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Relevance of Bose-Einstein condensation to the interference of two independent Bose gases
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Interference of two independently prepared ideal Bose gases is discussed, on the basis of the idea of
measurement-induced interference. It is known that, even if the number of atoms in each gas is individually
fixed finite and the symmetry of the system is not broken, an interference pattern is observed on each single
snapshot. The key role is played by the Hanbury Brown and Twiss effect, which leads to an oscillating pattern
of the cloud of identical atoms. Then, how essential is the Bose-Einstein condensation to the interference? In
this work, we describe two ideal Bose gases trapped in two separate three-dimensional harmonic traps at a finite
temperature T , using the canonical ensembles (with fixed numbers of atoms). We compute the full statistics of
the snapshot profiles of the expanding and overlapping gases released from the traps. We obtain a simple formula
valid for finite T , which shows that the average fringe spectrum (average fringe contrast) is given by the purity of
each gas. The purity is known to be a good measure of condensation, and the formula clarifies the relevance of the
condensation to the interference. The results for T = 0, previously known in the literature, can be recovered from
our analysis. The fluctuation of the interference spectrum is also studied, and it is shown that the fluctuation is
vanishingly small only below the critical temperature Tc, meaning that interference pattern is certainly observed
on every snapshot below Tc. The fact that the number of atoms is fixed in the canonical ensemble is crucial to
this vanishing fluctuation.
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I. INTRODUCTION

One of the spectacular phenomena in the physics of ultra-
cold atomic gases is interference. When two independently
prepared Bose-Einstein condensates (BECs) are released and
overlap, interference fringes are observed between them [1].
This is by no means a trivial phenomenon. Imagine two
sources independently emitting particles toward a screen.
Accumulation of the particles on the screen does not normally
result in an interference pattern, since the relative phase
between the two wave functions originating from the two
independent sources is not well defined in general, which is
crucial in Young-type interference experiments.

The simplest description of the interference of independent
BECs is based on the spontaneous symmetry breaking [2]:
the U(1) symmetry of the system is spontaneously broken
upon condensation and the two gases individually acquire
definite phases. As a result, the relative phase between the
gases becomes well defined, which enables them to exhibit
interference. The symmetry breaking, however, would be
valid only approximately, since the actual gases in typical
interference experiments consist of finite numbers of atoms.
In particular, if the number N of atoms in each gas is precisely
fixed and its phase is completely uncertain, interference would
not be expected between two such gases in the way to
understand the Young-type interference.

Javanainen and Yoo, however, showed in their seminal
paper [3] that, even with such gases with fixed numbers of
atoms, an interference pattern can be observed in each snapshot
photo of the overlapping gases. Notice that many atoms in the
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cloud are recorded on a photo at once. The indistinguishability
of the identical bosonic atoms induces quantum correlations
among them, which result in a nonuniform distribution of
the atoms; in particular, a sinusoidal interference pattern.
The density profiles differ from snapshot to snapshot and the
appearance of an interference pattern is not definitely certain.
According to the numerical simulation by Javanainen and Yoo
in [3], however, sinusoidal patterns are very typical among all
possible snapshot profiles and interference is almost certainly
observed in every snapshot (see also [4]). The interference
patterns shift randomly from snapshot to snapshot and the
superposition of many snapshots results in an image with no
interference. This is due to the independence of the two gases
with no phase correlation. One of the interference patterns and
one definite relative phase are selected by taking a photo (i.e.,
by measurement), and such interference revealed in a snapshot
is called measurement-induced interference [5–7].

Interference of BECs has been attracting renewed attentions
these years, and a variety of interference experiments have
been reported [8–10]. In particular, the fluctuations of the
interference patterns are shown to provide fruitful information
to probe complex many-body states of ultracold trapped atoms
[4,9–13], and the statistics of interference patterns has become
an interesting subject to study.

The main purpose of the present work is to clarify the
relevance of the Bose-Einstein condensation to the interference
of two independent BECs, on the basis of the idea of
measurement-induced interference. As shown by Javanainen
and Yoo, higher-order correlations play a crucial role for the
appearance of the interference fringes. Then, how about the
condensation? How is Bose-Einstein condensation essential
to the interference? This is the question we wish to address
in the present paper. Recently, Rath and Zwerger have shown
by a simple argument that the visibility of the interference is
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directly related to the condensation fraction [13]. In this paper,
we provide more evidence of this relationship between the
interference and the condensation.

We consider the following setup. We prepare two indepen-
dent ideal gases of bosonic atoms trapped in two spatially
separated three-dimensional (3D) harmonic traps at a finite
temperature T . Each gas contains exactly N atoms separately
and is described by a canonical ensemble with the fixed
number of atoms. These gases are then released from the traps,
expand in 3D free space, and overlap. We are interested in the
interference patterns appearing in snapshot photos of the cloud
of overlapping gases.

To carry out our analysis, we compute the characteristic
functional of the statistics of the snapshot profiles of the
cloud, valid for the whole range of temperature T (across
the critical temperature Tc) for a large number of atoms N .
In particular, we find that the average strength of the inter-
ference spectrum (Fourier spectrum of the density profile)
over all snapshots, which is related to the average visibility
of the interference pattern, is simply given by the “purity”
of each gas: the larger is the purity of the gas, the higher
is the contrast of the interference, and no interference is
expected above the critical temperature Tc. The purity is known
to be a good measure of condensation [14], because it is
large when only a few states are macroscopically occupied
and approaches 1 when only one state is populated. This
shows that Bose-Einstein condensation is relevant to the
interference.

Furthermore, we see that the fluctuation of the inter-
ference spectrum is vanishingly small at any temperature
below the critical temperature T < Tc, while the fluctua-
tion abruptly changes at the critical temperature Tc and
becomes nonvanishing above Tc. The interference pattern
with fringe contrast depending on the purity of the gases
is typical among all possible profiles and is certainly
observed in every snapshot below the critical temperature
T < Tc. It is shown that the canonical ensemble, in which
the number of atoms is fixed, is crucial to the vanishing
fluctuation.

This paper is organized as follows. We set up tools to
study the statistics of the snapshot profiles in Sec. II, and
these tools are shown to be essentially the same as the
ones employed in [4,12,13]. In Sec. III, the characteristic
functional characterizing the canonical ensemble of a sin-
gle gas with a fixed number of noninteracting atoms in
a harmonic trap is given, which is the key ingredient in
the present analysis. From this, in Sec. IV, we derive the
characteristic functional of a pair of such harmonic clouds
and compute the full statistics of the snapshot profiles after
the two gases are released and overlap. The average and the
covariance of the fringe spectrum are then analyzed in detail in
Sec. V, obtaining the concise formula for the average spectrum
given by the purity, and the fluctuation of the fringe spectrum
is investigated as a function of the temperature. Finally,
a summary of the work is given in Sec. VI, and some
details of the calculations, concerning the derivation of the
characteristic functional of the snapshot profiles, the treatment
of the canonical ensemble, and the estimation of the purity and
the other relevant quantity, are presented in Appendices A–C.

