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Three-dimensional photodissociation in strong laser fields: Memory-kernel
effective-mode expansion
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We introduce a method for the efficient computation of non-Markovian quantum dynamics for strong (and
time-dependent) system-bath interactions. The past history of the system dynamics is incorporated by expanding
the memory kernel in exponential functions thereby transforming in an exact fashion the non-Markovian
integrodifferential equations into a (larger) set of “effective modes” differential equations (EMDE). We have
devised a method which easily diagonalizes the EMDE, thereby allowing for the efficient construction of an
adiabatic basis and the fast propagation of the EMDE in time. We have applied this method to three-dimensional
photodissociation of the H+

2 molecule by strong laser fields. Our calculations properly include resonance-Raman
scattering via the continuum, resulting in extensive rotational and vibrational excitations. The calculated final
kinetic and angular distribution of the photofragments are in overall excellent agreement with experiments, both
when transform-limited pulses and when chirped pulses are used.
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I. INTRODUCTION

One of the most important and challenging problems in
physics and chemistry is the proper treatment of the quantum
dynamics of a system, consisting of a small number of states,
coupled to a bath, consisting of a very large number, often
infinite, number of states [1]. The difficulty is most pronounced
when the system-bath interaction is strong and time dependent,
e.g., when intense external (laser) fields are involved. One
would like to develop methods that incorporate the mutual
system-bath effects in an exact, yet computationally efficient,
way.

The photophysics of molecules in intense electromagnetic
fields, which is a prototype of strong time-dependent system-
bath interaction, has been widely investigated [2], mostly
in relatively small molecules [3–5]. In particular, the rapid
development of ultrafast strong-field photodissociation (PD)
and ionization processes has attracted great attention [6–11].
It has been shown that the strong interaction of matter with
femto- and attosecond pulses depends very sensitively on laser
peak intensity, carrier envelope phase, and pulse duration. The
studies of the simplest molecules, H2 and H+

2 , have enhanced
our understanding of the dynamics and control of strong-
field dissociation processes in other (possibly polyatomic)
molecules.

Over the years a number of methods, such as wave packet
propagation on a grid, which directly solve the time dependent
Schrödinger equation, sometimes in conjunction with Floquet-
type expansions [12] have been developed for the study of
strong-field photodissociation. Due to numerical difficulties
of applying such methods in full three-dimensional space,
especially when long propagation times (such as in the present
case) are involved, these methods are limited to situations
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involving only a relatively small number of bound states and
continuum channels. The inclusion of the highly important
(and numerous) continuum rotational channels which get
excited by the strong laser pulse becomes prohibitively
expensive.

In this study we introduce a theoretical approach which
enables us to perform strong-field molecular PD calculations
involving large numbers of bound states and continuum
channels with high efficiency. The computational ease is a
result of expressing the problem in terms of a large set of
“effective-modes” differential equations (EMDE) [13] and
diagonalizing these equations in an essentially analytical
manner. We demonstrate this procedure by performing a
full three-dimensional computation on the H+

2 PD by strong
near-IR femtosecond laser pulses.

II. THEORY

As depicted schematically in Fig. 1, we consider the
strong interaction of a system, composed of bound states,
with a bath, composed of continuum states, mediated by an
external laser field. The total Hamiltonian is given as H =
HM + Hint , where HM is the radiation-free system and the bath
material Hamiltonian; and Hint = −�µ · �ε is the system-bath
radiation-matter interaction term, with �ε and �µ denoting,
respectively, the classical electric field and the electric dipole
operator. Using the bound (“system”), |Ei〉,(i = 1, . . . ,Nb),
and continuum (“bath”), |E,n−〉, eigenstates of HM, obeying
the [HM − Ei]|Ei〉 = [HM − E]|E,n−〉 = 0 eigenvalue equa-
tions, we expand |�〉, the solution of the total, ih̄∂|�〉/∂t =
H |�〉, system-bath Schrödinger equation as

|�(t)〉 =
Nb∑
i=1

bi |Ei〉 +
∑

n

∫
dEbE,ne

−iEt |E,n−〉. (1)

