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Time- and frequency-resolved detection of atomic coherence in the regime of strong-field interaction
with intense femtosecond laser pulses
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Understanding the effect of strong laser pulses on the evolution of an atomic or molecular wave function is
important in the context of coherent control in the strong-field regime, when power broadening and dynamic Stark
shifts become comparable with or bigger than the bandwidth of the control field. We experimentally demonstrate
the method of complete characterization of a complex-valued amplitude of a quantum state driven by a strong
two-photon field. The method is based on coherent scattering of a weak probe pulse from the strong-field-induced
atomic coherence, followed by the detection of the time- and frequency-resolved parametric four-wave-mixing
signal. We show that the proposed technique corresponds to a cross-correlation frequency-resolved optical
gating (XFROG) of the highly perturbed evolution of an atomic quantum state. Utilizing the XFROG retrieval
algorithm, we determine both the amplitude and phase of an atomic wave function at any time moment throughout
the interaction with the driving field. The direct retrieval of the time-dependent phase of the wave function, rather
than the population dynamics only, enables us to observe the strong-field effects with arbitrary time and frequency
resolution.
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I. INTRODUCTION

Constantly increasing pulse energies from readily available
ultrafast laser sources resulted in a growing volume of work on
strong-field control of the interaction of atoms and molecules
with intense laser fields. High-power ultrashort laser pulses
have become a common tool in driving highly nonlinear,
and therefore typically inefficient, optical processes from two-
photon absorption to four-wave mixing (FWM) to multiphoton
ionization and high-harmonic generation. Although the ampli-
tude of a signal of interest can be dramatically increased by
increasing the field strength, the latter is usually accompanied
by a series of undesired strong-field effects, such as energy
ladder climbing [1] and dynamic Stark shifts (DSSs) [2].

DSSs could be particularly harmful to spectroscopic mea-
surements as the notion of tuning the laser “on resonance”
breaks down due to the time-dependent frequency shifts of
strongly driven atomic or molecular resonances. Similarly,
multiple schemes of coherent control rely on controlling
interferences between resonant and nonresonant quantum
pathways [3,4], and hence on a static rather than dynamically
changing energy spectrum of the system. Unlike the strong-
field effects on a single-photon resonance, e.g., Autler-Townes
splitting [5] and Rabi oscillations [6], multiphoton transitions
are harder to control due to the increasing number of interfering
on- and off-resonant interaction channels [7]. The latter cannot
be neglected as they are the essential intermediate steps toward
the final target state. A number of routes to multiphoton strong-
field coherent control, in which DSSs have been either avoided
or compensated for, have been proposed and implemented.
These include the use of chirped pulses [8–10], pulse trains
[11,12], “real fields” [13], spectral phase jumps [14,15], and
adaptive atom-field phase matching [16,17].

Typical strong-field control schemes aim at the enhance-
ment or suppression of the population transfer from the initial

to the target quantum state [17], a superposition of states [18],
a continuum of states [19], or even a dressed state [9,11].
At the same time, the efficiency of the population transfer is
governed by the dynamically changing phases of, and therefore
coherences between, the Stark shifted atomic states. Hence,
the detection of the target state population offers only an
incomplete picture of the dynamics of a strongly driven system.
For a full understanding of these dynamics, one needs to be
able to detect and analyze the time-dependent laser-induced
coherences. Here, we demonstrate a method of measuring
strong-field-induced coherences and show a robust way of
analyzing them in both frequency and time domains, with a res-
olution not limited by the spectral bandwidth of the excitation
pulses or their duration, respectively. The evolution of atomic
coherences in time and frequency reflects the effects of the
strong-field excitation, e.g., the dynamic splitting and shifting
of resonances in response to the time-dependent driving field.

Studying laser-induced coherences under strong-field ex-
citation is also motivated by nonlinear spectroscopy, e.g.,
coherent anti-Stokes Raman scattering, where enhancing the
nonlinear response of the medium is often achieved by
increasing the strength of the excitation fields beyond the
perturbative limit [20]. As shown in this work, dynamic
Stark shifts modify the spectrum of coherently scattered
photons, prohibiting accurate measurements of the resonant
frequencies. The ability to measure transient behavior, i.e.,
the evolution of the molecular quantum state during the
interaction with the strong driving field is also important in the
context of strong-field coherent control, when intermediately
populated quantum states could be coupled to irreversible
decay channels, such as photoionization or dissociation.

