα is the number density of the condensate normalized
to the total number of atoms N , and

Beff(r,t) = Bext(r,t) + Bexc(r,t) (22)

is the effective magnetic field which includes the external
magnetic field and the contribution originating from the
spin-exchange interaction

Bexc(r,t) = c2

gF µB

S(r,t) (23)

with S(r,t) = ∑
αβ ψ∗

αFαβψβ being the spin density. Here we
have neglected the magnetic dipole-dipole interaction since it
is much smaller than the Zeeman energy in a Ioffe-Pritchard
trap. However, the effect of the dipolar interaction will be
addressed in the next section.

We demonstrate the SLZSI in a magnetic trap by numer-
ically evolving Eq. (21) for a condensate of N = 2 × 106

sodium atoms. The initial wave functions are taken as the
ground state of the spinor condensate under the external
field Bext(r,0). In the results presented below, we will focus
on the behavior of the column density of the different spin
components

n̄α(x,y) =
∫

dz|ψα(r)|2, (24)

which also corresponds to the absorption image of the atomic
gas.

Figure 3 shows the column densities of all spin components
for � = 10πω⊥ and after the driving field being applied for
q = 0, 2, 4, and 6 periods. Due to the axial symmetry of
the column densities, they are plotted as functions of ρ =√

x2 + y2. Initially, only the α = 1 component is populated
for the given parameters. As we start to drive the condensate
with an ac longitudinal field, other spin states also become
occupied. In particular, ripples start to develop in the density
profiles of all spin components. If the condensate is driven for
a longer time, more ripples will appear.

FIG. 3. (Color online) Column densities at various times for � =
10πω⊥. The solid, dashed, and dash-dotted lines denote the α = 1,
0, and −1 spin components, respectively. The vertical arrows denote
the positions of the destructive interferences predicted by Eq. (25).

The positions of the destructive interference in the α = −1
component is also determined by Eq. (12). Here, instead, we
will focus on n̄1 since the α = 1 component contains the major-
ity of the atoms when the system is only driven for a short pe-
riod of time. For the given parameters, we have 1 − p(ρ) � 1.
Therefore, the positions of the destructive interference in n̄1

are mainly determined by the first term on the right-hand side
of Eq. (9). Following the same analysis as that presented in
Sec. II, destructive interference in n̄1 occurs at the positions
determined by the equation

sin

(
2k′ − 1

4q

)
π =

√
1 − p(ρ) cos[ϕ(ρ) + ζ (ρ)], (25)

with k′ being an integer and where q is the number of periods
that the driving field has been applied for. For the parameters
given in Fig. 3, the location of the destructive interference
points predicted by Eq. (25) are shown as black vertical arrows
in the figure. As can be seen, they agree well with those
obtained through the full numerical simulations.

To gain more insight into the SLZSI of a spin-1 condensate,
let us verify the relation Eq. (18), which holds rigorously
in the single-particle picture. For the column densities of
the condensates, Eq. (18) becomes n̄0 = 2

√
n̄1n̄−1. In our

numerical simulation, we find that n̄0 and 2
√

n̄1n̄−1 agree
with each other for small t . However, as shown in Fig. 4(a), a
prominent discrepancy appears for ω⊥t = 1. Since Eq. (18)
is derived from the Majorana representation, its violation
indicates a deviation from the single-particle picture. To
identify which source causes the discrepancy, one may evolve
Eq. (21) with the kinetic energy term removed. This treatment
is equivalent to taking the Thomas-Fermi approximation. The
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FIG. 4. (Color online) Verification of the relation Eq. (18) with
(a) and without (b) the contribution from the kinetic energy for
ω⊥t = 1. The solid and dashed lines correspond to 2

√
n̄1n̄−1 and n̄0,

respectively. Other parameters are the same as those used in Fig. 3.

result presented in Fig. 4(b) shows that 2
√

n̄1n̄−1 is visually
identical to n̄0 after the kinetic energy term is dropped, which
suggests that the discrepancy in Fig. 4(a) is mainly caused by
the center-of-mass motion of the atoms.

