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Multiphoton ionization and stabilization of helium in superintense xuv fields
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Multiphoton ionization of helium is investigated in the superintense field regime, with particular emphasis
on the role of the electron-electron interaction in the ionization and stabilization dynamics. To accomplish
this, we solve ab initio the time-dependent Schrödinger equation with the full electron-electron interaction
included. By comparing the ionization yields obtained from the full calculations with the corresponding results
of an independent-electron model, we come to the somewhat counterintuitive conclusion that the single-particle
picture breaks down at superstrong field strengths. We explain this finding from the perspective of the so-called
Kramers-Henneberger frame, the reference frame of a free (classical) electron moving in the field. The breakdown
is tied to the fact that shake-up and shake-off processes cannot be properly accounted for in commonly used
independent-electron models. In addition, we see evidence of a change from the multiphoton to the shake-off
ionization regime in the energy distributions of the electrons. From the angular distribution, it is apparent that
the correlation is an important factor even in this regime.
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I. INTRODUCTION

More than 20 years ago, theoretical studies of atomic
hydrogen in ultraintense, high-frequency laser fields produced
an unexpected result [1–9]: When increasing the intensity
of the laser pulse to such a degree that the applied forces
dominate over the Coulomb attraction between the nucleus
and the electron, the ionization probability does not increase
accordingly but rather stabilizes or starts subsiding. This
counterintuitive phenomenon was dubbed atomic stabilization
and was subject to much research in the following decade.
The discussions, controversies, and conclusions are available
in a number of review articles. (See, e.g., [10–12] and
references therein.) It has also been pointed out that atomic
stabilization has a classical counterpart [13,14]. (See also [10]
and references therein.)

At the start of the 1990s, the laser technology required to
experimentally observe the stabilization effect in tightly bound
systems was not available. For example, in order to measure the
stabilization in atomic hydrogen, photon energies exceeding
13.6 eV, the binding energy of the atom, and intensities on the
order of 1016 W/cm2 or more are required [15,16]. Grobe and
Eberly [17] demonstrated that stabilization could occur in H−
at moderate intensities (∼1013 W/cm2) and photon energies
(∼2 eV), and Wei et al. [18] suggested an experiment in which
a laser, of realistic frequency and intensity, could possibly
stabilize the unstable He− ion. However, at present, the only
experimental confirmations of stabilization are from studies
of low-lying Rydberg states [19–22]. With recent advances
in free-electron laser (FEL) technology, extremely high peak
intensities have been achieved, with wavelengths ranging from
vacuum ultraviolet to soft x rays [23,24], and even higher
intensities are expected to be delivered in the near future [25].
Thus, laser technology is approaching the regime needed for
observing atomic stabilization in ground-state (neutral) atomic
systems.

Although atomic stabilization has been studied extensively
during the last two decades, studies of stabilization in systems
containing two electrons are still scarce [10,26], and most
often assessed with simplified physical models of reduced

dimensionality. A study on stabilization in a model two-
electron xenon atom revealed that both the single- and double-
ionization channels may be subjected to stabilization [27,28].
However, it has also been pointed out that the electron-electron
interaction suppresses atomic stabilization [17,29–31]. Includ-
ing a second electron adds a new dimension to the problem,
manifested through the electronic repulsion. Although ab initio
calculations of helium have previously been performed at
fairly high intensities in the extreme ultraviolet (xuv) regime
[32,33], only recently were such endeavors extended into the
stabilization regime [34], confirming the detrimental effect of
the electron-electron interaction on stabilization. However, it
was shown that the effect is markedly less than predicted in
models of reduced dimensionality.

In this paper, we revisit the problem of the multiphoton
ionization of helium in superintense, high-frequency fields.
In continuation of the work of Birkeland et al. [34], we
look more closely into the strong-field-ionization dynamics
of the atom, with particular emphasis on atomic stabilization,
considering laser pulses of various central frequencies and
durations. A comparison of the ionization yields obtained
from the ab initio calculations, including correlations, with
corresponding results obtained from an independent-electron
model reveals that the validity of the latter breaks down at
strong fields. An analysis of the system equations in the
so-called Kramers-Henneberger frame [35–38] shows that the
electron-electron interaction plays a decisive role in this limit.
We further show that this is manifested in the energy and
angular distributions of the ejected electrons.

