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Large-photon-number extraction from individual atoms trapped in an optical lattice
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The atom-by-atom characterization of quantum gases requires the development of novel measurement
techniques. One particularly promising new technique demonstrated in recent experiments uses strong fluorescent
laser scattering from neutral atoms confined in a short-period optical lattice to measure the positions of individual
atoms in the sample. A crucial condition for the measurements is that atomic hopping between lattice sites
must be strongly suppressed despite substantial photon recoil heating. This paper models three-dimensional
polarization gradient cooling of atoms trapped within a far-detuned optical lattice. The atomic dynamics are
simulated using a hybrid Monte Carlo and master-equation analysis in order to predict the frequency of processes
which give rise to degradation or loss of the fluorescent signal during measurements. It is shown, consistently with
the experimental results, that there exists a wide parameter range in which the lifetime of strongly fluorescing
isolated lattice-trapped atoms is limited by background gas collisions rather than radiative processes. In these
cases the total number of scattered photons can be as large as 108 per atom. The performance of the technique is
related to relevant experimental parameters.
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I. INTRODUCTION

The detailed characterization of nonlinear many-body
quantum dynamics is a major goal of ultracold atomic and
condensed-matter physics. In recent years there has been
significant experimental progress in creating strongly inter-
acting quantum systems within ultracold atomic ensembles
(see the review article [1] and references therein, and recent
work including [2,3]). The strong interaction between neutral
gaseous alkali-metal atoms and laser radiation allows for the
prospect that such strongly interacting quantum systems can
be probed and investigated at the resolution of single atoms.
This has been demonstrated very recently in two experiments
[4,5]; it may be anticipated that the excellent results from
these experiments will stimulate further experimentation using
similar techniques.

The motivation to measure the spatial position of each
atom in a strongly interacting quantum system is the desire to
probe its structure and properties at an unprecedented level of
detail. Strongly interacting quantum systems tend to exhibit
much more complex dynamics than weakly interacting or
linear quantum systems; this complexity leads to emergent
behavior such as exotic phases of the quantum matter. Such
behavior is often hard to simulate and fully understand on
a theoretical level. Atom-by-atom measurements on these
systems would allow much more detailed cross-checking of
theoretical models against real data than is currently available,
facilitating a much more complete understanding of these
complicated dynamics. The substantial flexibility available
in choosing the system Hamiltonian has led the idea that
such systems may be used as “quantum simulators” to probe
various many-body Hamiltonians of interest in condensed-
matter physics [6,7].
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In order to take images of the atomic distribution at
single-atom resolution, recent experiments [4,5,8,9] have used
a deep far-detuned optical lattice to confine and mutually
exclude the atoms as they are being measured. To detect the
presence of an atom at a site with high confidence, the atoms
must be localized to individual lattice sites throughout the
duration of the measurement, despite substantial photon-recoil
heating. This means that the atoms need to be cooled as they
are fluorescing; in current experiments polarization-gradient
cooling is used, with the cooling light collected to form the
fluorescent signal. If atoms were to hop between lattice sites,
not only would the spatial resolution of the signal be degraded,
but there is a good chance that atoms would be lost from the
measurement region entirely by undergoing a light-assisted
collision with another atom, or hopping to the edge of the
lattice. Therefore, for efficient detection, hopping between
lattice sites should be minimized while fluorescent scattering
should be maximized.

The purpose of this paper is to model the physical process
of polarization-gradient cooling of isolated atoms in a deep far-
detuned optical lattice in order to understand and support future
experiments performed using this technique. In particular,
the dependence of the atomic hopping rate between sites
of the lattice is investigated as a function of experimental
parameters.

The available literature concerned with the polarization-
gradient cooling of confined atoms is limited to the study
of atomic dynamics in dissipative optical lattices (for a
comprehensive review, see [10]), and does not directly address
the situation at hand. The polarization-gradient cooling of ions
has also been studied in separate work [11,12].

In common with most theoretical treatments of laser
cooling, this paper uses a semiclassical Monte Carlo technique
in order to model polarization-gradient cooling in a compu-
tationally tractable manner. The current situation differs from
previous work in the context of dissipative optical lattices
(e.g., [13–15]) in the use of a separate far-detuned optical
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lattice to confine the atoms and a higher than usual atomic
saturation parameter during the cooling process; these both
help to maximize the ratio of the fluorescent scattering rate to
the hopping rate.

This paper also differs from previous publications by the use
of a hybrid Monte Carlo master-equation (HMCME) technique
to extract the quantity of interest—the hopping rate between
wells—from the simulation. This is necessary due to the
difficulty in extracting the hopping rate from the Monte Carlo
simulation alone. The difficulty is due to the great disparity
in time scales; while intra-atomic dynamics take place on a
time scale of 10−6 s, it is desired that atomic hopping between
lattice sites takes place on a time scale greater than 102 s.
The direct Monte Carlo simulation of the hopping is therefore
unfeasible. The approach taken uses Monte Carlo simulations
of the short-time dynamics to construct a master-equation
rate model for the simulation of the long-time behavior. This
approach differs from those usually employed when simulating
ultracold atomic dynamics.

The present paper studies the dynamics of atoms under-
going polarization-gradient cooling in a deep far-detuned
optical lattice. While this is the basis for optical resolved-
atom measurements of the spatial distribution of an atomic
sample, other considerations are also important in those
experiments. Light-assisted collisions quickly eject atom pairs
from multiply occupied wells during the first small fraction
of the measurement period; in current experiments the parities
of the site occupation numbers are measured rather than the
true spatial distribution of the atoms. Another consideration
is that it is desirable that the design of the optical apparatus
allows the resolution of each individual lattice site within the
imaging plane. Furthermore, if the atomic sample is three
dimensional, scattering from atoms in the imaging plane
should be distinguishable from the scattering from out-of-
focus atoms. These considerations, while important, relate to
the interpretation of the measurement data and to the design of
the optical apparatus; as such, they may be divorced from the
basic physical process under examination in this paper, and
are left to be discussed elsewhere [16].

Looking beyond the two-dimensional measurements of
the recent experiments [4,5], three-dimensional resolved-atom
tomographic measurements of atomic distributions are possi-
ble with suitable apparatus [8]. Tomographic measurements
require multiple exposures to probe the complete atomic
distribution; this substantially increases the time needed
for the measurement. This places correspondingly stricter
requirements on the atomic fluorescence and hopping rates,
and it becomes much more important to optimize the scattering
rate from each atom without recoil heating leading to atom loss
during the measurement period.

The simulation developed in this paper is used in a separate
presentation by the author [16] to inform the design of an
experimental method which is capable of three-dimensional
tomographic measurements of the position of each atom
in strongly interacting quantum systems at half-wavelength
spatial resolution. Reference [16] outlines a potential solution
to the problems of resolvability and light-assisted collisions
during fluorescent measurements of dense ultracold atomic
systems. Furthermore, a solution to the out-of-plane scattering
problem—the background noise generated by fluorescent

scattering from atoms outside the tomographic section in a
three-dimensional sample—is proposed, and is modeled using
the simulation developed in the current paper.

In fact the fluorescent imaging of atoms undergoing
in-lattice polarization-gradient cooling is a measurement
technique which has the potential to be used in a wider
class of experiments than just the resolved-atom experiments
described above. The ability to extract a very strong signal
from each atom in a dilute sample may be useful in a
variety of scenarios; for example, to make a time-of-flight
(column-density) measurement on a very low-atom-number
sample which is unobservable using absorption imaging due
to its dilution. In contrast to resolved-atom measurements on
dense samples, very high spatial resolution is likely not needed,
so simpler apparatus may be used.

The structure of this paper is as follows. A conceptual
outline of polarization-gradient cooling for an atom in an
optical lattice is given in Sec. II, with emphasis on how the
lattice affects the cooling process. The system is described
theoretically in Sec. III, and the dynamical equations are
rendered suitable for computation by the use of a semiclassical
Monte Carlo wave-function method. In Sec. IV the hybrid
Monte Carlo master-equation method is developed in order to
predict the atomic hopping rate between wells. In Sec. V the
frictional force experienced by atoms undergoing polarization-
gradient cooling in a far-detuned optical lattice is calculated
and compared to the case of untrapped atoms. A calculation of
the site hopping rate is presented for a specific set of parameters
in Sec. VI. The dependence of the site confinement time on the
cooling configuration and system parameters is investigated in
Sec. VII, and conclusions are drawn.

II. POLARIZATION-GRADIENT COOLING OF ATOMS
TRAPPED IN A LATTICE POTENTIAL

A. Polarization-gradient cooling without
the additional potential

Polarization-gradient cooling exploits the polarization gra-
dients of light fields to cool atoms. We briefly review two
specific types of polarization-gradient cooling which were
analyzed in a seminal paper by Dalibard and Cohen-Tannoudji
[17]: the one-dimensional orthogonal linear (lin ⊥ lin) and
orthogonal σ (σ+σ−) configurations for two equal-intensity
counterpropagating laser beams.

For the lin ⊥ lin configuration, the positive component of
the electric field is

E+ ∝ cos(kz + φ)e−1 − i sin(kz + φ)e+1, (1)

where e±1 =∓(1/
√

2)(x̂ ± i ŷ). The light potential consists of
alternating standing waves of σ+ and σ− light. For a ground-
state atom with a spin of Jg = 1/2, the σ+ standing wave
couples more strongly to the mJ =+1/2 state, and vice versa;
the ground-state light shifts therefore oscillate alternately
according to position [see Fig. 1(a)]. Furthermore, the σ+ (σ−)
light pumps atoms toward the mJ =+1/2 (mJ =−1/2) state,
which for negative laser frequency detuning, lies below the
original state. The motion of the atom is therefore described
by a loss in translational energy as the atom climbs the
state-dependent lattice potential, followed by optical pumping
from a peak to a trough in the lattice potential accompanied
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(a) Without pinning lattice

(b) In pinning lattice, minima
coincide (φ= 0)

(c) In pinning lattice, minima

displaced (φ= π/4)

FIG. 1. (Color online) Polarization gradient cooling in the one-
dimensional (1D) lin ⊥ lin configuration for an atom with Jg = 1/2.
(a) Without pinning lattice. The atom loses kinetic energy as it climbs
the potential; near the top of the potential, it is optically pumped
into the lower potential, losing energy over the complete cycle.
(b) Confined by a pinning lattice (with spatial period λl/2) with
minima coinciding with those of the state-dependent lattice formed
by the cooling light (φ = 0). The cooling is inefficient for atoms
which have less than half of the lattice binding energy. (c) Confined
by a pinning lattice (with spatial period λl/2) with offset minima
(φ = π/4). The low-energy curve crossing enables deeply bound
atoms to be cooled efficiently.

by a much smaller recoil momentum exchange [see Fig. 1(a)].
This “Sisyphus” process is dissipative.

