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Light-shift-induced quantum phase transitions of a Bose-Einstein condensate in an optical cavity
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In this paper we reveal the rich ground-state properties induced by the strong nonlinear atom-photon
interaction which has been found in the recent experiment about a Bose-Einstein condensate coupling with
a high-finesse cavity [Nature (London) 464, 1301 (2010)]. Two detuning-dependent phase diagrams are revealed
by investigating the experimentally measurable atomic population. In particular, two quantum phase transitions
from the superradiant phase or the normal phase to a dynamically unstable phase are predicted in the blue detuning.
Moreover, the three-phase coexistence points are found. It is also demonstrated that these predicted quantum
phase transitions are the intrinsic transitions governed only by the second-order derivative of the ground-state
energy. Finally, we also point out that the region involving coexistence of the superradiant phase and the normal
phase previously predicted cannot happen in the ground state.
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Quantum phase transition, which describes a structural
change in the properties of the ground-state energy spectrum, is
not only a fundamental way to explore many-body physics [1],
but also a good resource for processing quantum information
[2]. In the Dicke model all two-level atoms are coupled with
a cavity field [3]. An interesting quantum phase transition
from the normal phase to the superradiant phase, which was
predicted more than 30 years ago [4,5], occurs. However, in
order to capture this quantum phase transition, the collective
atom-photon coupling strength needs to be of the same order
as the energy separation between the two atomic levels,
which was thought to be impossible to satisfy. Recently, by
introducing two optical Raman transitions in a four-level
atomic ensemble, this challenging transition condition can
be accessible by controlling the pump laser power [6]. More
importantly, in a Bose-Einstein condensate (BEC) with a high-
finesse optical cavity, which has been regarded as a promising
platform to explore the exotic many-body phenomena from
atomic physics to quantum optics in a well-controlled way
[7–24], this superradiant-normal quantum phase transition has
been observed successfully in experiment [25].

It is worth noting that in the above BEC-cavity experiment,
a generalized Dicke model with a nonlinear atom-photon
interaction Sza

†a, where Sz is the collective spin operator and
a† (a) are the creation (annihilation) operator of the photon,
is first realized [25]. This nonlinear interaction arises from
the dispersive shift of cavity frequency. For a weak nonlinear
interaction, the onset of self-organization for the ultracold
atoms can be used to detect the superradiant-normal quantum
phase transition in the blue detuning of cavity frequency [26].
However, the magnitude of this nonlinear interaction can arrive
at the same order as those of the detuning of cavity frequency
and the collective coupling strength. Moreover, the rich
dynamical properties including the multiphase coexistence
regions and the persistent optomechanical oscillations have
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been predicted theoretically in the strong nonlinear interaction
[27].

In the present paper we will reveal the rich ground-state
properties induced by the strong nonlinear atom-photon inter-
action under the current experimental setup of the BEC-cavity
system [25]. Two detuning-dependent phase diagrams will
be predicted by investigating the experimentally measurable
atomic population. In the blue detuning, the superradiant-
normal quantum phase transition can be well driven by this
nonlinear interaction. However, in the red detuning, two new
quantum phase transitions from the superradiant phase or the
normal phase to a dynamically unstable phase will be found,
and the three-phase (the superradiant, normal, and dynamically
unstable phases) coexistence points will be given. Moreover,
it will be demonstrated that our preicted quantum phase
transitions are not depicted by considering the conventional
Landau’s theory with the breaking of symmetry, but belong
to the intrinsic transitions governed only by the second-order
derivative of the ground-state energy. Finally, we will point
out that the region involving coexistence of the superradiant
phase and the normal phase, which was predicted in Ref. [27],
cannot happen in the ground state.