Atomic units, where me, h̄, and e are scaled to unity, are
used throughout unless stated otherwise.

II. METHODS

A. Ab initio calculations

We obtain the ionization probability of ground-state helium
in extreme laser fields from first principles, i.e., by solving
(numerically) the full time-dependent Schrödinger equation
(TDSE). Formulating the problem in the velocity gauge, the
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Hamiltonian assumes the form

H =
2∑

i=1

(
p2

i

2
− 2

ri

+ Az(t)pzi

)
+ 1

|r1 − r2| . (1)

A sine-squared carrier envelope was chosen for the laser
interaction:

Az(t) = A0 sin2

(
πt

T

)
cos(ωt), (2)

where A0 = E0/ω, E0 is the peak amplitude of the electric
field, ω is the laser frequency, and T is the total pulse duration.
The semiclassical treatment of the field is a valid approach due
to the enormous photon flux of superintense lasers.

The pulse fulfills the constraint of a physical pulse [39]:∫ T

0
E(t)dt = 0. (3)

Propagation and analysis of the wave function is performed
with the PYPROP framework [40], a PYTHON/C++ software
package for solving the TDSE.

The wave function is expanded in a B-spline basis [41,42]
for each of the radial components, and a coupled spherical
harmonic basis for the angular components,

�(r1,r2,t) =
∑
i,j,k

cijk

Bi(r1)

r1

Bj (r2)

r2
Y LM

l1,l2
(�1,�2), (4)

where k = {L,M,l1,l2} is a combined index for the angular
indices. The coupled spherical harmonic basis functions

Y LM
l1,l2

(�1,�2) =
∑
m

〈l1l2mM − m|LM〉Ym
l1

(�1)YM−m
l2

(�2)

(5)
are obtained by linearly combining products of ordinary
spherical harmonics, weighted by Clebsch-Gordan coefficients
[43].

As the B-spline basis functions are not orthogonal, an
overlap matrix Sij = ∫

Bi(r)Bj (r)dr is introduced for each
electronic coordinate. From these the total overlap matrix is
found for every angular momentum component by taking the
Kronecker product S = Ik ⊗ S1 ⊗ S2, where Ik denotes the
identity matrix and k is the angular index. The resulting TDSE
may then be written as

iS
∂

∂t
c(t) = H(t)c(t) (6)

in matrix form.
We solve the TDSE using a scheme based on the first-order

approximation to the matrix exponential

exp(−i�tS−1H) = I − i�tS−1H + O(�t2). (7)

A direct application of this formula is not desirable due to
numerical instabilities. Instead, we combine one half step
forward in time

c(t + �t/2) =
(

I − i�t

2
S−1H

)
c(t), (8)

with one half step backward in time

c(t + �t/2) =
(

I + i�t

2
S−1H

)
c(t + �t), (9)

to obtain the unconditionally stable Cayley-Hamilton form of
the time propagator

(
S + i�t

2
H

)
c(t + �t) =

(
S − i�t

2
H

)
c(t). (10)

This linear system of equations is too large to be solved
directly; hence, we use an iterative method. Since the matrix
(S + i�t

2 H) is not Hermitian, our choice is the generalized
minimum-residual method (GMRES), a Krylov subspace
method which combines Arnoldi iterations with a least-squares
problem in the projected space [44,45]. In the GMRES
algorithm, the error in the least-squares residuals is controlled
by the dimension of the Krylov subspace, which can be
increased until the desired precision is obtained.