II. STATISTICS OF SNAPSHOT PROFILES

First of all, we setup some mathematical tools, which
are used in the following analysis. Suppose that there are a
large number of identical bosonic atoms and one takes a photo
of the cloud: the positions of the N atoms are recorded at once
in the snapshot. The probability of finding the N atoms at
positions {r1, . . . , rN } at an instant t is given by

P
(N)
t (r1, . . . , rN )

= 1

N !
〈ψ̂†(r1) · · · ψ̂†(rN )ψ̂(rN ) · · · ψ̂(r1)〉t , (2.1)

where ψ̂(r) is the field operator of the bosonic atom, satisfying
the canonical commutation relations

[ψ̂(r),ψ̂†(r ′)] = δ3(r − r ′), etc., (2.2)

and 〈· · ·〉t denotes the expectation value estimated in the state
of the cloud at time t . This probability is normalized to unity
as ∫ N∏

�=1

d3r�P
(N)
t (r1, . . . , rN ) = 1. (2.3)

The probability to find M atoms among N at {r1, . . . ,rM} is
given by

P
(M)
t (r1, . . . , rM )

= (N − M)!

N !
〈ψ̂†(r1) · · · ψ̂†(rM )ψ̂(rM ) · · · ψ̂(r1)〉t , (2.4)

where the normalization is such that∫
d3r�P

(N)
t (r1, . . . , r�, . . . , rN )

= P
(N−1)
t (r1, . . . , r�−1,r�+1, . . . , rN ). (2.5)

Given a single configuration of the N atoms {r1, . . . , rN },
the snapshot density profile of the cloud is constructed by

ρ(r) = 1

N

N∑
i=1

g(r − r i), (2.6)

where g(r) is a function sharply peaked around r = 0 with
unit volume

∫
d3rg(r) = 1, characterizing the resolution of

the photo, and the density profile ρ(r) is normalized to unity:∫
d3rρ(r) = 1. (2.7)

Notice that the positions of the N atoms, {r1, . . . , rN }, differ
from run to run, and the density profile ρ(r) changes from
snapshot to snapshot. The average profile over all possible
configurations of the N atoms (over all snapshots) is given by

ρ(r) =
∫ N∏

�=1

d3r�P
(N)
t (r1, . . . , rN )ρ(r)

=
∫

d3r ′g(r − r ′)P (1)
t (r ′), (2.8)

which gives the single-particle probability distribution P
(1)
t (r)

convoluted with the resolution function g(r).
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When two independent Bose gases are overlapping,
no interference fringes are observed in the single-particle
distribution P

(1)
t (r), which represents the image obtained by

accumulating and superposing many snapshots. The result
of the “independence” in the ordinary sense is that normal
(Young-type) interference is absent. An interference pattern,
however, would be found on each snapshot, due to higher-order
correlations [3].

We define observables that can characterize interference;
that is, quantities that measure whether interference is observed
or not starting from some initial state. If fringes are present in
a snapshot, we expect the density deviation

δρ(r) = ρ(r) − ρ(r) (2.9)

to oscillate, giving rise to spikes in its Fourier transform

δρ̃(k) =
∫

d3rδρ(r) e−ik·r . (2.10)

A spike at kf in this quantity corresponds to a spatial
oscillation with fringe spacing 2π/kf .

Notice here that the phase (spatial offset) of the interference
pattern varies randomly from snapshot to snapshot. This
is actually unavoidable, in order to be consistent with the
independence of the two gases: this random shift smears out
the fringes in the average profile ρ(r) [i.e., in the single-particle
distribution P

(1)
t (r)] and the “independence” is recovered. In

order to discard this random phase, we look at the square
modulus of the Fourier spectrum, |δρ̃(k)|2. If sinusoidal
patterns with a definite fringe spacing (with their random
spatial offsets discarded) are typical among all possible
snapshot profiles and are found on almost all snapshots, the
spikes in the spectrum |δρ̃(k)|2 would remain even in its
average over all possible realizations of {r1, . . . , rN },

St (k) = |δρ̃(k)|2 = |ρ̃(k)|2 −
∣∣∣ρ̃(k)

∣∣∣2
. (2.11)

The typicality is characterized by the variance or, more
generally, by the covariance

Ct (k,k′) = |δρ̃(k)|2|δρ̃(k′)|2 − |δρ̃(k)|2 |δρ̃(k′)|2. (2.12)

If the average spectrum St (k) exhibits a nontrivial spike with a
vanishingly small covariance Ct (k,k′), the sinusoidal pattern
corresponding to the spike is expected to be observed in every
snapshot.

By noting ρ̃(k) = g̃(k)
∑N

i=1 e−ik·r i /N , one realizes that
these quantities are controlled by few-particle distribution
functions. Indeed,

|ρ̃(k)|2 = |g̃(k)|2
(

N − 1

N
I

(2)
t (k) + 1

N

)
, (2.13)

|ρ̃(k)|2|ρ̃(k′)|2

= |g̃(k)|2|g̃(k′)|2
(

(N − 1)!

N3(N − 4)!
I

(4)
t (k,k′) + O

(
1

N

))
,

(2.14)

where

I
(2)
t (k) =

∫
d3r1d

3r2P
(2)
t (r1,r2) eik·(r1−r2), (2.15)

I
(4)
t (k,k′) =

∫ 4∏
�=1

d3r�P
(4)
t (r1,r2,r3,r4)eik·(r1−r2)+ik′ ·(r3−r4).

(2.16)

Namely, the average fringe contrast of the N particles is
essentially ruled by the two-particle distribution P

(2)
t , while

its fluctuation is ruled by P
(4)
t . We do not need to compute the

N -particle distribution function P
(N)
t in practice to discuss

the average fringe spectrum and the fluctuation. We set
g(r) = δ3(r) henceforth, which does not spoil the following
arguments.

The most important feature in the two-particle probability
distribution is the Hanbury Brown and Twiss (HBT) effect [15].
Due to the bosonic nature of the atoms, the wave function
has to be symmetric under the exchange of particles. For
instance, when two atoms with opposite momenta k and −k

overlap, P (2) oscillates with a period 2π/k. In fact, in the setup
discussed by Javanainen and Yoo [3], the initial state of the
clouds of bosons is formed by plane waves and P (2)(x1,x2) =
[1 + cos k(x1 − x2)]/2. They showed that this HBT correlation
is sufficient to describe the appearance of interference between
the clouds, even if the clouds are independent. Inserting this
two-particle probability distribution in the above equations
reproduces analytically their numerical result.

In general, the fluctuation of the snapshot profiles ρ(r) is
fully characterized by the generating functional

Zt [�] = ei
∫

d3 r�(r)ρ(r). (2.17)

When N � 1, it is cast into (Appendix A)

Zt [�] � 〈
:e

i
N

∫
d3 r�(r)ψ̂†(r)ψ̂(r):

〉
t
, (2.18)

where : · · · : denotes normal ordering. These are our tools for
the following argument, which are essentially the same as the
ones employed in [4,12,13].