Figure 1 shows the recent experimental setup that a 87Rb
BEC with the 105 ultracold atoms interacts with a high-
finesse optical cavity with a transverse pump laser [25].
In particular, in Fig. 1(b), an effective four-level atomic
ensemble, whose levels are respectively labeled by the zero
momentum state |0,0〉, the excited states |px,pz〉 = |±k,0〉
and |px,pz〉 = |0,±k〉, and the symmetric superposition of
states |px,pz〉 = |±k,±k〉 with px and pz being the momenta
in the x and z directions, is constructed by means of two
balanced Raman channels from light scattering the pump laser
and the cavity mode. In the dispersive limit, the excited atoms
re-emit virtual photons either along (x) or transverse (z) to the
cavity. As a result, the excited-state levels |px,pz〉 = |±k,0〉
and |px,pz〉 = |0,±k〉 can be eliminated adiabatically, and
an effective two-level system with the zero momentum state
|px,pz〉 = |0,0〉 and the symmetric superposition of states
|px,pz〉 = |±k,±k〉 is formed [6]. This physical realization has
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FIG. 1. (Color online) (a) A 87Rb BEC with the ultracold atoms
interacts strongly with a high-finesse optical cavity driven by a
transverse pump laser. (b) The effective two-level system with the
atomic zero momentum state |px,pz〉 = |0,0〉 and the symmetric
superposition of states |px,pz〉 = |±k,±k〉 is constructed by means
of two balanced Raman channels from light scattering the pump laser
and the cavity mode [25].

a good advantage in that the smaller energy scale Ek = k2/2m

of the effective two levels is derived. When all ultracold atoms
with these different momentum states are coupled identically
with the single-mode cavity field, a generalized Dicke model
is obtained by [25,26]

H = ωa†a + ω0Sz + U

N
Sza

†a + g0√
N

(aS+ + a†S−)

+ g1√
N

(a†S+ + aS−). (1)

In Hamiltonian (1), the collective atomic operators
are expressed as S+ = S

†
− = ∑

i |±k,±k〉ii〈0,0| and Sz =∑
i(|±k,±k〉ii〈±k,±k| − |0,0〉ii〈0,0|), where the index i la-

bels the ultracold atom. The nonlinear atom-photon interac-
tion, resulting from the dispersive shift of cavity frequency
ωc, is given by U = N�U0 = N�(g′)2/(ωp − ωa), where
g′ is the coupling strength between the single atom and the
photon, ωa is the atomic transition frequency, ωp is the pump
laser frequency, and � is a constant. The effective cavity
frequency becomes ω = ωc − ωp + NU0(1 + �)/2. The ef-
fective atomic frequency is twice the atomic recoil energy ωr

= k2/2m, namely ω0 = 2ωr . The collective coupling strength
is given by g0 = g1 = g′�

√
N/2(ωp − ωa) with � being the

pump Rabi frequency, which is tuned in experiment by varying
the pump laser power [25].

To understand quantum phase transition, it is necessary to
investigate the ground-state properties for a given many-body
system [1]. For Hamiltonian (1) with the large atomic number
(N ∼ 105), its ground-state properties can be well determined
by means of the Holstein-Primakoff transformation, which
is defined as S+ = b†

√
N − b†b, S− = √

N − b†bb,
and Sz = (b†b − N/2) with [b,b†] = 1 [28]. Under
this transformation, Hamiltonian (1) becomes H =
ω′a†a + ω0(b†b − N

2 ) + U
N

b†ba†a + g0√
N

(ab†
√

N − b†b +
a†√N − b†bb) + g1√

N
(a†b†

√
N − b†b + a

√
N − b†bb) with

ω′ = ωc − ωp + NU0/2. In order to describe the collective
behaviors of both the ultracold atoms and the photon, we
should introduce two shifting boson operators c†and d†

with properly scaled auxiliary parameters α and β such that

c† = a† + √
Nα and d† = b† − √

Nβ [28]. By means of the
boson expansion method, the scaled energy can be given by

E(α,β)

N
= ωα2 + (ω0 + Uα2)

(
β2 − 1

2

)
− 2αβg

√
1 − β2,

(2)

where

g = g0 + g1. (3)

With the equilibrium condition ∂E(α)/∂α = 0, namely,

α = gβ
√

1 − β2

ω + U (β2 − 1/2)
, (4)

the scaled energy in Eq. (2) becomes E(β)/N = ω0β
2 −

ω0/2 − g2β2(1 − β2)/[ω + U (β2 − 1/2)]. By using another
equilibrium condition ∂E(β)/∂β = 0, an equation governing
the fundamental feature of quantum phase transitions for
Hamiltonian (1) can be obtained by

β

{
g2[2β2 − (1 − δ)]

ω + U (β2 − 1/2)
+ Ug2β2(1 − β2)

[ω + U (β2 − 1/2)]2

}
= 0, (5)

where

δ = ω0

g2

[
ω + U

(
β2 − 1

2

)]
. (6)