B. Calculating ionization

In this paper, we compute the ionization probability
resolved in direction and energy. We also do a series of smaller
simulations, calculating only the total-ionization probabilities.
Separating the single and double ionization is achieved
by a projection onto double continuum states. In order to
obtain these continuum states exactly, one needs to solve
a scattering problem for the full two-particle system. As
this is computationally cumbersome, an approximation using
single-particle states is adopted instead. It can be described as
follows: In the case of double ionization, when both electrons
are far from the nucleus, a product of continuum He+ (Z = 2)
states is used. For single ionization, when one electron is close
to the nucleus and the other far away, a product of bound He+
and continuum H (Z = 1) is used [46].

The single-electron states are not orthogonal to the bound
states of the two-electron system, which may become popu-
lated during the action of the pulse. Therefore, the projection
of the final wave function on the doubly bound states is
removed before further analysis is conducted. Moreover, as
the electron-electron correlation is neglected in the double
continuum states, the system must be propagated after the
pulse for all quantities to converge [47].

On the other hand, when only calculating the total ioniza-
tion, a small radial box is sufficient. It is no longer necessary
to propagate the system after the pulse, in order to minimize
the interaction term, nor to project onto continuum He+ states.
An absorbing potential is applied at the box boundary in order
to absorb the emitted electrons and to minimize reflection.
When coupled with an absorbing potential, we find that only
about one-third of the radius needed to resolve the differential
probabilities is necessary. The total-ionization probability is
simply the complement of the probability of being in one of
the bound states.

To find the bound states, we use the implicitly restarted
Arnoldi method [48]. This is a version of the Arnoldi method
for finding eigenpairs that refines the Krylov subspace basis in
order to find the wanted eigenvectors and eigenvalues. As the
Arnoldi method tends to find the largest eigenvalues, we also
use shifted inverse iterations, which let us find the eigenvalues
near a given value.

Further details on the discretization, the time integration,
and the analysis were presented in a recent paper [49].
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C. Independent-electron model

In order to gauge the importance of the electron-electron
interaction, we repeat the calculations using an independent-
electron (IE) model [50]. The total wave function is approxi-
mated as a product of two single-electron wave functions

�(r1,r2) = ψSAE(r1)ψHe+(r2). (11)

The subscript SAE refers to the single-active electron
approximation. This is a common approximation for many-
electron problems, which focuses on one electron at a time.
Any dependence on the rest of the electrons is included in
a common potential that is constant with regard to the other
electron positions. To find the first electron wave function
ψSAE, we apply a pseudo potential, which includes the
shielding of the nucleus caused by the other electron [51],

V (r) = −Z + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
. (12)

For helium, the effective charge Z = 1 and the coefficients
a1 = 1.231, a2 = 0.662, a3 = 1.325, a4 = 1.236, a5 = 0.231,
and a6 = 0.480 were adopted. The other electron moves in
a He+ potential, and it is therefore an accurate model for
the singly ionized atom. The IE model reproduces the cor-
rect ground-state energies and single- and double-ionization
thresholds, and decently represents the excited states. As the
name of the model suggests, the electrons do not interact with
each other, beyond what is included in the shielded nuclear
potential. That makes this a three-dimensional, rather than
a six-dimensional problem, and it can be calculated with
relative ease on an ordinary computer. As a consequence
of working with independent particles, the total- (single +
double) ionization probability becomes

P ion
total = 1 − P b

SAEP b
He+ , (13)

where P b
SAE and P b

He+ are the probability of the SAE and
the He+ electron, respectively, being in a bound state. The
probability for double ionization is obtained from the product

P ion
double = P ion

SAEP ion
He+ , (14)

and the single-ionization probability is

P ion
single = P b

SAEP ion
He+ + P ion

SAEP b
He+ , (15)

where P ion
SAE and P ion

He+ are the ionization probabilities of the
SAE and the He+ electrons.

D. Convergence of the calculations

When doing the largest calculations, the radial domain
typically extends to 80 a.u., although the double of this
was employed to test the convergence. A fifth-order B-spline
basis of 185 splines is used, distributed exponentially near the
nucleus, and linearly further away. Up to 300 splines were used
for convergence test purposes. Regarding the angular basis of
coupled spherical harmonics, l � 5 and L � 6 were found to
be sufficient. Note that the system retains cylindrical symmetry
in the presence of the z polarized laser field. Therefore, the
M quantum number is set to 0 throughout. Based on the
calculations with a larger basis, the error is estimated to be
less than 1% in the ionization probabilities.