This paper is organized as follows. In Sec. II, we describe
the details of the method and present the results of numerical
simulations of the proposed experimental detection technique.
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Section III outlines the details and results of our experimental
measurements. In order to analyze the experimental results,
we first work out an analytical model of the atomic response,
presented in Sec. IV. The theoretical analysis enables us to
apply the technique of cross-correlation frequency-resolved
optical gating for interpreting the experimental observations
in Sec. V, which is followed by a brief summary.

II. NUMERICAL CALCULATIONS

To measure both the amplitude and phase of the complex-
valued coherences, we use a parametric four-wave mixing
process in atomic rubidium, depicted in Fig. 1. The scheme
is different from the previously studied superfluorescence
in a double-cascade configuration, in which the emission is
stimulated by a field resonant with an atomic transition [21,22].
In our case, two strong pump fields E1(t) and E2(t) of
frequencies ω1 and ω2 move the atomic population and induce
coherence between the ground level |1〉 ≡ |5s〉 and excited
level |3〉 ≡ |4d〉 of Rb. An intermediate state |2〉 ≡ |5p〉 is
not covered by the spectral bandwidth of the excitation pump
pulses, but its close proximity to a single-photon resonance

FIG. 1. (Color online) Parametric four-wave-mixing process in
atomic rubidium used in this work. Two strong pump fields, pump 1
and pump 2 (wide vertical arrows), move the atomic population and
induce coherence between the ground level |1〉 ≡ |5s〉 and excited
level |3〉 ≡ |4d〉 of Rb. The latter is detected by scattering a weak
off-resonant probe pulse (solid narrow arrow) and detecting the FWM
signal (dashed narrow arrow). Hyperfine splitting of |5p〉 and |4d〉, as
well as two other electronic states |6s〉 and |5d〉, shown in the upper
right corner, were taken into account in the numerical calculations
described in Sec. II. The inset shows a simplified three-level model
used in the theoretical analysis of Sec. IV.

introduces significant Stark shifts of the two states coupled
by a two-photon resonance, affecting the coherence between
them. The latter is detected by scattering a weak off-resonant
probe pulse E3(t) of frequency ω3 from the atomic ensemble
and detecting the FWM signal E4(t) at ω4 = ω1 + ω2 − ω3.
Fine structure splitting of states |5p〉 (into 5p1/2 and 5p3/2) and
|4d〉 (into 4d3/2 and 4d5/2) has been taken into account in the
numerical analysis presented below. To account for additional
Stark shifts, we have also considered five far-off-resonant
transitions with frequencies falling within 100 nm from the
frequencies of both pump pulses. Those transitions are (i)
5p → 5d at 762 and 776 nm; (ii) 5p → 6s at 1367 nm;
(iii) 4d → 4f at 1344 nm; (iv) 4d → 7f at 827 nm; and
(v) 4d → 8f at 793 nm. The two former ones, originating at
|5p〉, have been included in the numerical analysis (Fig. 1),
whereas the transitions originating at |4d〉 have been neglected
due to much weaker transition strengths [23].

We first describe the numerical procedure for calculating
the four-wave mixing field. Following the standard derivation
starting from the wave equation for a lossless dispersionless
medium, and using the approximations of a slowly varying
field envelope and perfect phase matching [24], one arrives at

E4(t) = − 2πiL

|k4|c2

∂2

∂t2
P (3)(t) ≈ 2πiLω2

4

|k4|c2
P (3)(t), (1)

where k4 = k1 + k2 − k3 with kn being the wave vector of the
corresponding excitation field, L is the interaction length, c is
the speed of light, and P (3)(t) is the third-order polarization
induced in the medium by the two pump and one probe laser
fields. The latter is proportional to the expectation value of the
electric dipole moment operator µ̂, which can be derived from
the time-dependent density matrix of the atomic ensemble,
yielding

P (3)(t) = N〈µ̂〉(t) = NTr{ρ̂(t)µ̂}, (2)

with N being the number density of atoms. Hereafter, all vector
quantities are treated as scalars due to the collinear polarization
of the excitation fields.