Let us look at a Gaussian state, characterized by a Gaussian
characteristic functional

〈Ŵ [J,J ∗]〉t = e2i
√

N Re〈αt |J 〉e−N〈J |F̂t |J 〉, (2.19)

where

Ŵ [J,J ∗] = ei
∫

d3 rJ (r)ψ̂†(r)ei
∫

d3 rJ ∗(r)ψ̂(r) (2.20)

is the normally ordered Weyl operator, 〈αt |J 〉 =∫
d3rα∗

t (r)J (r), and 〈J |F̂t |J 〉 = ∫
d3rd3r ′J ∗(r)Ft (r,r ′) ×

J (r ′). In this case, the generating functional for the density
profile, Zt [�], is given by (Appendix A)

Zt [�]

= exp

[
− i

N

∫
d3r

δ

δJ (r)
�(r)

δ

δJ ∗(r)

]
〈Ŵ [J,J ∗]〉t

∣∣∣∣
J,J ∗=0

=
exp

[
i〈αt | 1

�−1(r̂)−iF̂t

|αt 〉
]

Det[1 − i� (r̂) F̂t ]

= exp

[
Tr

∞∑
n=1

(|αt 〉〈αt | + F̂t /n)i�(r̂)[F̂t i� (r̂)]n−1

]
,

(2.21)
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where we have introduced an abstract notation by

αt (r) = 〈r|αt 〉, Ft (r,r ′) = 〈r|F̂t |r ′〉, (2.22)

and

r̂|r〉 = r|r〉, (2.23)

〈r|r ′〉 = δ3(r − r ′),
∫

d3r|r〉〈r| = 1. (2.24)

III. CANONICAL ENSEMBLE OF IDEAL BOSONIC
ATOMS IN A 3D HARMONIC TRAP

In order to discuss the interference of two independent ideal
Bose gases released from two separate harmonic traps in 3D,
we need to describe the state of a bosonic system with a fixed
number of atoms. Let us first consider a single gas held in a trap
and see how it is characterized by a characteristic functional
〈Ŵ [J,J ∗]〉. The gas consists of a fixed number N of bosonic
atoms and is kept in a harmonic trap at a finite temperature T .

We assume that the 3D harmonic trap is isotropic and
is characterized by a trapping frequency ω (generalization
to an anisotropic potential is straightforward). Let |ϕn〉
[n = (nx,ny,nz) with nx,y,z = 0,1,2, . . .] denote the energy
eigenstates of this harmonic trap. These eigenstates form a
complete orthonormal set of bases:

〈ϕn |ϕn′ 〉 = δnn′ ,
∑

n

|ϕn〉〈ϕn| = 1, (3.1)

and the field operator ψ̂(r) is expanded as

ψ̂(r) =
∑

n

ânϕn(r), (3.2)

with ân satisfying the canonical commutation relations

[ân,â
†
n′] = δnn′ , etc. (3.3)

The Hamiltonian of the system reads

Ĥ =
∑

n

εnâ
†
nân, εn =

∑
i=x,y,z

h̄ωni, (3.4)

and the number operator

N̂ =
∑

n

â†
nân. (3.5)

When the gas is cooled below the critical temperature Tc,
the ground state |ϕ0〉 is occupied by a macroscopic number of
atoms. In the regime

h̄ω/(kBT ) 	 1 with [h̄ω/(kBT )]3N finite, (3.6)

which is relevant in the actual experiments, the condensation
fraction λ is well approximated by ([2,16] and Appendices B
and C)

λ �
⎧⎨
⎩1 −

(
T

Tc

)3

, (T < Tc)

0, (T � Tc),
(3.7)

with the critical temperature given by

Tc = h̄ω

kB

(
N

ζ (3)

)1/3

, (3.8)

where kB is the Boltzmann constant and ζ (z) the Riemann zeta
function.

Since the number N of atoms in the gas is fixed, the
gas should be described by a canonical ensemble, which is
characterized by the characteristic functional defined by

〈Ŵ [J,J ∗]〉N = Tr{Ŵ [J,J ∗]P̂Ne−βĤ }
Tr{P̂Ne−βĤ } , (3.9)

where P̂N is the projection operator onto the N -particle sector
and β = 1/(kBT ) is the inverse temperature. In the regime
(3.6), it is estimated to be ([17] and Appendix B)

〈Ŵ [J,J ∗]〉N �
{

J0(2
√

N |〈α|J 〉|)e−N〈J |F̂ ′ |J 〉, (T < Tc)

e−N〈J |F̂ |J 〉, (T � Tc),

(3.10)

where

|α〉 =
√

λ|ϕ0〉, F̂ ′ = 1

N

∑
n 
=0

|ϕn〉f (εn)〈ϕn|, (3.11)

F̂ =

⎧⎪⎨
⎪⎩

|α〉〈α| + F̂ ′, (T < Tc)
1

N

∑
n

|ϕn〉f (εn)〈ϕn|, (T � Tc),
(3.12)

with the Bose distribution function

f (ε) = 1

eβ(ε−µ) − 1
. (3.13)

The chemical potential µ (�0) is fixed by the condition∑
n

f (εn) = N (3.14)

and is vanishingly small for T < Tc. By noting a formula for
the Bessel function

J0(x) =
∫ 2π

0

dθ

2π
eix cos θ , (3.15)

the characteristic functional (3.10) for T < Tc is equivalently
expressed as

〈Ŵ [J,J ∗]〉N =
∫ 2π

0

dθ

2π
e2i

√
N Re〈αθ |J 〉e−N〈J |F̂ ′ |J 〉 (T < Tc),

(3.16)

where

|αθ 〉 = eiθ |α〉 (3.17)

represents a condensate with a definite phase θ , and the
characteristic functional (3.10) for T < Tc is an incoherent
mixture of the condensed states with different phases θ .

Notice that the grand canonical ensemble yields
(Appendix B)

〈Ŵ [J,J ∗]〉G = Tr{Ŵ [J,J ∗]e−β(Ĥ−µN̂)}
Tr{e−β(Ĥ−µN̂)}

= e−N〈J |F̂ |J 〉, (3.18)

with F̂ given in (3.12) and N being the average number
of atoms; that is, a different characteristic functional from
the one for the canonical ensemble (3.10) below the critical
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temperature, while they coincide above. It is possible to
apply the formula (2.21) for both canonical (3.16) and
grand canonical (3.18) ensembles to obtain the generating
functionals for the density profile, Zt [�]. Both yield the same
average profile [the single-particle distribution; see (2.8)],

ρ(r) = F(r,r), (3.19)

over the whole temperature range, while they exhibit different
fluctuations below the critical temperature T < Tc.