For the σ+σ− configuration, the positive component of the
electric field is

E+ ∝ cos(kz + φ)x̂ − sin(kz + φ) ŷ. (2)

This polarization is always linear, but oriented at an angle
which is proportional to z; it is convenient to think of a spatially
varying atomic orientation axis parallel to the electric field, so
the light is π polarized everywhere. While the lights shifts
are constant, they are not equal for ground-state atoms with
spin Jg � 1; the Clebsch-Gordan coefficients are such that,
with the laser tuned below resonance, the energy offset of the
states increases monotonically with |mJ |. Optical pumping
preferentially transfers population from the high-|mJ | (higher-
energy) states to the low-|mJ | (lower-energy) states. As the

atom moves, the new basis is different from the original basis.
If the atom starts in a low-|mJ | state in the original basis,
the atom has a higher proportion of its density matrix in the
higher-|mJ | states in the new basis; these lie higher in energy,
and the atom experiences a net force opposing its motion.
The optical pumping preferentially returns the atom into a
low-|mJ | state at the new position, so the net force on an
atomic trajectory is again dissipative.

B. One-dimensional cooling in a lattice using orthogonal
linear polarizations

For an atom confined to a region smaller than a wavelength
the nature of the polarization-gradient-cooling processes is
modified. In the cases under consideration the atom is confined
by an additional optical lattice potential, which will be called
the pinning lattice; the pinning lattice has an optical frequency
far away from atomic resonances, so the mixing of the ground
and excited states induced by the pinning lattice potential is
negligible compared to the mixing induced by the cooling
beams, and consequently scattering from the lattice potential
is negligible. It is assumed that the pinning lattice potential
is state independent (or nearly so) for ground-state atoms, so
the frequency detuning of the lattice is much greater than the
width of the hyperfine structure of the excited state.

In this section we consider a pinning lattice formed by
counterpropagating laser beams; the lattice spatial period is
λl/2, where λl is the wavelength of the lattice laser beams.
The counterpropagating lin ⊥ lin cooling light induces an
additional state-dependent lattice potential with spatial period
λc/2, where λc is the wavelength of the cooling light (in
this paper the cooling and lattice laser wavelengths will be
similar but not equal, λl ≈ λc ). The pinning lattice potential
is characterized by its depth and phase with respect to the
cooling light (this phase will be a function of position if the
lattice periods are not equal). It is assumed that the pinning
lattice is substantially deeper than the potential induced by the
cooling light. The pinning lattice may be in phase [Fig. 1(b)]
or out of phase [Fig. 1(c)] with the lattice potential produced
by the cooling light; these two situations have very different
cooling characteristics.

For the case of φ =π/4, there are equal intensities of σ+ and
σ− light at the minima of the combined potential, with equal
and opposite intensity gradients, so the potential minima for
mJ =±1/2 are equal in energy, but offset a small distance from
each other [Fig. 1(c)]. For laser light with a negative frequency
detuning with respect to the atomic resonance, atoms are
optically pumped from the upper to the lower potential.
Therefore for φ =π/4 atoms are polarization-gradient cooled
efficiently at low energies as the optical pumping direction
reverses near the potential minima; Sisyphus-like cycles can
be performed even by deeply bound atoms.

For the case of φ = 0, the optical pumping changes sign
halfway up the pinning lattice potential [Fig. 1(b)] so Sisyphus
effects do not efficiently cool atoms with an energy below this
point. Cooling can occur for atoms with energy greater than
this point; however, calculations will show [Fig. 2(c)] that this
is less efficient than for the φ =π/4 case. The equilibrium tem-
perature of atoms undergoing lin ⊥ lin polarization-gradient
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cooling with φ = 0 will be much higher than for those with
φ =π/4.

Another difference in the polarization-gradient cooling of
lattice-trapped atoms is that the additional pinning lattice
potential rapidly changes the velocity and position of the
atom. If the intensity of the cooling light is such that the
optical pumping time is greater than half of a lattice oscillation
period, the atom cannot undergo a full optical pumping cycle
before the relative energies of the states are reversed by the
motion of the atom [see Fig. 1(c)], so the cooling efficiency
will be decreased if the cooling beams are not intense enough,
and the steady-state temperature of the atoms is expected to
increase at sufficiently low cooling intensity [see Figs. 4(a)
and 4(b)]. In comparison, consider that without the pinning
lattice the atom encounters similar light fields at a rate of
approximately 2|ν|/λc when travelling at velocity ν, while
the lattice-bound atom encounters similar light fields at a
rate of approximately ωosc/π . Thus the intensity below which
cooling becomes degraded is affected by the frequency of the
lattice oscillations; for deep enough lattices (i.e., fast enough
oscillations) this intensity may be expected to be higher than
is the case with no lattice present.

A further point is that the polarization-gradient-cooling
process relies on inducing a differential dipole potential on
the sublevels in order to generate the cooling force. If the
pinning lattice has a sublevel-dependent component then this
modifies the cooling force, and can potentially disrupt the
cooling process altogether.

C. One-dimensional cooling in a lattice using orthogonal
circular polarizations

The σ+σ− configuration in one dimension, unlike the
lin ⊥ lin configuration, does not depend on the relative phase
of the lattices as the light shift from the molasses is the same
everywhere. A change in phase of the molasses is identical to
a rotation about the axis of the laser beams; by a symmetry
argument, it can be seen that the dynamics are unchanged in the
direction parallel to the laser beams. (There is a redistribution
of the components of spontaneously emitted radiation in the
orthogonal directions upon such a phase change, but the effect
of this on the cooling dynamics is minor.) As with the lin ⊥ lin
configuration, the optical pumping should occur on a time scale
shorter than half the period of oscillation for efficient cooling.

D. Three-dimensional polarization-gradient cooling
of lattice-confined atoms

Polarization gradient cooling can also take place if atoms
are exposed to three sets of counterpropagating beams. The
atoms are exposed to both polarization and intensity gradients
in 3D molasses light; the polarization gradients cool the atoms
by an admixture of the lin ⊥ lin and σ+σ− mechanisms [18].

Tightly confined atoms interact with the cooling light within
a volume smaller than a cubic wavelength, so the net intensity
and polarization that an atom experiences depends on all five of
the relative phases of the molasses beams. As a consequence,
the cooling efficiency along each of the three orthogonal
directions at each pinning lattice site depends on the lattice site
position together with these relative phases; while some atoms

will be cooled efficiently, others will be cooled only weakly.
Furthermore atoms at different positions within the molasses
light field will fluoresce at different rates; this can pose a
problem when correlating fluorescent signal to atom numbers.

This situation is unacceptable when the atoms are required,
to a high probability, to be localized to each site for a long time.
This paper discusses two ways to overcome this problem. The
first way would be to turn on each set of counterpropagating
one-dimensional σ+σ− beams sequentially, cooling the atoms
along each direction in turn. The second way would be to
introduce a small frequency difference between each pair of
beams; the phases of the cooling light at any point, and so the
molasses character, will then change continuously. This is the
method used in recent experiments [4,5,9]. The two methods
are analyzed in Secs. VI and VII.

III. MONTE CARLO SIMULATION OF IN-LATTICE
POLARIZATION-GRADIENT COOLING

This section outlines the Monte Carlo simulation of the
polarization-gradient cooling of atoms confined in an addi-
tional optical potential. The calculations presented in this paper
are performed for a single isolated atom, greatly simplifying
the theoretical description of the system. Reabsorption of
scattered radiation is possible among an extended atomic
sample; the influence of rescattering for a particular sample
may be estimated by the ratio of the rescattered light to the
incident light intensity at an atom. However, the atom number
and density will be low in the situations under consideration,
so this ratio will typically be much less than unity—the object
of the measurement is to determine the position of each atom
in a sample, and this will not be possible if there are too many
atoms, or they are too closely packed.

A. Simplification of the simulated system

It is assumed that the additional confining optical potential
has a frequency far away from the atomic resonance, so
the mixing of the ground and excited states induced by
the potential is negligible compared to the mixing induced
by the cooling beams; consequently fluorescent scatter from
the optical potential is negligible. As a further consequence,
mixing between internal states induced by the optical potential
is ignored—of course, this mixing must be present to generate
the potential, but in the far-detuned regime this mixing is
much smaller than the mixing due to the cooling beams, and
is ignored.