We calculate ρ̂(t) [and hence P (3)(t)] by numerically
solving Schrödinger’s equation for the wave function ψ(t),
which can be expanded in the basis of bare atomic states |n〉
as

ψ(t) =
∑

n

an(t)e−iωn1t |n〉. (3)

Here, h̄ωnm is the energy difference between states |n〉 and
|m〉. The interaction Hamiltonian has been taken in the usual
form of ˆV (t) = −µ̂E(t), where E(t) = ∑3

k=1 Ek(t) represents
the total electric field of the three excitation pulses. Seven
atomic bare states which have been included in our numerical
calculations are shown in Fig. 1, whereas the values of the
corresponding matrix elements of the dipole moment have
been taken from [23].

In the experimental work presented here and described in
detail below, we have recorded the spectrum of the FWM signal
as a function of the delay between the pump pulses (both fixed
in time and overlapping with one another) and a probe pulse
whose time of arrival τ is scanned. A typical sequence of the
excitation pulses for a given value of τ is shown in Fig. 2(a).
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FIG. 2. (Color online) (a) Example of a pulse sequence for a given value of probe delay τ . (b) Example of the numerically calculated
populations |an(t)|2 [Eq. (3)]. Weak oscillations near zero (green and red) correspond to states 5p1/2 and 5p3/2 (not labeled). Examples of the
calculated 2D time-frequency “FWM spectrograms” I4(ω4,τ ) are shown for (c) weak- and (d) strong-field excitation.

To calculate the measured signal, we first solve the time-
dependent Schrödinger equation for the total excitation field
E(t). Complex wave-function amplitudes an(t) are calculated
as functions of time throughout the excitation pulse sequence.
[A typical result for the populations |an(t)|2 is shown in
Fig. 2(b).] A time-dependent density matrix is then substituted
into Eq. (2), and the signal field is calculated according to
Eq. (1). The calculation of the observed FWM spectrum
I4(ω) = |E4(ω)|2, with E4(ω) being the Fourier transform of
E4(t), has been repeated for each time delay τ . This resulted in
a two-dimensional (2D) time-frequency “FWM spectrogram”
I4(ω4,τ ). Two examples of this spectrogram for the case of
weak- and strong-field excitation are shown in Figs. 2(c) and
2(d), respectively. Note that while the signal is rising uniformly
in the weak-field regime [Fig. 2(c)], it oscillates due to Rabi
oscillations of the atomic population under the strong-field
excitation [Fig. 2(d)], decreasing almost to zero at the moments
of substantial transfer of the population back to the ground state
[e.g., around 250 fs in Fig. 2(d)].

III. EXPERIMENTAL PROCEDURE AND RESULTS

Experimental FWM spectrograms have been obtained using
the setup shown in Fig. 3. The experiments employed a
laser system based on a femtosecond Ti:sapphire oscillator
(Synergy, Femtolasers), a regenerative amplifier (Spitfire Pro,
Spectra Physics), and an optical parametric amplifier (OPA)
(Topas, Light Conversion). The amplifier generated 3-mJ,
35-fs pulses at the central wavelength of 800 nm and a 1-kHz
repetition rate. In our experiments, these pulses were used as
pump 1 (see Fig. 1). A portion of the 800-nm beam (1 mJ) was
used to pump an OPA, tuned to the signal and idler wavelengths
of 1425 and 1824 nm, which served as pump 2 and probe,
respectively. Both pumps 1 and 2 were coupled into home-built

spectral filters consisting of a diffraction grating, a lens, and
a plane silver mirror, one focal length apart from one another
(Fig. 3). A small tilt of the mirror enabled us to separate the
input and output beams in space. A variable slit was installed
between the lens and the back mirror to select the necessary