IV. TWO INDEPENDENT IDEAL BOSE GASES RELEASED
FROM TWO SEPARATE HARMONIC TRAPS

Next, we describe the release and free expansion of the
gases and derive the state just before the measurement. Let
us consider two ideal Bose gases independently prepared in
two spatially separated harmonic traps in 3D. We assume that
the two harmonic traps are of the same shape, characterized
by the same trapping frequency ω, but spatially shifted by
vectors ±d/2. The same number of atoms are put in the traps,
N atoms for each, at the same temperature T . No particle flow
is present between the two traps. The gases are then released by
turning off the trapping potential and expand in free space. We
are going to discuss the interference between the overlapping
gases.

The energy eigenstates of the right and left traps are given
by shifting the eigenstates |ϕn〉 introduced in the previous
section:

|ϕ(±)
n 〉 = e∓ i

h̄
p̂·d/2|ϕn〉, (4.1)

where p̂ is the momentum operator of an atom, which is the
generator of the spatial shifts. We assume that the two traps
are well separated, compared with the sizes of the gases, and
the overlaps between the relevant eigenfunctions of the two
traps are negligible: 〈ϕ(+)

n |ϕ(−)
n′ 〉 � 0. Under this hypothesis,

they form a complete orthonormal set of bases for the present
system,〈

ϕ(s)
n

∣∣ϕ(s ′)
n′

〉 = δss ′δnn′ ,
∑
s=±

∑
n

∣∣ϕ(s)
n

〉 〈
ϕ(s)

n

∣∣ = 1, (4.2)

and the field operator ψ̂(r) is expanded as

ψ̂(r) =
∑
s=±

∑
n

â(s)
n ϕ(s)

n (r). (4.3)

The annihilation operators â
(s)
n satisfy the canonical commu-

tation relations [
â(s)

n ,â
(s ′)†
n′

] = δss ′δnn′ , etc. (4.4)

The expansion of the gases in free space after the release
from the traps is easily implemented. Since the gases are ideal
and noninteracting, the field operator evolves in the Heisenberg
picture as

ψ̂(r,t) =
∑
s=±

∑
n

â(s)
n ϕ

(s)
n,t (r), (4.5)

with ϕ
(±)
n,t (r) = e

ih̄t
2m

∇2
ϕ

(±)
n (r): we have only to replace

|ϕ(±)
n 〉 → |ϕ(±)

n,t 〉 = e− i
h̄

p̂2

2m
t |ϕ(±)

n 〉 (4.6)

in any formulas to introduce the time development.
The two gases in the separate traps are independent and the

state of the couple is just a product state. Each gas is described
by the canonical ensemble with a fixed number N of atoms,
and the characteristic functional for the couple is given by the
product of the two characteristic functionals for the individual
gases, each of which is given by (3.10), or equivalently (3.16),
but shifted in space. Then, the generating functional for the
density profile of the expanding and overlapping gases in free
space after the release from the two traps is readily available:
by applying the formula (2.21) to the product state under the
time evolution and by performing the integrations over the
phases of the two condensates, we get

ZN
t [�] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp
[

i
2

∑
s=±

〈
α

(s)
t

∣∣ 1
�−1(r̂)−iĜ ′

t

∣∣α(s)
t

〉]
Det[1 − i�(r̂)Ĝ ′

t ]
J0

(∣∣∣∣〈α(+)
t | 1

�−1(r̂) − iĜ ′
t

|α(−)
t 〉

∣∣∣∣
)

, (T < Tc)

1

Det[1 − i�(r̂)Ĝt ]
, (T � Tc),

(4.7)

where

Ĝt = 1
2 (F̂ (+)

t + F̂ (−)
t ), Ĝ ′

t = 1
2 (F̂ (+)′

t + F̂ (−)′
t ), (4.8)

and |α(±)
t 〉, F̂ (±)′

t , F̂ (±)
t are defined by shifting (3.11) and

(3.12) in space and time by the unitary transformations (4.1)
and (4.6); that is,

|α(±)
t 〉 = e− i

h̄

p̂2

2m
t e∓ i

h̄
p̂·d/2|α〉, (4.9)

F̂ (±)
t = e− i

h̄

p̂2

2m
t e∓ i

h̄
p̂·d/2F̂e± i

h̄
p̂·d/2e

i
h̄

p̂2

2m
t , etc. (4.10)

The grand canonical ensembles (3.18), on the other hand,
yield

ZG
t [�] = 1

Det[1 − i�(r̂)Ĝt ]
(4.11)

over the whole temperature range. It coincides with the one
for the canonical ensembles above the critical temperature
T � Tc, while they are different below T < Tc.
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V. INTERFERENCE AND FLUCTUATION

We are now ready to discuss the interference between
the two gases released from the two harmonic traps,

applying the tools introduced in Sec. II to the state obtained
in Sec. IV.

We first concentrate on the generating functional (4.7) for
the canonical ensembles, which is rewritten as

ZN
t [�] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp

[
Tr

∞∑
n=1

(∑
s=±

1

2

∣∣α(s)
t

〉〈
α

(s)
t

∣∣ + 1

n
Ĝ ′

t

)
i�(r̂)[Ĝ ′

t i�(r̂)]n−1

]

× J0

(∣∣∣∣∣
∞∑

n=1

〈α(+)
t |i�(r̂)[Ĝ ′

t i�(r̂)]n−1|α(−)
t 〉

∣∣∣∣∣
)

, (T < Tc)

exp

[
Tr

∞∑
n=1

1

n
[Ĝt i� (r̂)]n

]
, (T � Tc).

(5.1)

By noting the series expansion of the Bessel function

J0(x) = 1 − 1
4x2 + 1

64x4 + · · · , (5.2)

the average profile is immediately obtained as

ρ(r) = Gt (r,r) = 1
2 [F̂ (+)

t (r,r) + F̂ (−)
t (r,r)]. (5.3)

This is just the sum of the density profiles of the two clouds,
and no interference is observed in this quantity. This is
the “independence” of the two gases. However, interference
fringes are found in each snapshot. The average spectrum
defined in (2.11) is given in the present case by

St (k) = Tr{Ĝt e
ik·r̂ Ĝt e

−ik·r̂} − 1

4

∑
s=±

∣∣〈α(s)
t

∣∣eik·r̂ ∣∣α(s)
t

〉∣∣2
, (5.4)

both below and above the critical temperature. Since the
generic formula for the covariance (2.12) is too complicated,
we just give its expressions for two extreme cases: at zero
temperature (pure condensates),

Ct (k,k′) = 1
8 Re(〈α(+)

t |eik·r̂ |α(−)
t 〉〈α(+)

t |e−ik·r̂ |α(−)
t 〉

× 〈α(−)
t |eik′ ·r̂ |α(+)

t 〉〈α(−)
t |e−ik′ ·r̂ |α(+)

t 〉), (T = 0),

(5.5)

and above the critical temperature (in the absence of conden-
sates),

Ct (k,k′) =
∑

q=±k

∑
q ′=±k′

Tr{Ĝt e
iq·r̂ Ĝt e

−iq·r̂ Ĝt e
iq ′ ·r̂ Ĝt e

−iq ′ ·r̂}

+
∑

q ′=±k′
Tr{Ĝt e

ik·r̂ Ĝt e
−iq ′ ·r̂ Ĝt e

−ik·r̂ Ĝt e
iq ′ ·r̂}

+
∑

q ′=±k′
|Tr{Ĝt e

ik·r̂ Ĝt e
−iq ′ ·r̂}|2, (T � Tc).