By substituting Eq. (1) into the time-dependent Schrödinger
equation and using atomic units (h̄ = 1), we obtain two sets of
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FIG. 1. (Color online) A schematic plot of the photodissociation
of H+

2 due to the 1sσg → 2pσu transition.

coupled equations:

ḃE = i

Nb∑
j=1

µ(E,n; j )ε(t)eiEtbj (t), (2)

ḃi = −iEibi + i
∑

n

µ(i; E,n)bE,nε(t)e−iEt . (3)

with µ(E,n; j ) ≡ 〈E,n− |µk|Ei〉 standing for the bound-
continuum dipole matrix elements. Integrating Eq. (2)

bE,n(t) = i

∫ t

−∞
dt ′

Nb∑
j=1

µ(E,n; j )bj (t ′)ε(t ′)eiEt ′ , (4)

and substituting into Eq. (3) leads to a set of integrodifferential
equations (IDE)

ḃi = −iEibi + i

Nb∑
j=1

∫ t

−∞
dt ′bj (t ′)Fi,j (t − t ′)ε(t)ε(t ′). (5)

In the above, Fi,j are cross-correlation functions defined as

Fi,j (τ ) = i

∫
dE

∑
n

µ(i; E,n)µ(E,n; j )e−iEτ , (6)

which serve as “memory-kernels.” The Markovian approx-
imation, Fi,j (t − t ′) ≈ Fi,j (t)δ(t − t ′), can be made when
the field is weak or narrow in energy bandwidth, neither
of which is applicable for strong field-matter interaction of
femtosecond duration. Nevertheless, the solution of Eq. (5)
can be greatly simplified if the memory kernels can be written
in a separable form as Fi,j (t − t ′) = fi,j (t)gi,j (t ′). Therefore,
each cross-correlation function is fitted to the desired accuracy
within the time interval of interest (see also Ref. [14] on this
issue), as a sum of Nc exponential functions

Fi,j (τ ) =
Nc∑
s=1

Z
(s)
i,j exp(−i�(s)τ − 	|τ |), (7)

where Z
(s)
i,j are, in general, complex parameters, and �(s) and

	 are real.

We now define the “effective mode” variable cs,i as

cs,i(t) =
Nb∑
j=1

∫ t

−∞
dt ′bj (t ′)Z(s)

i,j e
i�(s)t ′e−	(t−t ′)ε(t ′), (8)

and write Eq. (5) as

ḃi(t) = −iEibi(t) + iε(t)
Nc∑
s=1

e−i�(s)t cs,i(t). (9)

The first derivative of cs,i is then

ċs,i(t) = −	cs,i(t) +
Nb∑
j=1

bj (t)Z(s)
i,j e

i�(s)t ε(t). (10)

We now define a new vectorial basis set d = (b,c) and
rewrite the Eqs. (9) and (10) as “effective modes” differential
equations (EMDE),

ḋ = h · d, with h =
[

hbb hbc

hcb hcc

]
, (11)

where h is a general complex square matrix of rank

Nb(Nc + 1), with hbb and hcc being diagonal square submatri-
ces of rank Nb and NbNc, respectively. These four sub-blocks
are defined by

[hbb]ij = −i
Ei

h̄
δij , (12)

[hbc]ij = δik

i

h̄
ε(t) exp(−i�(s)t) ≡ δikfs(t) (13)

with

k = (j − Nb − 1)/Ns + 1,
(14)

s = j − Nb − (k − 1)Ns,

and

[hcb]ij = Z
(s)
k,j exp(i�(s)t)ε(t) ≡ gs

k,j (t)ε(t) (15)

with

k = (i − Nb − 1)/Ns + 1,
(16)

s = i − Nb − (k − 1)Ns,

and

[hcc]ij = −	δi,j . (17)

This effective, in general complex, Hamiltonian is neither
Hermitian nor symmetric.