In this paper it is assumed that the additional optical
potential is a three-dimensional optical lattice (the pinning
lattice), with three pairs of beams frequency detuned from
each other by many megahertz, so the effective potential is the
sum of the one-dimensional potentials. The potential generated
by the optical lattice is therefore

V (r) = V 0(sin2 kx + sin2 ky + sin2 kz), (3)

where V 0 is a matrix dependent on the hyperfine structure of
the transition; in general it is state dependent, and includes
nonzero off-diagonal ground-ground or excited-excited ele-
ments dependent on the optical polarization.
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The majority of alkali-metal species have two ground
hyperfine levels. Cooling takes place on a closed transition,
i.e., |g,I + 1/2〉→ |e,I + 3/2〉, where I is the nuclear spin;
however, the atoms also have a small probability of being
excited to the |e,I + 1/2〉 state, which can decay to the lower
hyperfine state |g,I − 1/2〉. The atoms will eventually be
optically pumped to this dark state. As usual, this behavior
is to be prevented by the presence of “repumping” light, i.e.,
light resonant with the |g,I − 1/2〉→ |e,I + 1/2〉 transition.
It is assumed that this repumping light is of sufficient power
that the total residence time in the |g,I − 1/2〉 state is only a
few times the natural lifetime of the atom in the exited states;
consequently there is an extremely small population of atoms
in the lower hyperfine state at any one time. This means that
the time spent in the lower hyperfine level is much less than the
period of vibration in the lattice, so negligible heating of the
atom will occur due to differences in the optical potentials
of the two ground hyperfine states. The repumping light is
off resonance by some gigahertz from the cooling transition
|g,I + 1/2〉→ |e,I + 3/2〉, and as such will only have a very
small effect on the dynamics of the atoms within those states,
which is ignored in the subsequent analysis. The population
of the |e,I + 1/2〉 excited state is also ignored.

B. Unitary quantum dynamics

The Hamiltonian describing the unitary evolution of the
atomic state in the electric field of the cooling light in the
rotating-wave approximation is

H = −h̄2 I
2m

∇2 + V 0(sin2 kx + sin2 ky + sin2 kz) − h̄�P

+ h̄�

2

∑
ε=−1,0,1

[Eε(r)D+
ε + E∗

ε (r)D−
ε ]. (4)

The state vector contains 4I + 6 components describing the
|g,I + 1/2〉 and |e,I + 3/2〉 states. The matrix V 0 is the state-
dependent potential, and I the identity matrix. The matrices
D+

ε (D−
ε ) are the dimensionless raising (lowering) matrices

with values given by the Clebsch-Gordan coefficients. These
matrices are normalized so that

P =
∑

ε=−1,0,1

D+
ε D−

ε , (5)

in which P is the excited-state projection operator. The relative
normalization of the local electric field vector Eε(r) and the
Raman frequency parameter � is arbitrary. The frequency
detuning from resonance of the cooling light is �.

The evolution of the density matrix ρ due to unitary
processes obeys the von Neumann equation

ih̄
∂

∂t
ρ = [H,ρ]. (6)

C. Relaxation mechanisms of the internal states

The effects of the relaxation processes are determined from
a trace over the “environmental” degrees of freedom of the
corresponding unitary processes. To account for recoil from
spontaneous emission processes, recoil momentum terms are

added to the standard result [19] in a sum over all transitions
and polarizations,

(
∂

∂t
ρ

)
sp

= �

(
− 1

2
(Pρ + ρ P) +

∑
ε,ε′,σ

∫
d2κeikRκ ·r ′

× D−
ε ρ D+

ε′e
−ikRκ ·rf σ

εε′ (κ)

)
. (7)

Here κ is a unit vector centered on the origin, and the parameter
f σ

εε′ (κ) describes the angular distribution of the spontaneous
emission of photons with polarization σ for a particular
combination of raising and lowering operators ε and ε′. The
magnitude of the laser wave vector is denoted by kR , and
� is the angular frequency width of the excited state. The
parameters f σ

εε′ (κ) are derived in Appendix A.

D. Explicit retention of the excited states

In many analyses of polarization-gradient cooling (e.g.,
[10,17]) the excited states are adiabatically eliminated. This
is appropriate for investigations that look to find the lowest
temperature of atoms in optical molasses, as this usually
occurs at low intensity; at low intensities, the population of
the excited states is small, and adiabatic elimination is a good
approximation. However, a high scattering rate is preferable
for efficient signal extraction during the measurement process;
furthermore, as discussed in Sec. II B, the lowest temperatures
of confined atoms tend to occur at higher intensity than for
untrapped atoms. Therefore, the excited-state populations are
retained in the analysis in order to accurately simulate the
situations of interest.

E. The Wigner transformation

In anticipation of taking the semiclassical approximation,
the quantum dynamics of Eq (4) and (7) are expressed in terms
of the Wigner function

W (r, p,t) = 1

h3

∫
d3u

〈
r + u

2

∣∣∣ ρ ∣∣∣r − u
2

〉
e−i p·u/h̄. (8)

It is shown in Appendix B that the complete dynamical
equation in terms of the Wigner function is(

∂

∂t
+ p

m
· ∇

)
W (r, p,t)

= 2πi

h4

∫
d3sei p·s/h̄

[〈
r + s

2

∣∣∣ ρ ∣∣∣r − s
2

〉
V

(
r − s

2

)

− V
(

r + s
2

) 〈
r + s

2

∣∣∣ ρ ∣∣∣r − s
2

〉]
− �

2
(PW + W P)

+�
∑
ε,ε′,σ

∫
d2κ D−

ε W (r, p − h̄kRκ,t)D+
ε′f

σ
εε′ (κ), (9)

where

V (r) = H + h̄2 I
2m

∇2. (10)

The Hamiltonian H is given by Eq. (4).
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F. The semiclassical approximation

A full quantum treatment of the problem is computationally
infeasible; instead, the semiclassical approximation will be
used. In the semiclassical approximation the external degrees
of freedom of the atom are treated classically, while the
internal degrees of freedom are treated quantum mechanically.
The semiclassical approximation is used in most theoretical
treatments of polarization-gradient cooling [10,13,14,17,19].
The approximation can be used in situations in which the
coherence length of the atomic ensemble is much less than a
wavelength; it relies on the dephasing influence of spontaneous
emission to, in effect, “localize” the atoms. The accuracy of
this approximation as used in the situation under consideration
is discussed in Sec. VI B.

Using the semiclassical approximation, the equations of
motion are expanded in the small parameter ε1 = h̄kR/�p,
with higher orders in the expansion discarded [19]; here �p

is the momentum width of the Wigner function. For example,
the expansion of the potential term on the right-hand side of
Eq. (9) is

V (r + s′) = V (r) + s′ · ∇V (r) + 1
2 (s′ · ∇)2V (r) + · · · .

(11)

This quantity predominantly contributes to the integral in the
region |s′| < h̄/�p. The derivative of the potential V has
approximate magnitude kRV , so the series expansion is seen
to be in the small parameter ε1; it is terminated at appropriate
order, which is chosen in this analysis to be the second order.

This approximation leads to the equation (Appendix C)(
∂

∂t
+ p

m
· ∇

)
W

= i

h̄
[W ,V ] + 1

2

∑
i

{
∂W
∂pi

,
∂V
∂ri

}

− ih̄

8

∑
ij

[
∂2W

∂pi∂pj

,
∂2V

∂ri∂rj

]
+�

∑
ε

D−
ε W D+

ε

− �

2
(PW + W P) + �h̄2k2

R

2

∑
ε,ε′,i,j

ηεε′ij D−
ε

∂2W
∂pi∂pj

D+
ε′ .

(12)

In this equation, the curly brackets are the anticommutator,
and the tensor ηεε′ij is given in Appendix A.

G. Conversion to Langevin form

The semiclassical evolution equation as it stands [Eq. (12)]
still requires substantial computational power to simulate.
Instead, the calculation will be restricted to a single trajectory;
the distribution of atomic properties is then found by the
sum over these trajectories. This approach is stochastic, i.e.,
Monte Carlo, in nature. The equations of motion for a specific
trajectory in position and momentum space are found by
substituting a semiclassical trial solution

W (r,p,t) = w(t) δ(3)(r − r̃) δ(3)(p − p̃), (13)

into Eq. (12). This solution is valid in the limit in which
both parameters ε1 = h̄kR/�p and ε2 = kR�p/m� are small,

as discussed in Ref. [19] and in the previous section. The
parameter ε2 ≈ ε1T/TD , where TD is the Doppler temperature,
is much smaller than 1 in the situations considered in this paper.

Integration over external coordinates gives the equation of
evolution for the internal coordinates,

∂

∂t
w= i

h̄
[w,V (r̃)] + �

(
− 1

2
(Pw + wP) +

∑
ε

D−
ε ρ D+

ε

)
.

(14)

The equation of evolution of the external coordinates, e.g.,
r̃ = 〈r〉, are found to be

∂r̃i

∂t
= p̃i

m
, (15)

∂p̃i

∂t
= fi = −TrI

(
w

∂V (r̃)

∂ri

)
, (16)

∂

∂t
〈(ri − r̃i)(rj − r̃j )〉 = 0, (17)

∂

∂t
〈(pi − p̃i)(pj − p̃j )〉

= 2Dij = h̄2k2
R�

1 + δij

2

∑
ε,ε′

ηεε′ij TrI (D−
ε wD+

ε′). (18)

The equation containing Dij describes the diffusion of
the atom due to the atomic recoil. The diffusion term is a
fluctuating Langevin force with zero mean, and is incorporated
into the motion of a single trajectory in the Itō-Langevin
equation

dpi = fidt +
∑

k

√
2dikdWk, (19)

in which dWj are independent, zero-mean, Gaussian-
distributed stochastic increments with variance dt . The quan-
tities dik are the components of the kth eigenvector of Dij ,
which is normalized according to its eigenvalue.

H. Unraveling the optical Bloch equations

Equations (15)–(19) describe the motion of a single atom
in the semiclassical approximation. However, the internal
dynamics as described in (14) are still ensemble averaged,
and are not appropriate to describe a single trajectory. The
optical Bloch equation [Eq. (14)] must therefore be unraveled
into the stochastic evolution of a single wave function.
The unraveling is chosen to be that of the quantum Monte
Carlo wave-function (QMCW) method [20]. The underlying
principle of the approach is to evolve the wave function
using a non-Hermitian quasi-Hamiltonian with the addition
of randomly occurring discrete quantum jump processes.