(5.6)

A. At zero temperature T = 0

Let us look at the zero-temperature case in detail. In this
case, the average profile (5.3) is given by

ρ(r) = 1
2 (|α(+)

t (r)|2 + |α(−)
t (r)|2), (5.7)

the average spectrum (5.4) is reduced to

St (k) = 1
4 (|χt (k)|2 + |χt (−k)|2), (5.8)

and the covariance (5.5)

Ct (k,k′) = 1
8 Re[χ∗

t (k)χ∗
t (−k)χt (−k′)χt (k

′)], (5.9)

both given in terms of

χt (k) = 〈α(+)
t |e−ik·r̂ |α(−)

t 〉, (5.10)

which is the Fourier transform of the interference term
α

(+)∗
t (r)α(−)

t (r) between the two condensate wave functions
α

(±)
t (r). For the present harmonic traps, they read

α
(±)
t (r) =

(
mω

πh̄(1 + iωt)2

)3/4

e−mω(r∓d/2)2/[2h̄(1+iωt)]

(5.11)

and

χt (k) = e−h̄[k2+(kωt−mωd/h̄)2]/(4mω). (5.12)

The time evolution of χt (k) is shown in Fig. 1 for an
experimentally realistic set of parameters. Sharp peaks grow
in the average spectrum St (k) given in (5.8) at

k = ±kf , kf = md
h̄t

. (5.13)

The peaks become sharper and higher as time goes on. The
covariance Ct (k,k′) in (5.9), on the other hand, is vanishingly
small for any (k,k′), since the peaks of χt (k) and χt (−k) are
well separated [4]. This means that there is no fluctuation in
|δρ̃(k)|2 around the average St (k) in (5.8), and each single
snapshot exhibits a profile

δρ̃(k) � 1
2 [χt (k) e−iδt (k) + χt (−k) eiδt (−k)], (5.14)

with an unknown phase δt (k). Note that there is essentially no
overlap between χt (k) and χt (−k) and that δρ(r) is a real func-
tion; namely, δρ̃(k) = δρ̃∗(−k). In addition, the phase δt (k)
should change randomly from snapshot to snapshot to be con-
sistent with δρ(k) = 0 [see (5.7)]. By replacing δt (k) → δf =
δt (kf ) since the spectrum is very sharp at k = ±kf , and by
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FIG. 1. (Color online) The time evolution of the interference
spectrum χt (k) in (5.12) between two pure condensates at zero
temperature T = 0. The two condensates, each containing N =
5 × 106 Na atoms, are released from two harmonic traps of trapping
frequency ω = 1.6 kHz, separated by a distance d = 30 µm. The
condensates expand, overlap, and exhibit an interference pattern in
each snapshot. The critical temperature of the gas trapped in this
harmonic potential is estimated by (3.8) to be Tc = 2.0 µK.

performing the inverse Fourier transform of (5.14), we get a
snapshot profile

ρ(r) = ρ(r) + δρ(r) � 1
2 |α(+)

t (r)eiδf /2 + α
(−)
t (r)e−iδf /2|2,

(5.15)

which exhibits an interference pattern with perfect visibility
and with a spatial offset δf . Note that the visibility is essentially
ruled by the height of the spectrum St (±kf ) with its maximum
1/4.

We stress that ρ(r) obtained in (5.15) is a snapshot profile
and not a quantum-mechanical average. We started with a
fixed number N of atoms for each gas and have kept the
U(1) symmetry of the system during the whole calculation: the
symmetry breaking is not assumed. In fact, the characteristic
functional (3.10) yields

〈ψ̂(r)〉 = 0. (5.16)

Without definite relative phase between the gases, interference
would not be expected in the standard way we understand the
Young-type interference. However, a sinusoidal pattern with a
definite fringe spacing λf = 2π/kf = ht/(md) with a good
visibility is certainly observed in every snapshot as a result
of the effects of the higher-order correlations. Moreover, the
vanishing covariance allows us to reconstruct the snapshot
density profile as (5.15). These are fully consistent with a
series of the previous studies [3–7,12,13].

B. Interference and condensation

For a generic finite temperature T , it is possible to obtain
asymptotic but explicit and concise formulas for the average
spectrum St (k) and the covariance Ct (k,k′) for large t . Let
us first observe the asymptotic behavior of the wave function
ϕ

(±)
n,t (r). By the method of steepest descent (stationary-phase

approximation), we get [4,11,12]

ϕ
(±)
n,t (r) =

∫
d3ke−ih̄k2t/(2m)eik·(r∓d/2)ϕ̃n(k)

∼
(

m

ih̄t

)3/2

eim(r∓d/2)2/(2h̄t)ϕ̃n

(
m

h̄t

(
r ∓ d

2

))
.

(5.17)

The interference terms are then estimated to be

〈ϕ(±)
n′,t |e−ik·r̂ |ϕ(∓)

n,t 〉 ∼
(

m

h̄t

)3 ∫
d3rϕ̃∗

n′

(
m

h̄t

(
r ∓ d

2

))
ϕ̃n

(
m

h̄t

(
r ± d

2

))
e−i[k∓md/(h̄t)]·r

=
∫

d3k′ϕ̃∗
n′

(
k′ ∓ md

2h̄t

)
ϕ̃n

(
k′ ± md

2h̄t

)
e−ik′ · h̄t[k∓md/(h̄t)]/m

∼
∫

d3k′ϕ̃∗
n′(k′)ϕ̃n(k′)e−ik′· h̄t(k∓kf )/m, (5.18)

which is sharply peaked at k � ±kf with kf defined in (5.13) and, similarly,

〈ϕ(±)
n′,t |e−ik·r̂ |ϕ(±)

n,t 〉 ∼
(

m

h̄t

)3 ∫
d3rϕ̃∗

n′

(
m

h̄t

(
r ∓ d

2

))
ϕ̃n

(
m

h̄t

(
r ∓ d

2

))
e−ik·r

=
∫

d3k′ ϕ̃∗
n′(k′)ϕ̃n(k′)e−ik′ · h̄tk/me∓ik·[h̄kf t/(2m)] (5.19)

is sharply peaked at k � 0. At these peaks,

〈ϕ(±)
n′,t |e−ik·r̂ |ϕ(∓)

n,t 〉 ∼ 〈ϕn′ |ϕn〉, (k = ±kf ),
(5.20)

〈ϕ(±)
n′,t |e−ik·r̂ |ϕ(±)

n,t 〉 ∼ 〈ϕn′ |ϕn〉, (k = 0).