For U = 0, Hamiltonian (1) reduces to the standard
Dicke model HD = �ca

†a + ω0Sz + g√
N

(a + a†)(S+ + S−)
with �c = ωc − ωp [3]. The corresponding auxiliary pa-
rameters α and β can be derived from α = gβ

√
1 − β2/�c

and β[2β2 − (1 − δD)] = 0 with δD = �cω0/g
2. For the red

detuning (�c > 0), it can be found that β = ±√
(1 − δD)/2 if

δD < 1 and β = 0 if δD > 1. At the critical point gc = √
�cω0

(δD = 1), the well-known superradiant-normal quantum phase
transition occurs [28]. Moreover, the nonzero parameters α

and β show that the BEC-cavity system is in the superradiant
phase with the macroscopic excitations for both the ultracold
atoms (β) and the photon (α). However, for the blue detuning
(�c < 0), whenever δD > −1 or δD < −1 resulting from
β2 � 1, β ≡ 0 since ∂2E(β)/∂β2 < 0 when β2 = (1 − δD)/2.
It means that only the normal phase (β ≡ 0) exists in the
BEC-cavity system and no superradiant-normal quantum
phase transition happens. Thus, in the usual considerations
before, the case of the blue detuning has been almost omitted.
However, we will demonstrate below that this Dicke-type
quantum phase transition can be induced by the light-shift-
induced interaction U in this blue detuning regime. More
importantly, in the red detuning, two new quantum phase
transitions will be predicted.

Having discussed the ground-state properties of Hamilto-
nian (1) with U = 0, we now focus on the case of U �= 0. In
terms of Eq. (5), the parameter β has the following solutions:

β = 0, β2
± = − Q

2P
±

√
Q2 − 4PR

2P
(7)

with

P = U (g2 + ω0U ), (8)

Q = (g2 + Uω0)(2ω − U ), (9)
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FIG. 2. (Color online) The scaled atomic population 〈Sz〉/N as
the function of the collective coupling strength g and the light-
shift-induced interaction U . The plotted parameters are given by
�c = −20 MHz, ω0 = 1 MHz, and � = 3/4 [25]. Inset: 〈Sz〉/N as
a function of g for different U with the same parameters.

R =
[
ω0

(
ω − U

2

)
− g2

] (
ω − U

2

)
. (10)

In the following, we will calculate numerically the experimen-
tally measurable ground-state atomic population 〈Sz〉/N =
(β2 − 1/2), based on Eq. (7) with the physical conditions Q2 −
4PR � 0, β2

± � 1, and ∂2E(β)/∂β2 � 0. We first address the
case of the blue detuning (�c < 0). Figure 2 shows the scaled
atomic population 〈Sz〉/N as the function of the collective
coupling strength g and the light-shift-induced interaction U .
For U = 0, the BEC-cavity system is located at the normal
phase without collective excitations, which agrees with the
previous predictions [28]. With the increasing of both U and
g, the quantum phase transition from the superradiant phase
(〈Sz〉/N �= −1/2) to the normal phase (〈Sz〉/N = −1/2) can
be driven successfully by the light-shift-induced interaction U .
Moreover, the critical point depends strongly on the magnitude
of the light-shift-induced interaction U , as shown in the inset
of Fig. 2.

For the red detuning (�c > 0), some surprising results that
have not been obtained before are revealed. Figure 3(a) shows
the numerical simulation of the scaled atomic population
〈Sz〉/N as the function of the collective coupling strength g and
the light-shift-induced interaction U . For a small U this BEC-
cavity system exhibits the superradiant-normal quantum phase
transition [(I)↔(II)], which has been predicted in the previous
theory [9] and also demonstrated in the recent experiment [25].
With the decreasing of the negative U , the real parameter
β in the normal and superradiant phases becomes complex
since Q2 − 4PR < 0 and the BEC-cavity system enters a
dynamically unstable regime. Since the nonzero solutions β2

±
match the κ → 0 limit of Eq. (5) in Refs. [28] and [29],
the dynamically unstable regime here is the same as that of
Ref. [27]. However, in the present paper two regions exhibiting
the superradiant-normal quantum phase transitions [(I)↔(III)

FIG. 3. (Color online) (a) The scaled atomic population 〈Sz〉/N
as the function of the collective coupling strength g and the light-shift-
induced interaction U . The plotted parameters are given by �c = 20
MHz, ω0 = 1 MHz, and � = 3/4 [25]. The superradiant regions (II)
and (III) are determined by β = β+ in Eq. (7). (b) 〈Sz〉/N as the
function of g and �c with U = −20 MHz for ω0 = 1 MHz and
� = 3/4 [25].