In the QMCW approach the following procedure is used
for each time step. First, a random number 0 <r < 1 is chosen
from a flat distribution and compared to the quantity j = 1 −
�δt〈ψ |P |ψ〉. If r < j ,

|ψ(t + δt)〉 = |ψ(t)〉 − i

h̄
δt

(
V − ih̄�

2
P

)
|ψ(t)〉. (20)
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If the r > j , the atom undergoes a quantum jump (photon
emission); photon polarization is chosen randomly according
to the weights

pε = 〈ψ |D+
ε D−

ε |ψ〉
〈ψ |P |ψ〉 , (21)

and the new wave function is given by

|ψ(t + δt)〉 = D−
ε |ψ(t)〉. (22)

The new wave function requires normalization in either case. It
can be shown that the ensemble of possible new wave functions
satisfies the optical Bloch equation [Eq. (14)].

I. Computational methods

The set of equations (15)–(22) specify the stochastic
evolution of a single semiclassical trajectory. An explicit
third-order Runge-Kutta method is used to propagate the
classical position and momentum of the atom. The coefficients
for the method are chosen so that the intermediate evaluation
times are h/3 and 2h/3, in which h is the time step for the
external dynamical evolution. The internal components of the
state vector are advanced at a constant time step h/3, and are
propagated by the Cayley (split) form of the evolution operator.
The new wave function is found efficiently by Gaussian
elimination.

The method outlined in this section was tested against
simple analytic models and by comparison against previously
published work looking at polarization-gradient cooling in
one-dimensional dissipative optical lattices [13–15]. The
results agree very well for intermediate saturation parameters.
At high and low saturation parameters, the results differ
somewhat; the retention of the excited states means the method
presented here is more accurate for high saturation parameters
(s > 0.1), while the use of adiabatic elimination in the previous
work enabled better statistics for lower saturation parameters
(s < 0.02). The Monte Carlo simulation was also tested against
previous data for polarization-gradient cooling of rubidium
atoms in three-dimensional molasses [21]; for intermediate
saturation parameters the predicted temperatures agreed to
within 10%, which is around the error quoted for the previous
work.

IV. HYBRID MONTE CARLO MASTER-EQUATION
ANALYSIS

A. Comment on nature of the simulation

The problem under consideration differs from previous
analyses of polarization-gradient cooling in a number of re-
spects. The difference which poses the greatest computational
challenge is the ratio of the time scales in the problem—
between the phenomena of interest, the jumping of atoms
between wells, which we would like to take place over tens of
seconds or greater; and the smallest time scale relevant to the
problem, the period of the beat frequency between the laser and
atomic resonance, which will be in the range of 10 to 100 ns.
This means that, on average, one event of interest will occur
every 109 to 1012 time steps. Clearly a straightforward Monte
Carlo simulation of these phenomena will be prohibitively
slow.

Adiabatic elimination is often used in simulations of
polarization-gradient cooling in order to increase the size of the
smallest time step (and decrease the size of the state vector).
However, this technique can only be used when the saturation
parameter is much less than 1, which is not the case for the
situations under consideration in this paper (see Sec. III D). In
any case, the gain from this technique would be, at most,
one or two orders of magnitude in the time scale ratio,
i.e., interesting events would occur every 107 to 1010 time
steps; such calculations would still be very computationally
intensive.

B. An extended Monte Carlo analysis for rare events

In order to make the simulation tractable a method has been
developed to extend the Monte Carlo simulation in order to
study rare events. This technique bears similarity to previously
developed techniques which are collectively known as the
“splitting” methods of Monte Carlo simulation [22–25].

The basic idea is that a non-Markovian system can look
Markovian when its dynamics is averaged over a sufficiently
long time interval. An atom undergoing fluorescent scattering
is clearly non-Markovian at time scales shorter than the
scattering period; the deterministic state-dependent dynamics
of the Bloch vector dominates, with stochastic dynamics
(environmental coupling) playing only a minor role. However,
when viewed over sufficiently long time intervals, it is known
(from theoretical and experimental work) that quantities
such as temperature can be assigned to an atom undergoing
polarization-gradient cooling; for such an assignment to make
sense these quantities must be independent of the state of
the atom at any one time, so implicitly it is assumed that
the atomic dynamics, on long time scales, is described by
stochastic Markovian dynamics.

The hybrid Monte Carlo master equation (HMCME)
method presented in this section uses this idea to extend
Monte Carlo simulation so that it is capable of predicting the
frequency of rare events. The method is approximate; it uses
the assumption that the system dynamics is Markovian when
viewed over appropriately long time intervals.

C. Classification according to energy

First, a quantity should be found that is representative of
the aspect of the system which is to be investigated; it should
be a scalar time-dependent quantity which is a function of the
state vector. It is chosen with two properties in mind: that it
varies slowly and smoothly with time, and that the rare events
of interest occur at values well separated from the usual values
it takes. For confined atoms undergoing polarization-gradient
cooling, an energylike quantity is appropriate; the atoms
usually have energies well below that required to hop to a
neighboring site. In the context of the subsequent analysis,
the approximation will be used that the system performs
Markovian dynamics—a random walk—along the energy axis.
The Markovian approximation implies that the system is
ergodic over long time scales.

It is desired to label the system according to a discrete
energy parameter, so a set of “points” is defined at certain
energies, {E1,E2, . . .}. As the time evolution is simulated
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using a Monte Carlo method, the system will encounter
these points repeatedly. (If the state vector of the system
undergoes discontinuous jumps, the time and state vector of
the system as it crosses a point may need to be extrapolated
or approximated.) The state of the system at any time will be
classified by the last point encountered by the system. Each
time the system encounters one of these points the state vector
(the complete description of the system) is recorded; these
records will be called “start vectors.”

D. Finding representative start vectors

A representative set of start vectors is required for each
point, i.e., a set which fairly samples the true population of
start vectors for that point. However, the run time of the Monte
Carlo simulation should also be minimized. As the system
encounters points at higher energies only very rarely, it would
be prohibitive to take data for these points by means of direct
Monte Carlo simulation. These two considerations need to be
balanced.

As a first stage, the simulation is run from some arbitrary
starting point until it settles down into a steady-state condition.
From this time on the state vector is recorded every time the
system encounters a point Ei . A representative set of start
vectors will be built up for points at low energy.

E. Focusing the analysis on higher energies

This coverage is now extended to points lying at higher
energy. To do this a weight wni is assigned to each start vector;
this is an estimate of how representative that start vector is of
the general population of start vectors at all points. Initially an
equal weight is assigned to each of the extant start vectors; the
weights are normalized. The total weight of the start vectors at
a particular point Wi is related, but not equal, to the probability
of finding the steady-state system in the environs of point i.

The nature of the simulation is now changed so that new
start vectors (“daughter” start vectors) are to be found from
existing start vectors (“mother” start vectors). To do this, a start
vector is picked at random from all the possible start vectors
according to its weight, and is evolved in time until a new point
is reached. As it is assumed that the system is ergodic, the
mother start vector at the old point can be replaced by the new
daughter start vector at the new point (by assigning the mother
start vector’s original weight to the daughter and setting the
mother’s weight to zero), and the overall set of start vectors is
still representative of the steady-state dynamics of the system.

Instead of the straight replacement of one mother start
vector by one daughter start vector, the simulation is performed
multiple times for each mother start vector; daughter vectors
are found for the two neighboring points, together with the
branching ratio. The mother vector is replaced by two daughter
vectors, randomly chosen from those calculated, with one at
each neighboring point; the weight of the mother vector is
allocated to the daughters proportionately to the branching
ratio.

It is now possible to focus the simulation on higher energies
in the confining potential where the atom is found more rarely.
Once M mother vectors have been propagated for a point Ei , it
is decided that enough data have been gathered to characterize

the behavior of the system around this point, which is called
“full.” The start vectors at point Ei are excluded from being
propagated further using the Monte Carlo method; the choice
of mother vector to propagate is now determined from the
weights of the start vectors at all points which are not full.

Although no further daughter vectors are generated from
full points, weight is still added to full points from neighboring
partially filled points; if this goes uncompensated, it will lead
to distortion of the distribution of weights between the points.
Therefore as each mother vector is propagated and is replaced
by daughter vectors, weight is reallocated among the full
points, and from full points to partially filled points, in order
to preserve the relative allocation of weights between points.
Details of this reallocation are given in Appendix D.

This method of extending the Monte Carlo simulation is
not unique; in practice the method outlined was found to
give the best balance between reproducibility, accuracy, and
computation time for the problem in hand.

F. The master equation

The method outlined in this section (and summarized
in Appendix D) ensures that, as the simulation is run, it
progresses from concentrating on the low-energy region to
the high-energy region where the system is found only rarely.
Along the way it has amassed data concerning the branching
ratios between neighboring energy points (the probability that
a system, starting at one point, will end up at either neighbor)
together with the time taken to propagate from one point to the
next. It is now simple to calculate transfer rates between the
points. These transition rates are used in a master equation
to calculate the relative populations of the atoms at various
energies:

dNn

dt
=

∑
m

(rmnNm − rnmNn), (23)

where rmn =pmn/τm is the rate of transfer from m to n, τm the
average time spent at m, and pmn the branching ratio.

It remains to find the actual quantity of interest—the
hopping rate between sites. The hopping rate of an atom at
a particular point is directly extracted from the Monte Carlo
data taken at that point; the total hopping rate is calculated
as the average hopping rate for all points weighted by the
relative populations at those points. The hop process is treated
as a “sink” for the atomic population, i.e., once the atom has
departed the well it is removed from the simulation.

G. Implementation of the algorithm for the
polarization-gradient cooling of confined atoms

A few subtleties were encountered when applying the
algorithm to the polarization-gradient cooling of confined
atoms. First, the potential energy of the system is ill defined
as the system has both quantum and classical properties. The
usual energy measure in such a scenario is the expectation
value of the energy Ek + 〈V (r)〉, where r is the semiclassical
position of the atom. However, this energy measure does
not satisfy the two conditions outlined in Sec. IV C, due
to quantum jumps caused by the spontaneous emission of
radiation and by poor correlation between the value of the
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measure and the probability of site hopping (take the example
of an excited-state atom stationary at a lattice minimum).