Defining U, the matrix of eigenvectors of h, namely,

U · h = λ̂ · U, (18)

with λ̂ being the diagonal matrix of eigenvalues, allows us to
define a basis of dressed states f = U · d. It is convenient to
integrate Eq. (11) using the adiabatic basis over a number of
segments in t . Within each small segment we approximate U
as constant and thus the nonadiabatic coupling is zero; in the
boundaries between different segments we transform back to
the bare basis in order to assure continuity of the solutions
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in the bare basis and then transform to a new adiabatic basis
for the next segment so that the nonadiabatic couplings and
curve crossings are explicitly taken care of. This integration
technique is akin to the “piecewise” method for solving
quantum close-coupling equations [15], and numerical study
shows a 0.5% relative error in the final results by using the
adiabatic basis. Note, however, that use of the adiabatic basis
should be always checked with respect to the integration time
step �t ≡ [tk − tk−1]. For a sufficiently small �t , and defining

Ŵ(tk+1,tk) = exp
∫ tk+1

tk

λ̂(t) dt, (19)

we can propagate the d vector,

d(tk+1) = U−1(tk+1) · Ŵ(tk+1,tk) · U(tk) · d(tk). (20)

The crucial development for this work is that we have found
an analytical way of computing the λi(t) eigenvalues. It is
possible to show (see Appendix A) that there are Nb(Nc − 1)
“dark” eigenvalues, λi = −	, and a much smaller number,
M = 2Nb, of “bright” eigenvalues, computed by diagonalizing
an M × M matrix. The term “bright” (“dark”) eigenvalues
is related to the fact that the corresponding eigenvectors are
coupled (uncoupled) to the initial “real” bound states. Note, we
construct the U matrix analytically so that self-orthogonality
is explicitly satisfied (see Appendix B), and we further exploit
that U(tk) · U−1(tk+1) ≈ 1, which is valid for sufficiently
small �t .

As a result of the above simplifications the effort associated
with the numerical propagation of Eq. (20) is drastically
reduced. For example, for the strong-field PD of the H+

2
presented below, we consider Nb = 91 system (bound) states
(seven vibrational manifolds of 13 rotational states each), and
Nc = 77 effective modes. The time propagation requires the
eigenvalues and eigenvectors of the matrix h of rank ≈ 7000
for each one of the 5000 time steps. This calculation was
performed on a single Intel Xeon EMT64 processor in about
1 CPU hour, for each pulse configuration, and the required
memory was less than 250 Megabyte.

III. RESULTS

We now present our results for the near-IR strong field PD
of H+

2 , depicted schematically in Fig. 1. In these computations
we have assumed that the initial vibrational distribution of H+

2
is given by the Frank-Condon overlap integrals with the ground
state H2 parent molecule, with the rotational distribution being
determined by the temperature of the H2 gas in the ion source
[16]. We have confirmed the validity of these initial conditions
by performing a weak-field PD calculation and verifying that
its kinetic energy release (KER) distributions are in excellent
agreement with experiments [17].

In Fig. 2, we present the time dependence of various bound
and continuum ro-vibrational states during and after the action
of a 120 fs transform-limited Ipeak = 5 × 1012 W/cm2 pulse on
the Vb = 7, Jb = 0 initial state of H+

2 . The degree of rotational
excitation during the pulse of both the bound and continuum
manifolds displayed here is by far more extensive than
that expected on the basis of perturbation theory, indicating
strong bound-continuum Rabi flopping prior to dissociation.

FIG. 2. (Color online) Calculated: (a) time-dependent rovibra-
tional states probabilities with initially populated Vb = 7, Jb = 0;
small inset for other transiently populated vibrational bands. (b) Final
KER spectra for different rotational states.