Applying these asymptotic behaviors to (5.1), we get the
average profile

ρ̃(0) ∼ 1, ρ̃(kf ) ∼ 0, (5.21)

the average spectrum

St (kf ) ∼ 1
4 Tr{F̂2}, St (0) ∼ 1

2 Tr{F̂ ′2}, (5.22)
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and the covariance

Ct (kf ,kf ) ∼ 1
16 (2 Tr{F̂4} + Tr{F̂2}2 − 3λ4),

Ct (0,0) ∼ 1
4 (3 Tr{F̂ ′4} + 2 Tr{F̂ ′2}2), (5.23)

Ct (kf ,0) ∼ 3
8 Tr{F̂ ′4},

for large t , where F̂ defined in (3.12) is the single-particle
density operator of each gas, F̂ ′ (= F̂ − |α〉〈α|) defined
in (3.11) describes the thermal excitations, and λ is the
condensation fraction. The above expressions are valid over
the whole range of temperature T . These are the main results
of this paper.

Recall here that Tr{F̂2} is the “purity” of each gas, and the
average fringe spectrum St (kf ) in (5.22) is given by the purity.
The purity is vanishingly small Tr{F̂2} ∼ 0 in the absence
of condensate above the critical temperature T � Tc, while it
becomes Tr{F̂2} ∼ O(1) as the ground state is occupied by a
macroscopic number of atoms below the critical temperature
T < Tc, approaching Tr{F̂2} = 1 for pure condensation at
T = 0. The purity is a good measure of condensation and is
adopted for a criterion of BEC by Penrose and Onsager [14].
The formula for the average fringe spectrum St (kf ) in (5.22)
explicitly clarifies the connection between the condensation
and the interference, and the importance of the condensation
for the interference. The purity

Tr{F̂2} = λ2 + Tr{F̂ ′2} (5.24)

is different from λ2 by Tr{F̂ ′2} � O(1/N) [see (C7) in
Appendix C] and, therefore, the purity is essentially given by
the square of the condensation fraction λ2 [13]. See Fig. 2,
where the average fringe spectrum St (kf ) is plotted as a
function of the temperature T .

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

T/Tc

4St(kf )

Ct(kf ,kf)

S2
t (kf )

FIG. 2. (Color online) The average and the fluctuation of the
snapshot interference spectrum, St (kf ) and Ct (kf ,kf ) given in (5.22)
and (5.23), respectively, as functions of the temperature of the gases
T . The parameters are the same as in Fig. 1. The relevant quantities λ,
Tr{F̂ ′2}, and Tr{F̂ ′4} are numerically evaluated without resort to the
continuum limit (B5). The approximate analytical expressions (C5),
(C7), and (C9) perfectly reproduce these numerical results.

The fluctuation of the fringe spectrum in (5.23) (relative to
the average), on the other hand, is estimated to be

Ct (kf ,kf )

S2
t (kf )

∼ 1 − λ4 − 2 Tr{F̂ ′4}
(λ2 + Tr{F̂ ′2})2

�
{
O(1/N ), (T < Tc)
1 + O(1/N), (T � Tc), (5.25)

by noting that

λ �
{
O(1), (T < Tc)
O(1/N), (T � Tc), (5.26)

Tr{F̂ ′4} �
{
O(1/N2), (T < Tc)
O(1/N3), (T � Tc),

(5.27)

and Tr{F̂ ′2} � O(1/N) for the whole temperature range [see
(C5), (C7), and (C9) in Appendix C]. The fluctuation is
vanishingly small below the critical temperature T < Tc [4],
while it is nonvanishing above T � Tc. As shown in Fig. 2,
the fluctuation abruptly changes at the critical temperature Tc.
In particular, the interference spectrum does not fluctuate at
any temperature below the critical temperature T < Tc and,
in this range, the interference pattern with fringe contrast λ is
certainly observed in every snapshot.

If the gases are described by grand canonical ensembles,
instead of the canonical ensembles, the statistics of the
snapshot profiles are given by ZG

t [�] in (4.11), and we
end up with different conclusion from the above. In order
to switch to the grand canonical ensembles, we have only
to replace λ → 0 and F̂ ′ → F̂ in (5.22) and (5.23). While
the average fringe spectrum St (kf ) remains unchanged, the
variance Ct (kf ,kf ) exhibits different fluctuation with the
grand canonical ensembles:

Ct (kf ,kf )

S2
t (kf )

∼ 1 + 2 Tr{F̂4}
Tr{F̂2}2

�
{

3 + O(1/N), (T < Tc)

1 + O(1/N), (T � Tc).

(5.28)

The fringe spectrum largely fluctuates below the critical
temperature T < Tc, in contrast to the vanishing fluctuation
with the canonical ensembles in (5.25) and in Fig. 2.

The main difference between the canonical and grand
canonical ensembles is the fluctuation of the total number of
atoms. In the case of canonical ensembles, it is given by St (0)
in (5.22), which is vanishingly small compared to the average
ρ̃(0) = 1 in (5.21), over the whole temperature region [18]. In
the case of the grand canonical ensembles, on the other hand,
it is given by

St (0) ∼ 1
2 Tr{F̂2} �

{ 1
2λ2 + O(1/N), (T < Tc)

O(1/N), (T � Tc),
(5.29)

and the total number of atoms becomes fluctuating below the
critical temperature T < Tc. Although usually the canonical
and grand canonical ensembles coincide in the thermody-
namical limit N → ∞, it is not the case in the presence
of condensate. This difference leads to the difference in the
fluctuation of the fringe spectrum in (5.25) and (5.28). From
a mathematical point of view, the Bessel function J0 charac-
teristic in the generating functional ZN

t [�] for the canonical
ensemble (4.7) leads to the suppression of the fluctuation in
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the fringe spectrum below the critical temperature T < Tc in
(5.25). The canonical ensemble, in which the total number
of atoms is fixed, is important for the interference pattern
to be certainly observed in every snapshot below the critical
temperature T < Tc.

VI. SUMMARY

We have studied the interference of two independently
prepared ideal gases of bosonic atoms on the basis of the idea
of measurement-induced interference. The number of atoms
in each gas, N , is fixed finite, and the U(1) symmetry of
the system is not broken. Interference fringes are, however,
observed in each snapshot, as a result of the higher-order
correlations among the identical particles. In this paper, we
are interested, in particular, in the relevance of the Bose-
Einstein condensation to this phenomenon [13]. Each gas
with the definite number of atoms N is described by a
canonical ensemble trapped in a 3D harmonic potential at
a finite temperature T [Eq. (3.10)], and the characteristic
functional ZN

t [�] for the statistics of the snapshot profiles of
the cloud of the overlapping gases released from two spatially
separated traps is computed [Eq. (4.7)]. A concise formula
is then obtained which clarifies the relationship between the
Bose-Einstein condensation and the interference: the average
fringe spectrum St (kf ) is given by the purity Tr{F̂2} of
each gas [Eq. (5.22)], which in turn is a good measure of
condensation [14]. The fluctuation of the fringe spectrum is
also analyzed [Eq. (5.23)], and the fluctuation is shown to be
vanishingly small below the critical temperature T < Tc [4]
while it is nonvanishing above T � Tc [Eq. (5.25) and Fig. 2].
For this vanishing fluctuation, the canonical ensemble (the fact
that the number of atoms in each gas is fixed) is important.