Instead, another energy-type measure was used which has
the required properties. Using the kinetic energy as before,
the potential energy was taken to be the lowest eigenvalue
of the atomic system at the position of the atom. The
time evolution of this quantity is continuous; furthermore, it
correctly accounts for the combination of velocity and position
needed to differentiate the main population of atoms from
those which hop between sites. The choice is further justified
by noting that atoms undergoing polarization-gradient cooling
in a sublevel-independent lattice tend to be optically pumped
to this lowest-energy ground-state sublevel (see Sec. II B).

The energy spacing of the points was in practice determined
by a compromise between precision and computation time;
about 25 points were used spread over the energy range 0 to
1.3V0, where V0 is the pinning lattice depth. If more closely
spaced points were used, the computation proceeded faster, but
at the expense of a larger spread in the prediction of the hopping
rate between wells. This was attributed to insufficient diffusion
of the state vector as it is propagated from one point to the next,
leading to observable “clumping” of the simulated trajectories,
and consequently undersampling of the phase space of start
vectors at each point. Increasing the spacing between points,
and so increasing the time the system spent at any particular
point, decreased this trajectory clumping by increasing the
influence of diffusive processes over shorter-time nondiffusive
processes; consequently this decreased the variation in the
predicted jump rate between runs of the HMCME simulation
at the expense of increased computation time. Around 150 start
vectors were propagated for most points, rising to ten times
this number near the lip of the lattice potential.

The accuracy of the algorithm presented in this section
was tested by comparison with Monte Carlo simulations
performed conventionally using the method described in
Sec. III (which had been tested against previously published
data—see Sec. III I). There was excellent agreement between
the HMCME method and the conventional Monte Carlo
method throughout the region of overlap for all the data
presented in this paper [e.g., Fig. 3(b)].

V. THE FRICTIONAL FORCE AND ENERGY LOSS RATE

To investigate the effect of the pinning lattice on the
polarization-gradient cooling of ultracold atoms it is instruc-
tive to compare the form of the frictional force with and
without the lattice present. Conventionally the frictional force
is calculated for an atom on a constant-velocity trajectory [17];
however, this does not appropriately describe the motion of
atoms moving in an additional lattice potential. The average
force and the average energy loss rate are instead calculated
for an atom on a constant-energy trajectory.

As has been discussed in Sec. IV G, there is ambiguity in the
definition of an energy measure in the semiclassical situation.
The measure used here for the potential energy (as in the rest of
this paper) is the position-dependent lowest-energy eigenvalue
of the atom subject to both the pinning lattice and cooling light
fields. The average force and energy loss rates are calculated
by integrating Eqs. (14) to (16) using a density matrix method.

A. No additional lattice present

The force and energy loss rates for polarization-gradient
cooling without an additional lattice present are presented in
Figs. 2(a) and 2(b). The dependence of the force on velocity for
the σ+σ− configuration is very similar to results of previous
analyses [17], while the lin ⊥ lin configuration looks somewhat
different.

The differences for the lin ⊥ lin case are due to performing
the calculation on a constant-energy rather than constant-
velocity trajectory. For energies below 0.14 h̄� the atom is
confined to a single site of the optical lattice induced by
the cooling light [see Fig. 1(a)], so the atom is not cooled
efficiently. The atom experiences stronger cooling once it can
move along the lattice. On the other hand, the induced dipole
potential is spatially homogeneous in the σ+σ− configuration,
so atoms moving on trajectories which have constant energy
also have constant velocity; results are found which are very
similar to those of previous analyses.

If an energy measure is used which does not contain
potential energy contributions from the cooling light, the form
of the lin ⊥ lin velocity dependence alters to closely resemble
that found in previous analyses (e.g., [17]). It is worth noting
that in practice atoms will follow neither constant-velocity nor
constant-energy trajectories.

B. With additional lattice present

The cooling force and energy loss rate for atoms in a pinning
lattice of depth 1.4h̄� are shown in Figs. 2(c) and 2(d). The
velocity plotted in Fig. 2(c) is the velocity of an atom at the
minima of the lattice potential.

The frictional energy loss profile for bound atoms is
dependent on the phase of the cooling beams at the pinning
lattice site in the lin ⊥ lin configuration but not in the σ+σ−
configuration. As discussed in Sec. II B, the cooling is very
inefficient for atoms in a lattice with a φ = 0 phase relative to
the cooling light, but is efficient in the φ =π/4 case.

The character of the cooling is different for atoms which
have an energy greater than the depth of the lattice. The cooling
of unbound atoms is similar to the cooling of atoms without
the lattice present—the lin ⊥ lin configuration becomes phase
independent, while the σ+σ− configuration has greater cooling
power. On the other hand, atoms with energies around the
lattice binding energy experience reduced cooling power. This
is due to time averaging; these atoms travel slowly when near
the lip of the potential, so they are cooled more weakly at that
time, and the average force falls. These dips occur at slightly
different positions due to the different depths of the overall
potential in each case.

VI. SIMULATED IN-LATTICE
POLARIZATION-GRADIENT COOLING

A. Simulated scenarios

As discussed in Sec. II D, three-dimensional molasses
necessarily contains subwavelength scale intensity and polar-
ization gradients. If an atom is confined so that it only samples
the light field in a subwavelength region, the cooling efficiency
is heavily dependent on the relative phases of the molasses light
(as demonstrated in Sec. V B). Experiments requiring reliably
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FIG. 2. (Color online) Polarization gradient cooling of 87Rb in one dimension calculated on trajectories of constant energy. (a) Force versus
velocity without the pinning lattice. (b) Energy loss rate versus energy without the pinning lattice. (c) Force versus velocity in the pinning lattice.
(d) Energy loss rate versus energy in the pinning lattice. The vertical dashed red line indicates the depth of the lin ⊥ lin cooling light lattice in
(b) and the depth of the bare pinning lattice (i.e., in the absence of cooling light) in (d). The intensity of each molasses beam is 10.8 mW cm−2

with frequency detuning −4� from the D2 line. The pinning lattice potential with depth 1.4h̄� is generated by counterpropagating linearly
polarized beams with frequency detuning +2000� from the D1 line. The parameter � is the angular frequency width of the D2 line.

efficient three-dimensional cooling for tightly confined atoms
need to find a way to overcome this problem.

Two experimental scenarios are simulated in this section;
they differ in the method by which the phase problem is
tackled. One method (which will be called the 1D alternating
configuration) uses a one-dimensional σ+σ− cooling beam
configuration which is alternated between the three axes in
turn. This can be realized in an experiment by using square-
wave pulses to modulate the input to three acousto-optical
modulators. In the other method (the 3D offset configuration),
all six σ+σ− cooling beams are used at once, with a small
frequency difference between each set of counterpropagating
beams. This sweeps the relative phases of the cooling light at
each site. The initial values of the relative phases of the cooling
light at the pinning lattice site were chosen to be random for
each run of the HMCME simulation.

The commonly used species 87Rb is chosen for the analysis;
similar results are expected to hold for other atomic species
which are subject to polarization-gradient cooling. The pinning

lattice was chosen to be near the D1 atomic transition to allow
efficient filtration of the intense lattice light from the weaker
fluorescence light during the measurement. The pinning lattice
frequency detuning is chosen to be much greater than the
hyperfine structure of the D1 line, and the lattice polarizations
chosen to be linear, in order minimize the potential energy
differences between the ground-state sublevels (see Sec. II B
and [8,26]).

B. Discussion of the results

The results of the HMCME simulation are shown in Fig. 3
using the parameters given in Table I for the alternating
1D cooling configuration. Figure 3(a) gives the transition
rates between points, while Fig. 3(b) gives the steady-state
populations at each energy point, i.e., the proportion of the
total population which last encountered that specific energy
point rather than any other.
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FIG. 3. (Color online) (a) Transition rates between different energy classes, as found from a single run of the HMCME simulation. Atoms
are categorized according to energy following the method described in Sec. IV and Appendix D. Rates are given for transfer into the next-higher-
or next-lower-energy category together with the hop rate for transfer to a neighboring well. The data were generated using the HMCME method
with the parameters of Table I in the alternating 1D cooling configuration. (b) Histogram of population versus energy. The populations for the
HMCME technique were calculated from the rates given in (a); the Monte Carlo populations were found directly from a conventional Monte
Carlo simulation. The depth of the potential, marked with the vertical black line, is 1.34h̄�, which is less than that of the bare pinning lattice
(1.4h̄�) due to the dressing with the cooling light.

The transfer rate to lower energy is greater than the transfer
rate to higher energy for all but the lowest-lying points, i.e.,
on average the atom is cooled at all but the lowest energies.
The difference in the rates increases with energy; this is to
be expected as the average frictional energy loss increases
with energy throughout this region [see Fig. 2(d)]. It is seen
that the rate datum points have a small spread around the
trend line due to the statistical uncertainty implicit in the
Monte Carlo method. This leads to some variation in the site
lifetime between simulation runs, and is reflected in the quoted
statistical uncertainty on the lifetime (Table II).

The hop rate for a certain energy class is the rate at which
atoms transfer from that energy class to a neighboring site; this
dominates the behavior of atoms which have energy above
the binding energy of the lattice. Only atoms with energy
slightly above the lattice binding energy have an appreciable
probability in this configuration of being captured by one
particular site; atoms with larger energies will move between
many sites before capture, or may leave the lattice. The effects
of the jump process are seen in Fig. 3(b) in the sharp decrease
of the population with energies above the lip of the lattice (it is
assumed that, once the atom has hopped, it does not return to

TABLE I. Parameters for the scenarios discussed in Sec. VI. The frequency detunings are given with respect to the closed F = 2 → F ′ = 3
transition for the D2 cooling light and from the F = 2 → F ′ = 2 transition for the D1 pinning lattice light. The flash cycle time is defined as
three times the cooling flash duration in any one direction. The frequency offset is defined as the difference in frequency between the three sets
of cooling beams [δ = νx − νy = νy − νz = (νx − νz)/2]. The parameter � is the angular frequency width of the D2 line. The pinning lattice
depth is given in kelvin as E/kB . The dashes indicate that the parameter is not relevant to the configuration.