FIG. 3. (Color online) Diagram of the experimental setup.
Ti:sapphire regenerative amplifier generates 35-fs, 3-mJ pulses at
a 1-kHz repetition rate. Fundamental radiation at 800 nm serves as
pump 1. An OPA is used to produce the pump 2 and probe pulses at
1425 and 1824 nm, respectively. Both pumps are spectrally narrowed
with home-built spectral filters down to a bandwidth corresponding
to ≈800-fs pulse length. All three input pulses are overlapped in
BOXCARS geometry and focused into 5-cm optical path Rb cell. A
FWM signal is coupled into a spectrometer and detected by a cooled
CCD camera.
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FIG. 4. (Color online) 2D FWM spectrograms for the case of weak-field excitation. (a) Experimental signal detected for the energies of
pumps 1 and 2 equal to ≈0.2 and ≈0.02 µJ, respectively. (b) Numerical simulations with the energies of both pump pulses set to 0.01 µJ.
Both spectrograms show signal rising around zero delay time between the scanned probe and fixed overlapping pumps. The observed rise time
corresponds to the duration of both pumps (800 fs). The long tail reflects the long relaxation time of the excited |4d〉 state of Rb.

spectral bandwidth. For both pumps 1 and 2, we cut out about
20 cm−1 of bandwidth, corresponding to a pulse duration of
about 800 fs. Probe pulses were not spectrally filtered and had
a duration of about 80 fs.

All three beams were synchronized in time, collimated, and
focused in (BOXCARS) geometry with 25-cm focal distance
silver mirror into a 5-cm optical path Rb cell. The temperature
of the Rb cell was stabilized at 215 ◦C, which corresponds to
a vapor pressure of about 0.05 Torr. The energy of each beam
was varied independently with neutral density filters. A FWM
signal was spatially separated from the three input beams
and coupled into a spectrometer (Model 2035, McPherson),
operating with a spectral resolution of 0.5 nm and equipped
with a cooled charge-coupled device (CCD) camera (iDus,
Andor). The exposure time was set to 0.5 s, and the FWM
spectrum was recorded as a function of the probe delay,
controlled with a precision translation stage.

To investigate the weak-field regime first, we set the
energies of pumps 1 and 2 to ≈0.2 and ≈0.02 µJ, respectively.
A recorded 2D spectrogram [Fig. 4(a)] shows a uniform
spectral response with the rising edge corresponding to the
pulse duration of pump pulses, and a long tail for the
positive delay time reflecting a much longer lifetime of the
|4d〉 state. The spectral width of the signal is equal to
that of the probe field. The spectrogram agrees well with the
numerically calculated spectrogram shown in Fig. 4(b), and
simply shows the two-photon-induced coherence between the
unperturbed bare ground and excited states.

When the energy of pump 2 has been increased to the
same energy level as pump 1, ≈0.1 µJ, the 2D four-wave-
mixing spectrogram showed a double-peak structure as seen
in Fig. 5(a). This oscillatory behavior is a result of the strong-
field modulation of the induced coherence with a two-photon
Rabi frequency. As described in the next section, the observed
structure reflects the evolution of atomic quantum states during
the interaction with the strong pump fields. The oscillations
are followed by a long tail similar to the weak-field regime,
although now its relative amplitude is very sensitive to the exact
energies of pump pulses. A similar double-peak structure has
been reproduced in our numerical results shown in Fig. 5(b).

IV. THEORETICAL ANALYSIS

We now turn to the analysis of FWM spectrograms and
show their utility in understanding the dynamics of a strongly
driven system. We first simplify the interaction picture by
reducing it to a three-level model (see inset in Fig. 1).
Generalization to an arbitrary number of levels will be
discussed later in the text. Let us introduce the following wave
functions:

ψ (k)(t) =
3∑

n=1

a(k)
n (t)e−iωn1t |n〉, (4)

describing the initial ground state of the system (k = 0) and
the states of the system interacting with one probe field only
(k = 1), two strong pump fields (k = 2), and all three fields
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FIG. 5. (Color online) 2D FWM spectrograms for the case of strong-field excitation. (a) Energies of pumps 1 and 2 are ≈0.2 and ≈0.1 µJ,
respectively. (b) Numerical results for the pulse energies of 0.275 and 0.175 µJ. The double-peak structure around time zero represents
complicated transient dynamics of the atomic system interacting with two strong pump fields. The long tail at positive delay corresponds to a
field-free relaxation of the excited |4d〉 state of Rb.
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together (k = 3). Note that hereafter, superscript (k) denotes
the number of excitation fields taken into account rather than
the expansion order in perturbation theory. For instance, due to
the strong-field nature of the interaction, amplitudes a(2)

n (t) in
the above expansion of ψ (2)(t) are not necessarily small and lin-
ear in E1,2. The main contribution to the polarization oscillat-
ing at, or close to, the signal frequency ω4 can be expressed as

P (3)(t) = N [〈ψ (0)(t)|µ̂|ψ (3)(t)〉 + c.c.], (5)

where we have neglected the terms proportional to
〈ψ (1)(t)|µ̂|ψ (2)(t)〉 because the frequency detuning of
the probe field from the lower transition frequency ω21 is
almost seven times bigger than the corresponding detuning
from the upper transition frequency ω32. Substituting Eq. (4)
into Eq. (5), one arrives at

P (3)(t) = N
[
µ12a

(0)∗
1 (t)a(3)

2 (t)e−iω21t + c.c.
]
, (6)

where µnm denote matrix elements of the dipole moment.
Unlike the effect of strong pump pulses, the effect of a weak
probe field E3 can be treated perturbatively. To the first order
in probe perturbation [24],

a
(3)
2 (t) = µ23

ih̄

∫ t

−∞
dt ′E3(t ′) a

(2)
3 (t ′) eiω23t

′
. (7)

By substituting the above expression into Eq. (6), the re-
sponse of a three-level atom at frequency ω4 can be calculated
for arbitrarily strong pump fields. Before proceeding to that
step, it is instructive to apply this result to the case when all
three excitation pulses are weak. In this limit, second-order
perturbation theory gives [24]

a
(2)
3 (t ′) = µ12µ23

h̄2�1

∫ ∞

−∞
d�

E(2)(�)

ω31 − � − i	31
ei(ω31−�)t ′ , (8)

where E(2)(�) is the spectrum of a two-photon pump field
E(2)(t) ≡ E1(t) · E2(t), �1 is the one-photon detuning shown
in Fig. 1, and 	31 is the coherence decay rate. Combining
Eqs. (6), (7), and (8), one finds the familiar result for a
weak-field four-wave-mixing process with an intermediate
resonance [25]:

P
(3)
WF(t) = RWF(t)E∗

3 (t), (9)

where the two-photon response RWF(t) is given by

RWF(t) = µ2
12µ

2
23

h̄3�1�3

∫ ∞

−∞
d�

E(2)(�)

ω31 − � − i	31
. (10)

In the case of arbitrarily strong pump pulses, Eq. (8) is not
applicable and must be replaced by the generic expansion of
a

(2)
3 (t ′) in spectral components:

a
(2)
3 (t ′) =

∫ ∞

−∞
dω a

(2)
3 (ω) e−iωt ′ . (11)

This results in the following expression for the third-order
polarization in the strong-field regime:

P
(3)
SF (t) = −µ12µ23

h̄
E∗

3 (t)e−iω31t

∫ ∞

−∞
dω

a
(2)
3 (ω)e−iωt

ω32 − ω3 − ω
. (12)

As confirmed by our numerical and experimental data (Fig. 7),
even in the strong-field limit achieved with our experimental
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FIG. 6. (Color online) Amplitude (thin black) and phase (thick
red) of a weak-field atomic response function, retrieved from the
(a) experimentally observed and (b) numerically calculated FWM
spectrograms. Retrieved spectra show a single resonance correspond-
ing to the |4d〉 state of rubidium. Its line width is dictated by the
spectral resolution of the XFROG method. The spectral phase shows
a sharp step across the resonance, typical for a Lorentzian response.

parameters, the spectral width of a
(2)
3 (ω) is much smaller

than the probe detuning �3 (a few nanometers vs tens of
nanometers, respectively). Though not a generic feature of
any strong-field interaction scheme, in our particular case, it
enables us to simplify the above formula and arrive at the final
expression for the strong-field FWM polarization:

P
(3)
SF (t) ≈

[
− µ12µ23

h̄�3
e−iω31t a

(2)
3 (t)

]
E∗

3 (t), (13)

which in the case of multiple excited states |n〉 and |m〉 can be
generalized to

P
(3)
SF (t) ≈ RSF(t)E∗

3 (t), (14)

with the response function to the two strong pump fields given
by

RSF(t) = −
∑
nm

µ1nµnm

h̄ [ωmn − ω3]
e−iωm1t a(2)

m (t). (15)

Though not surprising in view of the weak probe approxi-
mation, the above result of Eq. (14) means that similarly to the
weak-field case of Eq. (9), probe field E3(t) can be factored
out from the third-order polarization of a strongly driven
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FIG. 7. (Color online) Amplitude (thin black) and phase (thick
red) of a strong-field atomic response function, retrieved from the (a)
experimentally observed and (b) numerically calculated FWM spec-
trograms [Figs. 5(a) and 5(b), respectively]. The retrieved spectrum
shows a narrow resonance, resulting from a field-free decay of |4d〉,
superimposed onto a broad transient response. The latter exhibits
clear power broadening and spectral sidebands corresponding to the
dynamic Stark splitting under the strong pump excitation.
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FIG. 8. (Color online) (a) Husimi representation of the experimentally detected atomic response to strong-field excitation, in which spectral
resolution has been set to 1.8 nm. (b) Numerically calculated four-wave-mixing spectrogram for a transform limited 500-fs probe pulse (spectral
bandwidth of 1.8 nm).

system. However, unlike the perturbative response RWF(t),
the strong-field response of Eq. (15) reflects the dynamics
of highly oscillatory wave-function amplitudes a(2)

m (t) rather
than the frequencies of static atomic resonances appearing in
the denominator of Eq. (10). Below, we demonstrate how to
retrieve the dynamics of strongly driven atomic states through
the analysis of 2D FWM spectrograms.

V. XFROG METHOD

Equation (14) can effectively be viewed as sum-frequency
generation between the two fields: that of a probe pulse E3(t)
and the field of atomic response RSF(t). The power spectrum of
the output “sum-frequency” FWM field I4(ω,τ ) ∝ |P (3)(ω)|2
that is recorded as a function of probe delay τ results in
2D four-wave-mixing spectrograms shown in Figs. 4 and 5.
The technique of reconstructing an unknown optical field
from the spectra of its sum-frequency mixing with a known
reference pulse at various time delays has been successfully
applied to optical field characterization for many years [26].
This technique, known as cross-correlation frequency resolved
optical gating (XFROG), is based on the numerical method of
generalized projections [27]. A complete analogy between a
conventional optical XFROG trace and a FWM spectrogram
enables us to utilize the XFROG algorithm for retrieving an
unknown complex-valued atomic response function RSF(t)
[Eq. (15)] from the measured spectrogram I4(ω,τ ) and
precharacterized probe field E3(ω). The temporal resolution
of the XFROG method is inversely proportional to the spectral

bandwidth of the detected nonlinear signal. The spectral
resolution of the method is inversely proportional to the time
width of the spectrogram and in our case equals 0.2 nm.
The latter dictates the observed line width. For more details
on the XFROG approach to coherent nonlinear spectroscopy,
see our earlier work on XFROG coherent anti-Stokes Raman
scattering (XFROG CARS) [28,29].

We first apply the XFROG method to the weak-field
spectrograms shown in Fig. 4. The retrieved response function
RWF(ω) is shown for the case of experimentally [Fig. 6(a)]
and numerically [Fig. 6(b)] obtained data. As expected, the
retrieved spectrum shows only one peak corresponding to the
energy of the unperturbed |4d〉 state of rubidium — the only
quantum state that can be excited with a convoluted bandwidth
of pumps 1 and 2 pulses. The spectral resolution of the XFROG
method, which is inversely proportional to the temporal width
of the spectrogram and in our case equals 0.2 nm, dictates
the observed line width. Slow exponential decay, invisible on
the time scale of our delay scan, results in a characteristic
Lorentzian phase with a phase step across the resonance. Note
that the phase is ill defined when the amplitude is zero.