In the present paper, as well as in most of the previous
works, the measurement-induced interference has been studied
with ideal Bose gases. It is an important subject to clarify
the effects of the intra-atomic interaction in the gases [6]. It
is important to keep in mind that the single-particle density
operator F̂ is well defined even for an interacting gas, and
even in this case the purity Tr{F̂2} is a good measure for
the degree of condensation of the gas [14]. It would be
tempting to apply the same reasoning as the present analysis
for interacting gases and to see how the interaction affects

the fringe contrast and its fluctuation. However, in the case of
strongly interacting systems, the generating functional can be
substantially different from the one considered here. It is also
an interesting problem how to deal with the interaction during
the expansion of the gases in a self-consistent way, at least at
the initial stages. These issues deserve investigation.
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APPENDIX A: GENERATING FUNCTIONAL FOR
SNAPSHOT PROFILES

In this Appendix, we sketch the derivation of the formula
(2.18) for the generating functional for the snapshot profiles
Zt [�] and its application to the Gaussian state characterized
by the Gaussian characteristic functional 〈Ŵ [J,J ∗]〉t in (2.19)
to obtain Zt [�] in (2.21).

The snapshot density profile ρ(r) in (2.6) fluctuates from
snapshot to snapshot, since the configuration of the atoms
{r1, . . . ,rN } changes from run to run according to the
probability distribution P

(N)
t . The statistics of the snapshot

profiles is characterized by the generating functional Zt [�]
defined in (2.17), that is,

Zt [�] =
∫ N∏

�=1

d3r�P
(N)
t (r1, . . . ,rN ) ei

∫
d3 r�(r)ρ(r). (A1)

Setting g(r) = δ3(r) without loss of the essence of the
discussion, it is arranged in the following way to obtain the
formula in (2.18):

Zt [�] =
∫ N∏

�=1

d3r�P
(N)
t (r1, . . . ,rN )e

i
N

N∑
i=1

�(r i )

�
∞∑

M=0

1

M!

(
i

N

)M ∫ N∏
�=1

d3r�P
(N)
t (r1, . . . ,rN )

∑
· · ·

∑
i1 
=···
=iM

�(r i1 ) · · ·�(r iM ), (N � 1)

=
∞∑

M=0

1

M!

(
i

N

)M
N !

(N − M)!

∫ M∏
�=1

d3r�P
(M)
t (r1, . . . ,rM )�(r1) · · · �(rM )

=
∞∑

M=0

1

M!

(
i

N

)M ∫ M∏
�=1

d3r�〈ψ̂†(r1) · · · ψ̂†(rM )ψ̂(rM ) · · · ψ̂(r1)〉t

=
〈
: exp

[
i

N

∫
d3r�(r)ψ̂†(r)ψ̂(r)

]
:

〉
t

. (A2)
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A. For Gaussian states

For the Gaussian state characterized by the Gaussian characteristic functional 〈Ŵ [J,J ∗]〉t in (2.19), the generating functional for
the snapshot profiles Zt [�] in (2.18) is computed as

exp

[
−i

∫
d3r

δ

δJ (r)
�(r)

δ

δJ ∗(r)

]
〈Ŵ [J,J ∗]〉t = e

−i δ
δJ

� δ

δJ † ei(J †αt+α
†
t J )e−J †Ft J , (A3)

where the formula is written in a matrix representation α
†
t J = ∫

d3rα∗
t (r)J (r), J †Ft J = ∫

d3rd3r ′ J ∗(r)Ft (r,r ′)J (r ′), etc.,
and �(r,r ′) = �(r)δ3(r − r ′) is a diagonal matrix. By expressing the Gaussian factor e−J †Ft J in its (path-integral) Fourier

representation, it becomes easy to apply the functional derivative e
−i δ

δJ
� δ

δJ † to it, and we proceed as

= e
−i δ

δJ
� δ

δJ † ei(J †αt+α
†
t J ) 1

DetFt

∫
D2γ e−γ †F−1

t γ e−i(J †γ+γ †J )

= 1

DetFt

∫
D2γ e−γ †F−1

t γ ei(γ−αt )†�(γ−αt ) e−iJ †(γ−αt ) e−i(γ−αt )†J

= 1

Det (1 − i�Ft )
eiα

†
t (�−1−iFt )−1αt e−J †(F−1

t −i�)−1
J eiJ †(1−iFt�)−1αt eiα

†
t (1−i�Ft )−1J .

(A4)

By putting J,J ∗ = 0, we get (2.21).

APPENDIX B: CANONICAL ENSEMBLE

The characteristic functional for the canonical ensemble
〈Ŵ [J,J ∗]〉N defined in (3.9) is to be estimated on the sector
with a definite number N of atoms specified by the projection
operator P̂N . It is not easy to carry out such a calculation in
a straightforward way but, still, it is possible to obtain the
formula for 〈Ŵ [J,J ∗]〉N , as demonstrated in [17] for the ideal
Bose gas in free space. In this Appendix, we derive the formula
(3.10) for the canonical ensemble of the ideal Bose gas trapped
in a single harmonic potential, in the regime (3.6) relevant in
the ordinary experiments.

Observe first that, by noting that∑
N

P̂N = 1, (B1)

the average in the canonical ensemble 〈Ŵ [J,J ∗]〉N in (3.9)
is, in general, related to that in the grand canonical ensemble
〈Ŵ [J,J ∗]〉G in (3.18) as

〈Ŵ [J,J ∗]〉G =
∑
N

Tr{Ŵ [J,J ∗]P̂Ne−β(Ĥ−µN̂ )}
Tr{e−β(Ĥ−µN̂)}

=
∑
N

eβµN Tr{Ŵ [J,J ∗]P̂Ne−βĤ }
Tr{e−β(Ĥ−µN̂ )}

=
∑
N

eβµN Tr{P̂Ne−βĤ }
Tr{e−β(Ĥ−µN̂ )} 〈Ŵ [J,J ∗]〉N

=
∑
N

〈P̂N 〉G〈Ŵ [J,J ∗]〉N . (B2)

Note that the chemical potential µ in the grand canonical
ensemble 〈· · ·〉G is fixed by imposing

〈N̂〉G =
∑

n

f (εn) = N̄, (B3)

for a given N̄ , where f (ε) is the Bose distribution function
defined in (3.13). For the ideal Bose gas trapped in an isotropic
3D harmonic potential characterized by a trapping frequency ω