In addition, we find remnants of the Vb = 7, Jb = 2,4 ro-
vibrational states after the pulse is gone, with the post-pulse
probabilities of both rotational states amounting to 4%–5%.
The induced rotational Raman pumping in the ground state of
H+

2 has been shown to occur for other systems [18], too. Some
vibrational redistribution also occurs, as shown in the inset of
Fig. 2(a), making it clear why an extensive rovibrational basis
had to be used in the calculation. In Fig. 2(b), the final KER
spectra of the photofragments for different rotational states are
shown, displaying extensive rotational excitation of continuum
channels.

We now present calculations of the angular distribution
of the (proton and H atom) photofragments. Our results are
three dimensional, since the rovibrational states used depend
on the internuclear distance, and the two angular coordinates
of the linear H+

2 molecule. However, for a linearly polarized
pulse, the dynamics with respect to the m quantum number is
separable, thus effectively resulting into equations describing
two-dimensional dynamics. Such a calculation, involving an
extensive excitation of rotational channels by an intense pulse
lasting relatively long times (∼100 fs), is significantly more
efficient within our methodology, for the reasons discussed
above, than other methods which have been used to attack the
problem of photodissociation of H+

2 in strong laser fields. The
top panel of Fig. 3 shows a contour plot of the computed
angular probability distribution as a function of the KER
and cos θ , where θ is the polar angle of the fragments’
motion relative to the laser polarization. The computation is
performed for a 120 fs transform-limited pulse with Ipeak =
3 × 1012 W/cm2. Two main features are worth noticing: 1)
the alignment of the photofragments near the θ = 0, π points,
and 2) the dominance of the 0.68 eV KER peak (due to PD
from the Vb = 8 manifold) and that of the 0.84 eV KER
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FIG. 3. (Color online) The angular distribution (relative to the
polarization direction) of the H + H+ photofragments as a function
of their kinetic energy release by a transform-limited pulse with
peak intensity (Ipeak = 3 × 1012 W/cm2). Computed: top panel;
experiment (taken from Ref. [17]): bottom panel.

peak (due to PD from the Vb = 9 manifold). The prominent
PD from the Vb = 8 manifold is definitely a non-Markovian
strong field effect; we have calculated (not shown here) that a
Markovian and a non-Markovian calculation differ by 40 meV
in KER, 18% in signal strength, and 50% in signal width, at the
excitation parameters corresponding to Fig. 3. The computed
results are contrasted with the experiment of Prabhudesai et al.
[17] (Fig. 3 lower panel). The computed degree of alignment
and KER distribution agree very well with the experiment. The
fact that the experimental distribution is slightly more spread
out is mainly due to some (as yet) experimental uncertainty in
the initial temperature of the H+

2 molecular ion.
We have also studied the effect of pulse-shape by applying

to a 30 fs pulse a quadratic phase chirp whose group delay
dispersion is 630 fs2, thereby stretching the pulse duration to
120 fs. The dominant rovibrational state in this PD process by
a 795 nm laser is the Vb = 9, Jb state (states with Jb = 3 are
most populated in the initial ion source). In Fig. 4, we show
the KER spectra for a negatively chirped pulse, at different
Ipeak for initially populated Vb = 9, Jb = 3 state. According
to Fig. 4 the major dissociation peak in the KER spectra
shifts to higher energies with a negatively chirp pulse for the
initially populated Vb = 9, Jb = 3 state as the laser intensity

FIG. 4. (Color online) KER spectra of H+
2 for negatively chirped

pulse taken at different peak intensities for an initial state of Vb = 9,

Jb = 3.

increases; this effect is in complete agreement with the results
in Ref. [17].