Applying the same retrieval algorithm to the case of a
strong-field excitation, e.g., spectrograms shown in Fig. 5,
results in a completely different response function. The latter
is plotted in Fig. 7. In contrast to the weak-field regime, the
spectrum of an atomic response shows a narrow resonance,
resulting form a field-free decay of |4d〉, superimposed onto
a power-broadened transient response with clear sidebands
corresponding to the energy splitting of the excited state.
The magnitude of the splitting and the amplitude ratio of the
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FIG. 9. (Color online) (a) Husimi representation of the experimentally detected atomic response to strong-field excitation, in which spectral
resolution has been set to 0.9 nm. (b) Numerically calculated four-wave-mixing spectrogram for a transform limited 1-ps probe pulse (spectral
bandwidth of 0.9 nm).
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sidebands are very sensitive to the energies of both pump
pulses, as well as their length and temporal overlap.

Although the retrieved complex-valued response RSF(ω)
shown in Fig. 7 contains all the information about the dynamics
of an atomic wave-function amplitude described by Eq. (15),
it is more instructive to analyze these dynamics by inspecting
2D Husimi representations of the same response function,
constructed with the desired time and frequency resolution.
We note that the ability to represent the dynamics of an atomic
system with intuitive Husimi plots is provided by the unique
capability of the XFROG technique to retrieve the phase of
the complex response function [29]. The 2D Husimi plots
shown on the left sides of Figs. 8 and 9 have been calculated
by frequency convolving the experimentally retrieved RSF(ω)
with a reference Gaussian probe pulse Eref(ω) while changing
the delay of this pulse in time. Effectively, this procedure
is equivalent to measuring the FWM spectrogram with a
new probe pulse of variable duration and, hence, bandwidth.
Calculated spectrograms are shown on the right sides of
Figs. 8 and 9 for comparison.

In Fig. 8(a), we plot the Husimi representation of an
atomic response function with the frequency resolution of
1.8 nm. This resolution is higher than that available from
the originally detected four-wave-mixing spectrogram (Fig. 5)
and corresponds to the duration of the probe pulse of 500 fs.
A spectrogram, numerically calculated for the probe pulse of
this length, is shown in Fig. 8(b). The two plots are similar
and show dynamic splitting of |4d〉 under strong excitation
pump pulses around time zero. Unlike the originally detected
spectrogram of Fig. 5, the temporal Rabi oscillations are less
obvious, but the spectral splitting is more pronounced. The
spectral width of a long tail, corresponding to the field-free
relaxation, is determined by the 1.8 nm bandwidth of the
chosen probe pulse.

Figure 9 is similar to Fig. 8. Here, the spectral resolution
has been further improved from 1.8 to 0.9 nm at the expense
of lower resolution in time (from 500 fs to 1 ps). As a result,
the temporal oscillations are completely washed out, whereas
the dynamic energy splitting is seen more clearly. The latter is
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FIG. 10. Vertical cross sections of the 2D plots in Figs. 9(a) and
9(b), respectively, at time zero.

explicitly shown in Fig. 10, where we plot vertical cross
sections of the 2D Husimi representation of the atomic strong-
field response obtained from the experimental [Fig. 9(a)] and
theoretical [Fig. 9(b)] FWM spectrograms.

In summary, we have applied the method of cross-
correlation frequency resolved optical gating for mapping out
(both in time and frequency) the transient dynamics of an
atomic system significantly perturbed by a strong two-photon
excitation field. The method is not limited to tracking the
dynamics of the atomic population, but is rather capable
of reconstructing the full complex amplitude of a quantum
state of interest. Using XFROG reconstruction, we have
directly observed such effects of a strong-field interaction
regime as two-photon Rabi splitting, energy shifting, and
power broadening. The technique of an optical gating of
the atomic response by means of a parametric scattering
process has enabled us to analyze the strong-field effects
with variable and easily adjustable resolution in time and
frequency.
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