Atomic species Species 87Rb
Line D1 (794.98 nm)
Frequency detuning +2000�

Intensity per beam 3.0 × 104 mW cm−2

Pinning lattice Depth 1.4h̄� (408µK)
Period 397 nm
Character 1D counterpropagating in each

direction (intensities add)
Polarization Linear

Cooling light Line D2 (780.24 nm) F = 2 → F ′ = 3
Frequency detuning −4�

Intensity per beam 10.8 mW cm−2 1.81 mW cm−2

Character Alternating 1D σ+σ− Offset 3D σ+σ−

Flash duration 18 µs –
Flash cycle frequency 18 kHz –
Frequency offset – 6.1 kHz
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TABLE II. Data from simulations using the parameters given in Table I. The quoted site lifetimes are due to radiative heating only, and
do not include the effect of background gas collisions. The quoted errors on the calculated parameters are the one standard deviation random
errors and do not include systematic effects. The temperature calculations include kinetic and potential energy contributions.

Cooling configuration Alternating 1D σ+σ− Offset 3D σ+σ−

log10[site lifetime (s)] 6.5 ± 0.3 6.6 ± 1.6
Mean site lifetime 3.3 × 106 s 3.8 × 106 s
Mean temperature 8.5 ± 0.3 µK 10.3 ± 2.0 µK
Mean scattering rate (1.89 ± 0.001) × 106 s−1 (1.41 ± 0.11) × 106 s−1

the original well). Note that the quantum mechanical tunneling
of (deeply bound) atoms between lattice sites is negligible due
to the substantial depth of the lattice.

There is an excellent fit between the population predicted by
the standard Monte Carlo simulation and that predicted by the
HMCME simulation in the region in which the standard Monte
Carlo simulation can be used. That the HMCME method
simulates the system well in a known region gives good
confidence that the HMCME method provides an accurate
extrapolation of the dynamics to higher energies.

Assuming ergodicity, the population data are fitted to a
temperature once the density of states at the lattice site has
been calculated, using

D(E) = (2m)3/2

(2π )2h̄3

∫
V (r)�E

√
E − V (r)d3r. (24)

The fitted temperature population distribution (essentially the
same when fitted to either the HMCME or Monte Carlo data)
is plotted in Fig. 3(b). The fit is accurate in the low-energy
region, but the full HMCME method predicts more atoms in
the tail of the distribution than would be expected at a given
temperature. This is due to the description of the population
in terms of a temperature being valid only when the frictional
force divided by the diffusion coefficient is a linear function
of velocity (see, for example, [27], p. 66). The frictional force
is in fact not linear—the slope of the σ+σ− force decreases
with increasing energy [Fig. 2(c)], so the population in the tail
of the distribution is higher than would be predicted by the
temperature of the low-lying atoms.

The corresponding plots for the 3D offset configuration are
similar to those displayed for the 1D alternated cooling con-
figuration. Calculated quantities—the temperature, fluorescent
scattering rate, and site lifetime due to radiative processes—for
both configurations are given in Table II. The mean time before
site hop is defined as the average time for an atom at the
steady-state temperature at a pinning lattice site to leave that
lattice site, with random phases of the cooling beams at the
lattice site. Over a million photons are scattered per second
in either scenario, with very long site lifetimes predicted. Of
course, such long lifetimes will not be observed in experiments
due to background gas collisions; the significance of these
figures will be discussed in Sec. VIII.

The quoted uncertainty in Table II is the standard deviation
on the mean of these quantities over a sample of 100 runs
of the complete HMCME simulation; it is a combination of
the uncertainty due to the random nature of the Monte Carlo
simulation together with a contribution which depends on the
relative phases of the cooling beams at the pinning lattice site,

as will be discussed in Sec. VII A. The averages and standard
deviations of the hopping rate are calculated as logarithms
throughout this paper; this has a similar functional dependence
to an average over the temperature. While this uncertainty
on the mean hopping rate is large in percentage terms, it is
negligible compared to the rate of background gas collisions.
The greatest systematic uncertainty in the calculation is likely
to arise from the use of the semiclassical approximation, which
although necessary to make the problem tractable, is only
approximately fulfilled; the parameter ε1 = h̄kR/�p, assumed
to be much less than unity in this analysis (Sec. III F), is
0.19 for the current example, with the atom scattering around
five photons per oscillation period. It is worth noting that
the high ratio of the dephasing event rate (i.e., the photon
scatter rate) to the oscillation frequency makes a simulation
based on transitions between pure quantum vibrational states
problematic. To improve on the semiclassical approximation a
fully spatially dependent density matrix description is needed,
which would be very difficult computationally.

VII. LIFETIME BEFORE HOP VERSUS
EXPERIMENTAL PARAMETERS

The dimensionality of the phase space of the experimental
parameters is fairly large, so a complete characterization of the
system is not feasible within the scope of this paper. Instead,
the dependence of the hopping rate on individual parameters is
investigated. One parameter at a time will be varied, with the
other parameters of the system held fixed at the values given
in Table I, which have been chosen to give good performance.
Both the 1D alternating and 3D frequency-offset molasses
configurations, as discussed in Sec. VI A, will be investigated.
The relative phases of the cooling beams at the lattice site are
not varied in this section (as this would greatly increase the
number of computations needed). The effect of the relative
phases will be discussed separately in Sec. VII A.

In fact, nearly all of the parameter sets presented in this
section are predicted, in experiments, to have a site lifetime
limited by the rate of background gas collisions rather than
radiative processes; this will be discussed in Sec. VIII. The
objective of this section, however, is a comparative study
of the efficiency of polarization-gradient cooling in a deep
optical lattice; the quoted site hopping rate, although for most
parameters unobservable in the physical system, in this case
serves as a useful proxy measure for the cooling efficiency.

The dependence of the temperature and the site hopping
rate on the intensity of the molasses beams is shown in
Figs. 4(a) and 4(b). For both the 1D alternating and 3D offset
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FIG. 4. (Color online) The vari-
ation of the temperature (lower
red line) and site lifetime (up-
per black line) against experimen-
tal parameters for atoms undergo-
ing polarization-gradient cooling in
a three-dimensional optical lattice.
All of the parameters apart from the
parameter being varied are given in
Table I, except for the cooling inten-
sity in (c) and (d), which was varied
along with the cooling light frequency
detuning in order to maintain a con-
stant saturation parameter. The phases
of the cooling beams relative to the
pinning lattice site were the same for
all data. Five runs of the HMCME
simulation were used for each data
point; the sample standard deviation is
displayed. For comparison, the dotted
horizontal line indicates the approxi-
mate lifetime of the atom at the site
due to background gas collisions.
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configurations the temperature passes through a minimum in
the range investigated. At higher intensities, the temperature
displays a linear dependence on intensity, the same
dependence as for cooling without the lattice present [17,18].
The temperature increases markedly for low cooling
intensities. It is suggested, as discussed in Sec. II B and in
Ref. [8], that the behavior at low intensity is caused by less
efficient following of the local equilibrium population by
the atom in its motion when the optical pumping rate is
lower, leading to a corresponding decrease in the efficiency
of the cooling. The intensity at which the atoms are at
minimum temperature is greater than for the case without
the lattice present (for similar frequency detuning—cf., for
example, [18]). The time before the atom is lost from the site
displays a complementary relationship with the temperature,
as expected.

Figures 4(c) and 4(d) display the results of varying the
molasses frequency detuning at constant saturation of the
atomic transition. The saturation was kept constant in order to
maintain an approximately constant scattering rate (and so an
approximately constant optical pumping rate) as the frequency
detuning is varied. To achieve this the intensity of the cooling
beams was varied along with the frequency detuning � in order
to keep the saturation parameter �2/2(�2 + �2/4) constant.

The standard theoretical model of polarization-gradient
cooling for a J = 1 transition [17] indicates that the temper-
ature varies proportionally to (α2/�) + � with α ≈ 3�, with
the transition point α between the two regimes dependent on
the Clebsch-Gordan coefficients of the transition. In fact this
form of dependence matches the data in the confined case
reasonably well, albeit for a somewhat higher transition point.
Again, the site hopping lifetime displays a complementary
relationship with the temperature.

As expected, the site hopping rate depends strongly on the
pinning lattice depth [Figs. 4(e) and 4(f)]. If the depth of the
lattice did not affect the cooling dynamics, the site hopping
rate would be expected to exhibit an exponential dependence
on the lattice depth. The line on the logarithmic plot is in fact
not straight but has a negative second derivative, indicating that
the cooling is less effective at larger pinning lattice depths; this
is also seen in the slight increase of temperature with lattice
depth. It is suggested that two effects may contribute to this.
First the oscillation cycle time decreases with lattice depth;
the cooling efficiency is degraded, as discussed above, when
there are too few spontaneous scattering events per oscillation
cycle. Second, the ground sublevel-dependent component of
the lattice potential increases with the lattice depth; this
differential in general disrupts the cooling mechanism (as

discussed in Sec. II B), disproportionately affecting high-
energy atoms which travel far from the lattice minimum.
Nevertheless, in the given parameter range these effects are
not enough to generate a net increase in the site hopping rate
as the lattice depth is increased.

The results of changing the spatial period of the lattice
by altering the angles between the lattice beams are shown
in Figs. 4(g) and 4(h). In the range investigated (lattice
spatial periods of 400 to 1000 nm), the temperatures remain
approximately constant, as does the site hopping rate for
the case of the 3D frequency-offset configuration. The site
hopping rate in the 1D alternating configuration increases
slightly with lattice spatial period, indicating somewhat less
efficient damping of higher-energy excursions at longer lattice
spatial periods.