For the smaller calculations, intended to provide only the
total-ionization probability, we use a small radial box of 30 a.u.
and 80–100 B splines of order 7, distributed linearly. Note that
we have only one-third of the box size but one-half of the
number of B splines. In these calculations, the angular basis
went up to l = 7 and L = 6. The small box made it possible
to go to higher intensities and pulse lengths than did the large
box. The error in the ionization probability is gauged to be
less than 5% when E0/ω

2 > 1 a.u. and less than 2% for lower
intensities.

III. RESULTS

A. Ionization probabilities

Figure 1 shows the total- (single + double) ionization
probability versus α0 for three different laser frequencies,
ω = 4 (left panel), 5 (middle panel), and 10 a.u. (right panel),
and for four different pulse durations, 3, 6, 12, and 24 cycles
(from bottom to top). Notice that on the abscissas, the domains
are given in α0 = E0/ω

2, instead of intensity or peak electric
field strength. Here, α0 represents the displacement amplitude
of a free classical electron in the oscillating field [4]. This
scaling allows us to easily compare the results obtained with
different laser frequencies. In most of the considered cases,
the ionization probability increases with α0 up to some point,
where it attains a maximum before it starts to decline, i.e.,
we are entering the so-called stabilization regime. When
stabilization occurs, the ionization peak (corresponding to the
“death valley” [10]) is typically situated between α0 = 0.6 and

FIG. 1. (Color online) Ionization probabilities plotted as func-
tions of the electronic displacement (E0/ω

2) for the frequencies
ω = 4 (left panel), ω = 5 (middle panel), and ω = 10 a.u. (right
panel). In each panel, the pulses are of 3, 6, 12, and 24 cycles
duration from bottom to top. The solid lines are the results from
the full calculations. The dashed lines are the results from the IE
calculations. In the right panel, the displacement (α0) extends into
a region (shaded) where relativistic (nondipole) effects may have an
influence on the results [15,30,31,52], and the corresponding velocity
of a classical free electron moving in the field exceeds 10% of the
speed of light.
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FIG. 2. (Color online) Single (full blue line), double (full green
line with crosses) and total (dashed red line) ionization probabilities
plotted against the electronic displacement for the case of a 6-cycle
pulse with ω = 4 a.u.

0.7 a.u., independent of laser frequency and pulse duration.
For very short pulse durations, e.g., the three-cycle pulse of
ω = 10 a.u., we observe a knee in the function, rather than
a peak at the stabilization point. This is probably due to
the relatively large bandwidth of these short pulses and the
averaging this leads to. For long pulse durations, e.g., the
24-cycle pulse of ω = 4 a.u., the atom is almost fully ionized,
and the stabilizing effect turns out to be weak. The dashed lines
in the figure are the results of the independent-electron model.
They show good agreement with the full calculations for
weak fields (α0 < 0.5 a.u.) and for long pulses, but otherwise
tend to overestimate the stabilization. As a matter of fact, the
results show that the electron-electron interaction suppresses
stabilization in all cases. We will return to the reason for this
later.

In Fig. 2, we examine in more detail the case with 6 cycles
and ω = 4 a.u., showing both the total-ionization probability
and its single- and double-ionization components. Both the
single- and double-ionization probabilities peak at specific
values of the field, which is in qualitative agreement with
the results of Volkova et al. [27] and Popov et al. [28]. As
expected, the single ionization dominates for weak fields, but
it peaks at α0 � 0.2 a.u., where the probability for double
ionization starts to increase rapidly. From α0 � 0.3 a.u. on,
double ionization is the dominant ionization channel. Then,
the double-ionization probability attains a maximum value at
the point where the single-ionization probability reaches its
minimum, i.e., at α0 � 0.5 a.u. The subsequent decrease in
the double-ionization probability, in the stabilization regime,
is accompanied by a corresponding rise in the single-ionization
yield. This feature is a characteristic of the stabilization
dynamics of helium in few-cycle laser pulses [34].