and (III)↔(V)] occur, as shown in Fig. 3(a). More importantly,
two new quantum phase transitions from the normal phase to
the dynamically unstable phase [(I)↔(IV) and (V)↔(IV)] and
from the superradiant phase to the dynamically unstable phase
[(II)↔(IV) and (III)↔(IV)] happen. Moreover, three three-
phase (the superradiant, normal, and dynamically unstable
phases) coexistence points determined by ∂2E(β)/∂β2 = 0
are found. As will be demonstrated below, the second-order
derivative of the ground-state energy ∂2E(β)/∂β2 is negative
in this dynamically unstable phase. In Fig. 3(b), the scaled
atomic population 〈Sz〉/N as the function of the collective
coupling strength g and the detuning �c for a given light-shift-
induced interaction U = −20 MHz is plotted. Figure 3(b) also
shows the fundamental properties of our predicted quantum
phase transitions.

On the other hand, in terms of Eq. (4), the mean-intracavity
photon number 〈a†a〉/N = α2 becomes infinity and the
ground-state energy is also infinitely negative for a finite β =
±√

1/2 − ω/U . This is another important difference in that
the dynamically unstable regime in this paper corresponds to a
set of parameters for which Hamiltonian (1) is unbounded from
below. In the open system with nonzero κ , this BEC-cavity
system cannot acquire an infinite photon density, but can lead
to a new superradiant solution given in Eq. (6) of Ref. [27].
Also, in region III, a solution with the infinite mean-intracavity
photon number appears again, although the local energy
minimum exists.

In the standard Dicke model with the normal phase, the sys-
tem has the parity symmetry, which is broken in the superradi-
ant phase. It implies that the well-known superradiant-normal
quantum phase transition is governed by Landau’s theory with
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FIG. 4. (Color online) The second-order derivative of the scaled
energy ∂2E(β)/∂β2 as the function of the collective coupling strength
g and the light-shift-induced interaction U with (a) β = 0 and (b) β =
β+. The plotted parameters are given by �c = 20 MHz, ω0 = 1 MHz,
and � = 3/4 [25].

the breaking of symmetry. However, from this conventional
Landau’s theory, it seems that our predicted quantum phase
transitions can not occur. What is the corresponding physical
mechanism? In Fig. 4, the second-order derivative of the
ground-state energy with respect to β as the function of
the collective coupling strength g and the light-shift-induced
interaction U is plotted. In the normal phase with α ≡ β ≡
0, this light-shift-induced nonlinear interaction governed by
Hamiltonian Sza

†a does not affect the ground-state properties
since 〈a†a〉 = 0. In this case, the second-order derivative of the
ground-state energy ∂2E(β)/∂β2 is positive. However, when

both the atoms and the photon are excited collectively, this
nonlinear interaction plays an important role in the ground-
state properties. In particular, this second-order derivative can
be driven from the positive [∂2E(β)/∂β2 � 0] to the negative
[∂2E(β)/∂β2 � 0] without the breaking of symmetry. Thus,
we argue that these predicted quantum phase transitions are
the intrinsic transitions governed only by the second-order
derivative of the ground-state energy.

Finally, we make one remark about the multiphase coex-
istence behavior, which was predicted in Ref. [27]. In terms
of the conditions ∂E(β)/∂β = 0 and ∂2E(β)/∂β2 � 0, region
(V) in Fig. 3(a) coexists with the superradiant phase (β = β+)
and the normal phase (β = 0). In fact, the energy for β = β+ is
higher than that for β = 0, namely, E(β = β+) > E(β = 0).
For the ground state, only the case β = 0 is valid and the BEC-
cavity system is in the metastable state for β = β+. It implies
that the region involving coexistence of the superradiant phase
and the normal phase cannot happen in the ground state.

In summary, we have found two new quantum phase
transitions from the superradiant phase or the normal phase
to the dynamically unstable phase in the BEC-cavity system.
Moreover, we have also pointed out that the multiphase
coexistence regions predicted before cannot happen in the
ground state. Based on the experimental developments, we
believe that our predictions can be detected by measuring
the atomic population or mean-intracavity photon number.
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