Vengalattore et al. [30] have demonstrated that spinor con-
densates can be regarded as high-resolution magnetometers.
Potentially, due to its sensitivity to the inhomogeneity of the
magnetic field, the SLZSI in a spinor condensate can also be
used to measure the gradient of the magnetic field.

IV. SLZSI IN A DIPOLAR SPIN-1 CONDENSATE

Now, we turn to study the SLZSI in a dipolar spinor
condensate. In addition to the short-range interaction V0, there
also exists a long-range magnetic dipole-dipole interaction
between two spin-1 atoms. The interaction potential between
two magnetic dipoles takes the form

Vd (r − r′) = cd

F · F′ − 3(F · e)(F′ · e)

|r − r′|3 , (26)

where the strength of the dipolar interaction is characterized
by cd = µ0µ

2
Bg2

F /(4π ), with µ0 being the vacuum magnetic
permeability, and e = (r − r′)/|r − r′| is a unit vector. Within
the framework of mean-field theory, the dipolar interaction
generates an effective magnetic field of the form [31]

Bdip(r,t) = cd

gF µB

∫
dr′ S(r′,t) − 3[S(r′,t) · e]e

|r − r′|3 . (27)

Consequently, the total effective magnetic field becomes

Beff(r,t) = Bext(r,t) + Bexc(r,t) + Bdip(r,t). (28)

We note that the magnitude of the transverse component of
Bdip can be formally expressed as

B
(⊥)
dip =

√
B2

dip − (Bdip · ẑ)2. (29)

As we will show, B
(⊥)
dip is nonuniform. Therefore, SLZSI may

be induced in spinor condensates even in the absence of an
external transverse magnetic field.

To proceed further, we consider a concrete example of a
spin-1 condensate containing N = 107 rubidium atoms. The
Landé g factor of the atoms is gF = −1/2. Moreover, the

FIG. 5. (Color online) (a) Magnitude of the transverse field B
(⊥)
dip

(in units of µG) induced by the dipolar interaction for a spin polarized
condensate. (b) ρ dependence of B

(⊥)
dip for various z = z0 planes.

s-wave scattering lengths between rubidium atoms are a0 =
101.8aB and a2 = 100.4aB . The optical trap has the same
parameters as those adopted in Sec. III. Finally, to emphasize
the effect of the dipolar interaction, we assume that the external
field only contains a longitudinal component, i.e.,

Bext(t) = B0 cos (�t ẑ) .

The value of B0 is typically around several hundreds µG, under
which the spins of the atoms are fully polarized along the z

axis.
Before we turn to study the dynamics of the condensate

under an external driving field, it is instructive to examine
the structure of the magnetic field induced by the dipolar
interaction. For simplicity, we assume that only the α = 1
spin component is populated, which is essentially the ground
state under the external field Bext(t = 0). Figure 5(a) shows
the magnitude of the transverse component of Bdip for a
spin-polarized condensate. Due to the cylindrical symmetry
of the system, B

(⊥)
dip reduces to a function of ρ and z. Clearly,

B
(⊥)
dip is nonuniform and takes a butterfly shape in the ρz plane.

For this specific example, the maximum value of B
(⊥)
dip is around

10.4 µG. In particular, as can be deduced from Eq. (27), the
effective transverse field vanishes in the xy plane.

To reveal more details about the transverse field, we plot
B

(⊥)
dip (ρ,z = z0) for various z0 values in Fig. 5(b). On a given

z = z0 plane, B
(⊥)
dip (ρ,z0) is roughly a linear function when

ρ is small. However, the gradient of the transverse field
sensitively depends on the value of z0. Moreover, B(⊥)

dip becomes
a time-dependent function once the external driving field Bext

is applied. Therefore, one should not use Eq. (25) to predict
the positions of the destructive interference points.
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FIG. 6. (Color online) Column densities at various times t for
B0 = 100 µG and � = 0.2πω⊥. The solid, dashed, and dash-dotted
lines denote the α = 1, 0, and −1 spin components, respectively. The
dotted lines represent the total column densities.