IV. CONCLUSION

In conclusion, we have presented an efficient approach
for non-Markovian quantum-dynamics of strong (and time-
dependent) system-bath couplings. The method uses the
expansion of the memory kernels in effective modes and the
essentially analytic diagonalization of the resulting propaga-
tion equations. Importantly, the method is singled out in that
it can also directly use the results from experimental methods
capable of revealing the amplitude and phase of molecular
spectra [19]; its reliance on computed memory kernels, which
can be problematic, is thus minimized. Our method is also
proved useful in modeling Feshbach and/or shape resonances
of scattering states in a photo-associating process (time rever-
sal of PD) [20]. We have applied this method to the strong-field
PD of H+

2 , where, due to Raman scattering via the continuum,
the inclusion of numerous rovibrational states is necessary
for the understanding of the final photofragments’ angular
distributions and their correlation with the KER spectra. Future
work on non-Markovian dynamics of large systems with other
coupling schemes than presented here are planned.
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APPENDIX A: OBTAINING THE EIGENVALUES OF h

Our diagonalization scheme is based on the fact that the
particular structure of h of Eq. (11) guarantees that it is related
by a similarity transformation to a block-diagonal matrix of
the form

h′ =
[

hP 0

0 hEM

]
, (A1)
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where the first, “physical” (P), block is of size M by M and the second, “Effective-Modes” (EM), block is given as −	 · I, where
I is an Nb × (Ns − 1) by Nb × (Ns − 1) unit matrix. The physical block can be expressed as

hP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 . . . 0 1 0 . . . 0

0 A2 . . . 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . ANb
0 0 . . . 1∑

s fsg
s
11

∑
s fsg

s
12 . . .

∑
s fsg

s
1Nb

−	 0 . . . 0∑
s fsg

s
21

∑
s fsg

s
22 . . .

∑
s fsg

s
2Nb

0 −	 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .∑
s fsg

s
Nb1

∑
s fsg

s
Nb2 . . .

∑
s fsg

s
NbNb

0 0 . . . −	

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)

where

Ak ≡ −iEk/h̄,

and the fs and gs
ij terms are defined according to Eqs. (13) and

(15).
Because of the similarity transformation, the eigenvalues

of the original N × N (N ≡ Nb + Ns × Nb) h matrix can be
obtained by diagonalizing the M × M where M ≡ 2 × Nb

physical matrix hP , supplemented by Nb × (Ns − 1) replicas
of the same eigenvalue λ = −	. For small Nb and Ns values,
it is possible to obtain the similarity transformation matrix
between h and h′ in an analytic fashion using MATHEMATICA.
However, as discussed below (Appendix B), the explicit

construction of this matrix is not necessary because one can
obtain the diagonalizing transformation of the entire h matrix
directly, using the M eigenvectors of hP .

APPENDIX B: OBTAINING THE EIGENVECTORS OF h

In order to derive the eigenvectors of h, we first arrange its
eigenvalues as

λ = {λ1,λ2, . . . ,λM, − 	, − 	, . . . , − 	}. (B1)

Due to the particular block-matrix structure of h, the eigen-
vector matrix U of Eq. (18) has the following structure:

U =
[

UP

UEM

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1,1 U1,2 . . . U1,Nb
U1,Nb+1 . . . U1N

U2,1 U2,2 . . . U2,Nb
U2,Nb+1 . . . U2N

. . . . . . . . . . . . . . . . . . . . .

UM,1 UM,2 . . . UM,Nb
UM,Nb+1 . . . UMN

0 0 . . . 0 UM+1,Nb+1 . . . UM+1,N

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 UN,Nb+1 . . . UN,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B2)

where UP is of size M by N and UEM is of size Nb × (Ns − 1) by N .
We first discuss the analytical construction of UP . Due to the structure of hP , it follows from Eq. (18) that the ratios between

the elements of the ith row of UP satisfy the following equalities:

Ui,1 : Ui,Nb+1 : Ui,Nb+2 : · · · : Ui,Nb+Ns
= (	 + λi) : f1 : f2 : · · · : fs,

Ui,2 : Ui,Nb+Ns+1 : Ui,Nb+Ns+2 : · · · : Ui,Nb+Ns+Ns
= (	 + λi) : f1 : f2 : · · · : fs, (B3)

Ui,3 : Ui,Nb+2Ns+1 : Ui,Nb+2Ns+2 : · · · : Ui,Nb+2Ns+Ns
= (	 + λi) : f1 : f2 : · · · : fs,