There is modest variation in the temperature and site
hopping rate when the cycle time of the alternating 1D
configuration [Fig. 4(i)] and the frequency offset of the 3D
configuration [Fig. 4(j)] are varied (these parameters are
defined in the caption of Table I). The cooling efficiency
decreases if the flash time in the 1D alternating configuration
is too short; this is to be expected, as the initial transient optical
pumping period after the beams switch direction, during which
the atoms are not cooled efficiently, takes a greater proportion
of the total time when the flash cycle time is reduced. A similar
effect occurs in the 3D offset configuration; if the frequency
offset between the sets of beams is too great, the change in
the nature of the cooling light at the lattice site can become
fast enough to adversely affect the cooling dynamics. On the
other hand, if the frequency offset (in the 3D configuration) is
too small, the lattice site is exposed to the molasses light with
the less efficient cooling phases for a longer time each cycle;
this encourages excursions to higher energies, and results in
higher temperatures and decreased confinement.

The effect of the pinning lattice frequency detuning was
also investigated at constant lattice depth. In the direction
of higher-frequency positive (blue) frequency detuning there
were only minor changes in the temperatures and site lifetimes
(see Table III for �l =+8000�). Lower positive frequency
detunings were not studied due to the presence of features
associated with near-resonant F = 1 → F ′ = 1,2 (J ′ = 1/2)
transitions, which are not included in the model.

A pinning lattice with negative (red) frequency detuning
was also studied; the cooling frequency detuning was altered
to account for the change in the energy of an atom at the lattice
minimum. Although one may expect less efficient cooling
due to the atom spending more time in positions with a
greater energy differential between the ground sublevels, this

TABLE III. Temperatures and site lifetimes for different lattice frequency detunings and spatial periods. The data in this table were taken
(as with Fig. 4) for constant phases of the cooling beams. The quoted uncertainties are the sample standard deviations.

1D alternating 3D offset

Configuration parameters T (µK) log10[Lifetime (s)] T (µK) log10[Lifetime (s)]

�l = +8000� 8.3 ± 0.3 6.0 ± 0.2 8.3 ± 0.2 7.0 ± 1.0
�l = −2000� 8.1 ± 0.1 5.6 ± 0.2 7.7 ± 0.3 8.3 ± 0.7
�l = +8200�, period = 680 nm [4] 8.7 ± 0.2 6.0 ± 0.2 7.1 ± 0.2 7.7 ± 1.1
1064 nm counterpropagating [5] 8.4 ± 0.2 6.0 ± 0.4 6.8 ± 0.2 6.7 ± 1.4
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in fact is not the case for the lattice studied (see Table III).
This is because the three-dimensional lattice studied has the
linear polarizations of each constituent one-dimensional lattice
oriented orthogonally, and consequently the energy differential
between the ground sublevels cancels at the lattice potential
minima. As a result, the temperatures and site lifetimes were
not substantially different from those in the blue-detuned case.
However, the use of a red-detuned lattice has a number of
undesirable effects, such as a substantial increase in the rate of
spontaneous scattering of the lattice light, which increases
the rate of unwanted transitions to the lower hyperfine
state.

The types of lattices used in the experiments described in
Refs. [4] and [5] were also studied for the cooling parameters
listed in Table I (apart for the cooling detuning, which was
altered to compensate for the effects of the red-detuned lattice).
The results of the simulations (see Table III) are similar to those
quoted for the lattice of Sec. VI.

A. Comparison of 1D alternating and 3D offset cooling methods

The results of the simulations predict that both the 1D
alternating and the 3D offset cooling configurations produce
excellent localization of a strongly scattering atom at a pinning
lattice site. However, the 3D offset configuration has a greater
spread in the calculated temperatures, site hopping rates, and
photon scattering rates than the 1D alternating configuration
(compare the sample standard deviations in Table II).

This variability in the 3D offset configuration is primarily
due to the role of the five relative phases of the cooling beams.
The [0, ±δ] frequency detunings of the three sets of beams
periodically vary the character of the cooling light at each
pinning lattice site, but even so the method only samples a
small portion of this five-dimensional phase space, as only a
single linearly independent phase parameter is varied in a cycle
of frequency δ. This means that changing the value of the four
residual independent phases of the cooling beams does change
the overall character of the light field at the lattice site, and
this still affects the efficiency of the cooling at the lattice site,
albeit to a lesser extent than if no frequency offset was used.

To illustrate the residual variation in temperature and
site lifetime, the worst confining set of phases for the 3D
offset configuration was further investigated from the data
set investigated in Sec. VI (which comprises 100 runs of the
HMCME simulation at randomly chosen initial phases). The
temperature and site lifetime for this set of phases were found
to be 9.8 ± 0.4 µK and 10(2.2±0.3) s, showing substantially less
confinement than the mean.

The photon scattering rate is also a function of these relative
phases, as can be seen in the standard deviation of the scattering
rate (Table II), which is 8% of the mean value; this variation
is not good when performing accurate fluorescence measure-
ments. The variation in the cooling and photon scattering can
be suppressed using a more complex set of frequency detunings
between the cooling beams; however, there is still likely to be
some residual variation between lattice sites.

It is therefore concluded that for the situations that were
simulated, while the 1D alternating and 3D offset configu-
rations give similar temperatures and site hopping rates, the
1D alternating configuration exhibits less variability between

different lattice sites and cooling laser phase arrangements, and
hence is more suitable for use for fluorescence measurements.

VIII. DISCUSSION

It is seen that for a wide range of parameters the loss rate
from a site of the pinning lattice due to radiative processes
can be made to be 10−2 s−1 or lower. The loss rate of atoms
from the whole lattice due to radiative processes will occur
at a lower rate: to be lost from the lattice the atom would
either need to encounter another atom and suffer an inelastic
light-assisted collision, or travel to the edge of a lattice without
being recaptured. Even so, the transfer of atoms between wells
of the pinning lattice is unwanted as it acts to blur the spatial
atomic distribution measurement.

Regardless of the radiation scattering processes, the
lifetime of atoms in the lattice is limited by collisions with
room-temperature background gas particles, which inevitably
lead to the loss of at least one atom from the lattice. The
lifetime due to background collisions varies by experiment
and species, but typically is around 102 s. If the lifetime due to
radiation scattering processes is greater than around 103 s, the
loss rate due to such processes will be negligible compared to
the loss rate due to background gas collisions, and it can be
said that the polarization-gradient cooling is optimal.

In comparison, a typical image exposure time used in
experiments is around 0.5 to 1 s [4,5,8,9]. Nevertheless, it
is in general desirable to have the site lifetime as long
as possible, which in practice means that it is limited by
background gas collisions. This is because the site lifetime
has a direct bearing on the fidelity of the measurement:
for a 1 s measurement, 1% of atoms are lost during the
measurement if they have a 100 s lifetime, but around 10%
are lost for a 10 s lifetime; this is significant if hundreds of
atoms are present in the image. Furthermore, and perhaps
more importantly for future experiments, three-dimensional
tomographic measurements have longer exposure times than
two-dimensional measurements, as more images need to be
taken; consequently it is more critical that the site lifetime is
as long as possible.

In fact the results show that the radiative site lifetime is
several orders of magnitude above 103 s for a wide range of
parameters. This may be important for experiments as it adds
to the robustness of the measurement technique. Consider that
an additional source of heating is present, for example due to
the reabsorption of scattered radiation; the increased heating
will tend to diminish the site lifetime exponentially. If the
parameters of the cooling light are chosen so there is a “safety
margin” between the radiative site lifetime and the background
gas collisional lifetime, the measurement technique can be
made robust to the extra heating.

Another very important consideration is that in an experi-
ment it may be useful to use additional laser beams, on top of
the ones discussed in this paper, in order to aid measurements
on the sample. An example of this concept is discussed in
a separate presentation [16], where it is proposed to use
an additional laser beam to be able to distinguish between
atoms undergoing fluorescent scatter at different depths in a
three-dimensional sample; this would be of clear benefit for
tomographic measurements. The additional probing beam adds
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substantial extra heating to the atoms, and it is beneficial to
use near-optimal cooling parameters in order to diminish atom
losses during the measurement.

IX. CONCLUSION

The polarization-gradient cooling of atoms trapped in a
deep off-resonant optical lattice was simulated using a hybrid
Monte Carlo masterequation technique. The calculations
indicate that there is a wide parameter range in which the
lifetime at a lattice site of a strongly scattering single atom
undergoing polarization-gradient cooling is primarily limited
by collisions with background gas. This is consistent with
recent experiments [4,5,8,9].

The calculations suggest that for near-optimal parameters
the radiative loss rate from a site is in fact orders of magnitudes
less than the loss rate due to background gas collisions. This
could be important for experiments, as it suggests that the tech-
nique can be made robust in regard to additional heating mech-
anisms not included in the present analysis, for example heat-
ing from rescattered light or from additional probing beams.

It has been shown that by the use of an in-lattice
polarization-gradient-cooling fluorescent measurement tech-
nique it is possible to extract large photon numbers of up to 108

from each atom during fluorescent measurements of a dilute
atomic sample. This strongly supports the use of this technique
when probing the spatial distribution of low-atom-number
samples of ultracold atoms.
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APPENDIX A: THE ANGULAR DISTRIBUTION
OF SPONTANEOUSLY EMITTED RADIATION

The intensity of the spontaneously scattered radiation is
([28], p. 173)

I (r) ∝ 〈E−(r)E+(r)〉. (A1)

The electric field of the scattered light in the far field is
determined from the source-field expression ([28], p. 328)

E+
α(r) ∝ eα(eα · D−) (A2)

in which the unit vector eα is the polarization vector of the
radiation mode labeled by α.