The dynamics of the condensate can be simulated by
numerically evolving Eq. (21) with the effective magnetic field
in Eq. (28). The initial wave function is taken as the ground
state under the external field Bext(t = 0). In Fig. 6, we present
the column densities of all spin components after the driving
field is applied for various periods. The parameters of the
driving field are B0 = 100 µG and � = 0.2πω⊥. As can be
seen, even though the total density remains unchanged, ripples
start to develop on the density profiles of all spin components
after the driving field is applied for a few periods, which
indicates SLZSI occurs in a spin-1 condensate subject to a
periodic driving. More ripples will appear if one evolves the
system for a longer time.

The structure of the density ripples also depends sensitively
on the parameters of the driving field. As shown in Fig. 7(a),
the ripples in n̄1 are significantly suppressed if we increase
the amplitude of the driving field to B0 = 500 µG. This can
be intuitively understood as follows. A destructive interference
on n̄1 occurs when a considerable number of atoms in the
α = 1 component are transferred to other spin components. If
one increases B0 while keeping � unchanged, the transition
probability decreases. Therefore, in order to gain visible
density ripples, one has to lower the frequency of the driving
field. Indeed, as shown in Fig. 7(b), density ripples appear
again by lowering the driving frequency to � = 0.04πω⊥.

From Eq. (23), it is tempting to think that even in the absence
of the magnetic dipole-dipole interaction the spin-exchange
interaction can also induce density ripples. This turns out
to be untrue for the initial states considered in this section.
To show this, we consider an initial state with spins being
polarized to an arbitrary direction. For such a state, the total

FIG. 7. (Color online) Column densities at time ω⊥t = 200 for
B0 = 500 µG with (a) � = 0.2πω⊥ and (b) � = 0.04πω⊥. The
solid, dashed, and dash-dotted lines denote the α = 1, 0, and −1
spin components, respectively. The dotted lines represent the total
column densities.

spin of the condensate is N and the number of atoms in all
spin components are uniquely determined [32,33]

N±1 = N

2

(
1 ± M

N

)2

and N0 = N

2

(
1 − M2

N2

)
,

where M = N1 − N−1 is the z component of the total spin.
Now we assume that a magnetic field is applied along the
z axis. Since the total spin (N ) and its z component (M)
are conserved in the absence of the dipolar interaction [28],
the contact spin-exchange interaction will not cause any spin
mixing. Therefore, for an initially polarized spin-1 condensate
subject to a periodic driving, the appearance of density ripples
is an unambiguous manifestation of the dipolar interaction in
a spinor condensate.

In a previous work [31], we proposed to detect the effect
of dipolar interaction in spinor condensates by adiabatically
inverting the longitudinal field, where the strength of the
longitudinal field is only around several tens of microgauss.
Compared to that scheme, the obvious advantage of using the
dipolar-interaction-induced SLZSI is that the strength of the
longitudinal field can be much higher.

V. CONCLUSION

We have proposed a method to convert the time-domain
Stückelberg oscillations to an interference pattern in the space
domain by imposing a spatially nonuniform transverse mag-
netic field. For a continuum of two-level systems, we showed
that the occupation probabilities are periodically modulated
in space. In addition, we also obtained a relation between the
spatial period and the system parameters in the fast-passage
limit. We then demonstrated the SLZSI for a spin-1 condensate
subject to a transverse field of the form of an Ioffe-Pritchard
trap. We found that the kinetic and interaction energies only
slightly modify the interference patterns obtained from the
single-atom model if the system is not driven for a long time.
Finally, we showed that the SLZSI can also be induced by
the magnetic dipole-dipole interaction, even in the absence
of an external transverse field. Potential applications of the
SLZSI include the measurement of the spatial inhomogeneity
of the magnetic field and the detection of weak magnetic
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dipole-dipole interactions in spinor condensates. Finally, we
want to point out that SLZSI is a single-particle property,
therefore, a fermionic gas should also exhibit the phenomena
described in this work.
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