. . . .
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As a result of Eq. (B3), the problem of solving for the M × N unknowns (M = 2Nb) which make up the UP submatrix is reduced
to solving for M × Nb matrix elements of Uij , i ∈ [1,M] and j ∈ [1,Nb]. In other words we can write the UP submatrix as

UP =

⎡
⎢⎢⎢⎢⎢⎣

U1,1 . . . U1,Nb

f1

	+λ1
U1,1

f2

	+λ1
U1,1 . . .

fs

	+λ1
U1,1

f1

	+λ1
U1,2

f2

	+λ1
U1,2 . . .

U2,1 . . . U2,Nb

f1

	+λ2
U2,1

f2

	+λ2
U2,1 . . .

fs

	+λ2
U2,1

f1

	+λ2
U2,2

f2

	+λ2
U2,2 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

UM,1 . . . UM,Nb

f1

	+λM
UM,1

f2

	+λM
UM,1 . . .

fs

	+λM
UM,1

f1

	+λM
UM,2

f2

	+λM
UM,2 . . .

⎤
⎥⎥⎥⎥⎥⎦ . (B4)

The determination of UP is thus reduced to the solution of a set of M × Nb (M = 2Nb) linear equations:

[U]M×NhN×Nb
= [λ]M×M [U]M×Nb

. (B5)

We next discuss the construction of the UEM submatrix corresponding to the remaining N − M (“Effective-Modes”)
eigenvalues. Uk, the (row) eigenvector associated with the λk = −	 eigenvalue, satisfies the following equation:

Ukh = −	Uk. (B6)

Using Eqs. (B2) and (B6) the N − Nb matrix elements of Uk must satisfy the following Nb equations:

Uk,Nb+1g
1
1,1 + Uk,Nb+2g

2
1,1 + . . . + Uk,Nb+Ns+1g

1
2,1 + Uk,Nb+Ns+2g

2
2,1 + . . . + Uk,Ng

Ns

Nb,1
= 0,

Uk,Nb+1g
1
1,2 + Uk,Nb+2g

2
1,2 + . . . + Uk,Nb+Ns+1g

1
2,2 + Uk,Nb+Ns+2g

2
2,2 + . . . + Uk,Ng

Ns

Nb,2
= 0, (B7)

. . .

Uk,Nb+1g
1
1,Nb

+ Uk,Nb+2g
2
1,Nb

+ . . . + Uk,Nb+Ns+1g
1
2,Nb

+ Uk,Nb+Ns+2g
2
2,Nb

+ . . . + Uk,Ng
Ns

Nb,Nb
= 0.

We see that Uk is underdetermined since we have Nb equations in N − Nb unknowns. For each Uk we can therefore choose
N − 2Nb = N − M “free” matrix elements at will and then solve for the remaining Nb “essential” matrix elements. We can
repeat this procedure to obtain the (N − M) × Nb matrix elements needed to satisfy Eq. (B7) for all the rows of the UEM matrix.

In order to guarantee the linear independence of the eigenvectors we choose the “free” matrix elements of UEM matrix such
that the matrix assumes the following form:

UEM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 UM+1,Nb+1 1 0 . . . UM+1,Nb+Ns+1 0 0 . . . 0

0 . . . 0 UM+2,Nb+1 0 1 . . . UM+2,Nb+Ns+1 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 UM+Ns,Nb+1 0 0 . . . UM+Ns,Nb+Ns+1 1 0 . . . 0

0 . . . 0 UM+Ns+1,Nb+1 0 0 . . . UM+Ns+1,Nb+Ns+1 0 1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . 0 UN,Nb+1 0 0 . . . UN,Nb+Ns+1 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B8)

With this choice, the Uk,j , j = Nb + 1,Nb + Ns + 1,Nb + 2Ns + 1, . . . ,NbNs + 1, “essential” matrix elements are determined
by solving Eq. (B7).
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