Dividing the intensity into two perpendicular polarizations,
conveniently θ̂ and φ̂ in spherical polar coordinates, the
following relationships are obtained:

Iθ (r) ∝ 〈(θ̂ (κ) · D+) (θ̂(κ) · D−)〉, (A3)

Iφ(r) ∝ 〈(φ̂(κ) · D+) (φ̂(κ) · D−)〉, (A4)

in which mode α has been identified by the unit wave vector
κ and the polarization. The expectation value runs over the

TABLE IV. The parameters f σ
εε′ of Eq. (7) in terms of the polar

angle θ and azimuthal angle φ.

f θ
εε′ ε′ = −1 ε′ = 0 ε′ = 1

ε = −1 3
16π

cos2 θ − 3
16

√
2π

sin 2θe−iφ − 3
16π

cos2 θe−2iφ

ε = 0 − 3
16

√
2π

sin 2θeiφ 3
8π

sin2 θ 3
16

√
2π

sin 2θe−iφ

ε = 1 − 3
16π

cos2 θe2iφ 3
16

√
2π

sin 2θeiφ 3
16π

cos2 θ

f
φ

εε′

ε = −1 3
16π

0 3
16π

e−2iφ

ε = 0 0 0 0

ε = 1 3
16π

e2iφ 0 3
16π

internal degrees of freedom of the atom. By breaking down
the dipole operator into the component basis, the intensity is
expressed in the form

Iσ (r) = h̄ω�

r2

∑
εε′

f σ
εε′ 〈D+

ε D−
ε′ 〉. (A5)

The coefficients f σ
εε′ are listed in Table IV with the normaliza-

tion chosen so that the total scattered power is h̄ω�〈P〉 .
The tensor ηεε′ij of Eq. (12) is related to the functions

f σ
εε′ by

ηεε′ij =
∑

σ

∫
d2κ(κ · x̂i)(κ · x̂j )f σ

εε′ (A6)

with x̂i being the unit vector in the i direction. The tensor ηεε′ij
is given in Table V.

APPENDIX B: THE WIGNER TRANSFORMATION

The transformation of the kinetic energy operator term
of the unitary dynamics [(Eq. (4)] is covered in standard
treatments of the derivation of the Wigner-Moyal equation
[29,30]. The transformation of the potential energy operator
term of Eq. (4) proceeds straightforwardly using the position
space representation of the Wigner transformation [Eq. (8)].
For the nonunitary dynamics of Eq. (7), the transformation
of the terms containing the constant matrix P is trivial. The
remaining term of the equation is

�
∑
εε′σ

∫
d2κ eikRκ ·r ′

D−
ε ρ D+

ε′ e−ikRκ ·r f σ
εε′ (κ). (B1)

For this term it is easier to use the Wigner transformation as
expressed in the momentum representation, which is found to
be

W Â( p,t) = 1

h3

∫
d3q

〈
p + q

2

∣∣∣ Â
∣∣∣ p − q

2

〉
eir·q/h̄. (B2)

The application of this transform onto the expression (B1)
involves expressions such as

e−ikRκ ·r | p〉 = | p − h̄kRκ〉, (B3)
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TABLE V. The tensor ηεε′ij of Eq. (12).

ηεε′ij ε′ = −1 ε′ = 0 ε′ = 1

ε = −1
1

10

⎡
⎢⎣

3 0 0

0 3 0

0 0 4

⎤
⎥⎦ 1

10
√

2

⎡
⎢⎣

0 0 −1

0 0 i

−1 i 0

⎤
⎥⎦ 1

10

⎡
⎢⎣

1 −i 0

−i −1 0

0 0 0

⎤
⎥⎦

ε = 0
1

10
√

2

⎡
⎢⎣

0 0 −1

0 0 −i

−1 −i 0

⎤
⎥⎦ 1

5

⎡
⎢⎣

2 0 0

0 2 0

0 0 1

⎤
⎥⎦ 1

10
√

2

⎡
⎢⎣

0 0 1

0 0 −i

1 −i 0

⎤
⎥⎦

ε = 1
1

10

⎡
⎢⎣

1 i 0

i −1 0

0 0 0

⎤
⎥⎦ 1

10
√

2

⎡
⎢⎣

0 0 1

0 0 i

1 i 0

⎤
⎥⎦ 1

10

⎡
⎢⎣

3 0 0

0 3 0

0 0 4

⎤
⎥⎦

which are evaluated by identification of the momentum
translation operator. The matrices D±

ε are constant in spatial
coordinates, so the Wigner-transformed term is

�
∑
εε′σ

∫
d2κ D−

ε W (r, p − h̄kRκ,t)D+
ε′f

σ
εε′ (κ). (B4)

APPENDIX C: THE SEMICLASSICAL APPROXIMATION
AND CONVERSION TO LANGEVIN FORM

The semiclassical approximation is taken by the termination
of the expansion [Eq. (11)] of the right-hand side of Eq. (9)
in terms of small changes in momenta. Terms containing
polynomials in s are expressed in terms of the derivative of the
Wigner function with respect to momentum, for example,

∇p

∫
d3s

〈
r + s

2

∣∣∣ ρ ∣∣∣r − s
2

〉
e−i p·s/h̄

= − i

h̄

∫
d3s

〈
r + s

2

∣∣∣ ρ ∣∣∣r − s
2

〉
e−i p·s/h̄s. (C1)

The recoil term of Eq. (9) is directly expanded in terms of
small momenta:

W (r, p + q ′,t) = W (r, p,t) + q ′ · ∇pW (r, p,t)

+ 1

2
(q ′ · ∇p)2W (r, p,t) + · · · . (C2)

Integrals are performed over the unit sphere, and a sum taken
over polarizations. Terms containing odd powers of κ vanish,
leaving a residual second-order term

�h̄2k2
R

2

∑
ε,ε′,i,j

ηεε′ij D−
ε

∂2W
∂pi∂pj

D+
ε′ . (C3)

The tensor ηεε′ij is defined in Eq. (A6).
The conversion of Eq. (12) to Langevin form is achieved

by substitution of the trial solution of Eq. (13). To find the
equation of motion for the internal coordinates [Eq. (14)] the
substitution is performed directly and the integral taken over
the external coordinates. To find the equations of motion for
the external coordinates [Eqs. (15) to (18)] the trial solution
is substituted and the appropriate expectation value taken (by

integration over both internal and external coordinates). A key
relation concerns the derivatives of the δ distribution,∫

dxf (x)
∂nδ

∂xn
= −

∫
dx

df (x)

dx

∂n−1δ

∂xn−1
. (C4)

Using this relation the equations of motion are found for
r̃ = 〈r〉, etc. The nonzero expectation values for the second
moments of momentum are interpreted as a Langevin force.

APPENDIX D: SUMMARY OF HYBRID MONTE CARLO
MASTER-EQUATION METHOD

A measure is chosen which is representative of the
dynamics of interest (see Sec. IV C), and a series of points
are chosen on this measure. The value of the measure varies
in time as the system evolves. The system is classified at any
time according to the last point encountered by the measure.
When the system’s classification changes (when the measure
encounters a new point), the state vector of the system is
recorded; this is called a start vector for the new point.

(1) (a) One or more initial standard Monte Carlo simulations
are carried out. After the system settles into a steady state, the
state vector is recorded every time the system encounters a
new point; these form the initial population of start vectors
for the rest of the HMCME simulation. This continues until
enough start vectors have been found to characterize a few
of the points on the measure (those where the system is most
commonly found).

(b) An equal weight is assigned to each of the initial start
vectors.

(2) (a) A single start vector (the mother) is chosen randomly
from the set of all start vectors at partially filled points with a
probability which is proportional to the start vector’s weight
wmth.

(b) The mother start vector is propagated multiple times
using the Monte Carlo method until the next point is reached.
The resulting state vectors (the daughters) are categorized by
end point; a single randomly chosen daughter vector is retained
for each end point. The branching probabilities pij for the
mother start vector are calculated.

(c) Weights (wdt )j =pijwmth are assigned to the two
daughter vectors. If one of the daughter vectors is at a full
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point, the daughter’s weight is added to the combined weight
at that point.

(d) For each full point (with weight Wj ) a new weight is
assigned according to

(Wj )new = Wj − wmthWj

WN

(D1)

with WN the total weight at all partially filled points. The
weight from this point is distributed to the two neighboring
points. If a neighboring point (with weight Wk) is also full, it
is assigned the new weight

(Wk)new = Wk + pjkwmthWj

WN

, (D2)

where pjk are the calculated mean branching ratios from j to
k. If the neighboring point k is not full the start vectors at that
point which originate from point j are assigned the weights

(wdt j→k)new = wdt j→k + pjkwmthWj

WN

wdt j→k∑
wdt j→k

, (D3)

where the summation
∑

wdt j→k runs over all the daughter
vectors of the point j at point k. The reallocation of weights
described in this step is carried out so weight is reallocated
from each full point.

(e) A weight wmth = 0 is assigned to the mother vector.

(f) If the number of start vectors propagated reaches the
maximum allowed M at a point i, the point is called “full;” the
weights wi,n of all start vectors at this point are added to give
Wi = ∑

n wi,n, and the mean branching ratios pij are found
for all relevant channels.

(g) Part 2 is repeated until data have been taken for all points
of interest.

(3) The results of part 2 are processed to form a master
equation as discussed in Sec. IV F.

The reasoning behind the reallocation of weights from the
full points step 2(d) is to prevent a false buildup of weights
at the full points; in the absence of this reallocation, weight is
transferred from partially filled to full points, but not the other
way around. To compensate for not propagating vectors from
these full points, the weights are reallocated [Eqs. (D1) to (D3)]
in the same proportion that would occur if start vectors were
propagated from the full points. These equations are derived
by noting that, when each start vector is propagated, a fraction
wmth/WN of the weight of WN (the total weight at partially
filled points, i.e., the total weight from which the start vector is
chosen) is being reallocated; therefore, to compensate for not
propagating start vectors from the full points, an equivalent
fraction of the weight at full points Wj (wmth/WN ), for all
full points j , should be reallocated according to the known
branching ratios.
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