Figure 3 shows the ionization probability as a function of α0

for a pulse of constant duration T = 2π a.u., but for varying
frequencies, ω = 4, 6, 8, and 10 a.u. The corresponding
results of the IE model are shown in dashed lines. One
immediately perceives that for higher frequencies, the atom

FIG. 3. (Color online) Ionization probabilities for a constant pulse
duration of 2π a.u. The lines correspond to laser frequencies of ω =
4, 6, 8, and 10 a.u. from top to bottom, or equivalently pulse lengths
of 4, 6, 8, and 10 cycles. The solid lines are the full calculations.
The dashed lines are the IE calculations. The dotted parts of the
curves indicate where relativistic (nondipole) effects may influence
the results.

stabilizes at lower ionization probabilities, in accordance with
the results in Fig. 1. Note that in the limit of weak fields,
single ionization is by far the dominating ionization channel.
Thus, from first-order perturbation theory, P ion

total ∝ α2
0T . Now,

since the pulse duration is kept fixed in Fig. 3 (as opposed
to Fig. 1), this explains why the results of the calculations
with different frequencies almost coincide at smaller fields.
The figure also demonstrates the fact that the discrepancy
between the IE model (dashed lines) and the full calculations
(solid lines) increases with the intensity. Furthermore, the
stabilizing effect turns out to be very weak in the fully
correlated system. Whereas the full ab initio calculations
give ionization probabilities that level off (low frequencies) or
increase (high frequencies) for high intensities, the IE model
returns probabilities that are noticeably lower. As the intensity
grows, so does the discrepancy. As such, the simplified model
tends to always underestimate the ionization probability, with
the consequence that the stabilization effect is overestimated.

Note that for the highest frequencies considered in
Figs. 1 and 3, the calculations extend into a region where the
non-relativistic (dipole) approximation is likely to break down
[15,30,31,52]. This is indicated in the figures. While we expect
relativistic (nondipole) corrections to affect the calculated
ionization probabilities to some extent in this region of field
strengths, our analysis and conclusions are not dependent upon
the affected subset of results and remain unaltered.

B. The role of electronic correlation

Figures 1 and 3 clearly demonstrate that the validity of
the independent-electron model (11) breaks down in the
superintense field regime. This may appear counterintuitive,
as one might well expect the opposite to happen, i.e., that
the importance of the electron-electron interaction should be
negligible in the presence of a strong external perturbation. The
reason why the electron-electron interaction in fact becomes
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more important in this limit can be understood by analyzing
the dynamics in the so-called Kramers-Henneberger (KH)
frame [35–38], the rest frame of a classical free electron in
the laser field. In this frame, the Hamiltonian, Eq. (1), is cast
into the form

HKH =
2∑

i=1

(
p2

i

2
+ VKH [ri + α(t)]

)
+ 1

|r1 − r2| , (16)

where

VKH [ri + α(t)] = − 2

|ri + α(t)| (17)

is the Kramers-Henneberger potential, and

α(t) =
∫ t

0
Az(t

′) dt ′ ẑ (18)

represents the position relative to the laboratory frame of a
classical free electron in the electric field Ez(t) = −∂Az/∂t .
One characteristic feature of the KH frame is that the dipole
interaction terms enter into the electron-nucleus Coulomb
potentials [c.f. Eq. (17)], which in turn become time de-
pendent and modified by the external field. Note also that
the electron-electron interaction term is left unaffected by
the HK transformation. Assuming for the moment that the
Hamiltonian is periodic in time, i.e., neglecting the pulse
profile, the KH potentials, Eq. (17), are expanded in a Fourier
series as

VKH [ri + α(t)] =
∑

n

Vn(α0,ri)e
−inωt (19)

with

Vn(α0,ri) = 1

T

∫ T

0
e−inωtVKH [ri + α(t)] dt. (20)