(see Sec. III), the condition (B3) reads [2]

∫
ux,uy ,uz�0

d3u
1

e−βµeux+uy+uz − 1
= σ̄ (B4)

in the limit

βh̄ω → 0 keeping σ̄ = (βh̄ω)3N̄ finite. (B5)

There exists a solution µ (�0) to this equation only when

σ̄ � σ̃ =
∫

ux,uy ,uz�0
d3u

1

eux+uy+uz − 1
= ζ (3); (B6)

namely, when

T � Tc (B7)

with Tc defined in (3.8) (but with N̄ instead of N ). In the other
temperature region T < Tc, the chemical potential is vanishing
µ = 0 and the excess number

σ0 = σ̄ − σ̃ = λσ̄ , (T < Tc) (B8)

is attributed to the condensed atoms, with the condensation
fraction λ presented in (3.7).
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Now, the characteristic functional for the grand canonical ensemble is estimated to be

〈Ŵ [J,J ∗]〉G = exp

[
−

∑
n

f (εn)|Jn|2
]

, Jn =
∫

d3rϕ∗
n(r)J (r)

→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp

[
−σ0|J0|2 −

∫
ux,uy ,uz�0

d3u
|Ju|2

eux+uy+uz − 1

]
, (T < Tc)

exp

[
−

∫
ux,uy ,uz�0

d3u
|Ju|2

e−βµeux+uy+uz − 1

]
, (T � Tc)

≡ WG[J ,J ∗] (B9)

in the limit (B5), where J is scaled as

Jn = (βh̄ω)3/2Ju, u = βh̄ωn. (B10)

As for the factor 〈P̂N 〉G, by noting that

〈e−iθN̂ 〉G =
∏

n

[1 + f (εn)(1 − e−iθ )]−1, (B11)

we have

(βh̄ω)−3〈P̂N 〉G = (βh̄ω)−3
∫ π

−π

dθ

2π
〈eiθ(N−N̂ )〉G →

⎧⎪⎪⎨
⎪⎪⎩

∫ ∞

−∞

dξ

2π

eiξ (σ−σ̃ )

1 + iξσ0
= θ (σ − σ̃ )

1

σ0
e−(σ−σ̃ )/σ0 , (T < Tc)∫ ∞

−∞

dξ

2π
eiξ (σ−σ̄ ) = δ(σ − σ̄ ), (T � Tc)

≡ K(σ ), (B12)

with σ = (βh̄ω)3N . The characteristic functional for the
canonical ensemble in the continuum limit

〈Ŵ [J,J ∗]〉N → Wσ [J ,J ∗] (B13)

is then available by inverting the relation

WG[J ,J ∗] =
∫ ∞

0
dσK(σ )Wσ [J ,J ∗]. (B14)

Above the critical temperature T � Tc, it is just given by

Wσ [J ,J ∗] = WG[J ,J ∗]|σ̄=σ

= exp

[
−

∫
ux,uy ,uz�0

d3u
|Ju|2

e−βµeux+uy+uz − 1

]
,

(T � Tc),

(B15)

where µ is fixed by (B4) with σ in place of σ̄ . Below the
critical temperature T < Tc, on the other hand, the relation
(B14) is essentially the Laplace transformation,∫ ∞

0
dσ ′ e−σ ′/σ0Wσ ′+σ̃ [J ,J ∗]

= σ0e
−σ0|J0|2 exp

[
−

∫
ux,uy ,uz�0

d3u
|Ju|2

eux+uy+uz − 1

]
,

(T < Tc),

(B16)

which is inverted, by noting a formula for the Bessel function

Jν(z) =
(

z

2

)ν ∫
CB

ds

2πi
s−ν−1es−z2/(4s), (B17)

to yield

Wσ [J ,J ∗] = J0(2
√

σ − σ̃ |J0|)

× exp

[
−

∫
ux,uy ,uz�0

d3u
|Ju|2

eux+uy+uz − 1

]
,

(T < Tc).

(B18)

Equations (B15) and (B18) are presented in (3.10), keeping in
mind the limit (B5) and the scaling (B10).

APPENDIX C: CONDENSATION FRACTION AND PURITY

Let us estimate Tr{F̂ ′2} and Tr{F̂ ′4}, which control the av-
erage spectrum St (k) and the covariance Ct (k,k′) in Sec. V B.
We start by looking at Tr{F̂ ′}. For the ideal Bose gas trapped
in a single harmonic potential, setup in Sec. III, we have [16]

N =
∑

n

1

eβ(εn−µ) − 1

=
∑

n

∞∑
j=1

e−jβ(εn−µ)

=
∞∑

j=1

zj 1

(1 − e−jβh̄ω)3
, (C1)
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where z = eβµ. By splitting the occupation of the ground state,

= z

1 − z
+

∞∑
j=1

zj

(
1

(1 − e−jβh̄ω)3
− 1

)
. (C2)

Now, since βh̄ω 	 1 in the regime (3.6), we approximate it
by [16]

� z

1 − z
+ 1

(βh̄ω)3

∞∑
j=1

zj

j 3

= z

1 − z
+ 1

(βh̄ω)3
g3(z), (C3)

where

gn(z) =
∞∑

j=1

zj

jn
. (C4)

Therefore, the condensation fraction is given by

λ = 1

N

z

1 − z
� 1 − g3(z)

(βh̄ω)3N
= 1 −

(
T

Tc

)3
g3(z)

ζ (3)
, (C5)

where Tc is defined in (3.8). This is nothing but (3.7).
Remember the condition for the chemical potential (3.14) and
g3(1) = ζ (3).

Quite similarly, the purity of the gas is estimated as

∑
n

1

(eβ(εn−µ) − 1)2
=

∞∑
j=1

(j − 1)zj 1

(1 − e−jβh̄ω)3

=
(

z

1 − z

)2

+
∞∑

j=1

(j − 1)zj

(
1

(1 − e−jβh̄ω)3
− 1

)

�
(

z

1 − z

)2

+ 1

(βh̄ω)3
[g2(z) − g3(z)] ; (C6)

that is,

Tr{F̂2} � λ2 + 1

N

(
T

Tc

)3
g2(z) − g3(z)

ζ (3)
. (C7)

Note that g2(1) = ζ (2) = π2/6. Furthermore,

∑
n

1

(eβ(εn−µ) − 1)4
=

∞∑
j=1

(j − 1)(j − 2)(j − 3)zj 1

(1 − e−jβh̄ω)3

�
(

z

1 − z

)4

+ 1

6(βh̄ω)3

(
z

1 − z
+ 6 ln(1 − z) + 11g2(z) − 6g3(z)

)
, (C8)

and hence,

Tr{F̂4} � λ4 + 1

6ζ (3)N2

(
T

Tc

)3 [
λ

(
1 + 6

1 − z

z
ln(1 − z)

)
+ 1

N
[11g2(z) − 6g3(z)]

]
. (C9)
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