Inserting the expansion [Eq. (19)] into the TDSE and apply-
ing high-frequency Floquet theory, Gavrila et al. [10,53–55]
showed that the n = 0 component in Eq. (20) plays an
increasingly important role in the dynamics at higher values of
α0. Furthermore, in the limit of superintense fields (α0 � 1),
Førre et al. [15] showed that the ionization dynamics of atomic
hydrogen is mainly dictated by the V0 potential. Thus, in this
limit, the dynamics of the system is approximately given by
the effective Hamiltonian

H eff
KH =

2∑
i=1

(
p2

i

2
+ V0(α0,ri)

)
+ 1

|r1 − r2| . (21)

Note that this Hamiltonian is time independent and accounts
for shake-up (excitation) and shake-off (ionization) in the
strong-field limit.

An analysis of the properties of the V0 potential term in the
vicinity of the origin reveals that it can be neglected relative
to the electron-electron repulsion term in the limit α0 → ∞,
provided the two-electron wave function is localized, i.e.,
〈r1〉 � α0 and 〈r2〉 � α0. This means that the dynamics of
the two-electron system, in the limit of superintense fields and
for sufficiently short pulses, ultimately reduces to that of a
pure Coulomb explosion process effectuated by the Coulomb
repulsion term in Eq. (21). From this, we conclude that the
electron-electron interaction is in fact very important in the

FIG. 4. (Color online) Excitation probabilities for the same sce-
nario as in Fig. 3. The laser frequencies are ω = 10, 8, 6, and 4 a.u.
from top to bottom. The dashed lines are the results from the IE
model, while the solid lines are the results from the full calculations.
Relativistic (nondipole) effects may influence the results for high
frequencies and field strengths (dotted curves).

strong-field limit, effectively reducing the stabilization effect.
Returning to the laboratory frame of reference, this should be
understood in the following way: In the very-strong-field limit,
the electrons effectively behave like free particles in the field,
moving side by side with respect to the field axis. As this hap-
pens, the nuclear attraction may become less important than
the mutual repulsion between the electrons, and the ionization
is most likely initiated by electron-electron scattering events
(Coulomb explosion) and not electron-nucleus collisions.
This explains qualitatively why the ionization probabilities,
calculated within the independent-electron model, deviate
increasingly from the exact ones in the limit of stronger fields
(cf. Figs. 1 and 3). As such, the observed deviation is indeed a
manifestation of the breakdown of the single-particle picture
in superstrong fields.

Notice that the effective Hamiltonian in Eq. (21) only
depends indirectly on the laser frequency through the dis-
placement amplitude α0, explaining why the validity of the IE
model in Fig. 3 breaks down at approximately the same value
of α0 independent of the laser frequency.

Figure 4 shows the probability of excitation of helium for
the cases considered in Fig. 3. Comparing Figs. 3 and 4,
we observe that the decreasing ionization probability in
the stabilization regime is accompanied by a corresponding
increase in the excitation probability. Note that due to the high
photon energy, excitation is here caused by shake-up processes,
merely demonstrating the importance of the V0 potential in the
stabilization regime. The figure also clearly expresses the fact
that shake-up is more important for the higher frequencies and
that the IE model fails in describing shake-up (and shake-off)
processes accurately, in accordance with the KH discussion
above.

C. Analysis of angular and energy distributions

Further insight into the strong-field behavior of helium may
be gained by examining the energy distribution of the ejected
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FIG. 5. (Color online) Double-ionization energy distribution for
an ω = 5 a.u. six-cycle pulse (182 as), and for field strengths of 1
(upper panel), 10 (middle panel), and 20 a.u. (lower panel).

electrons. In particular, imprints left by the electron interaction
in the angular distribution of the outgoing electrons may give
further clues as to its importance at the different field-strength
regimes considered here.

In Fig. 5, the double-ionization energy distribution is shown
for three different field strengths, 1, 10, and 20 a.u. (from
top to bottom). The pulse duration was fixed at six cycles

(182 as) with a frequency of 5 a.u. At the lower intensity
(amplitude), one-photon ionization dominates as expected.
As the intensity increases, two-photon ionization becomes
prominent, and higher-order double-electron above threshold
ionization (DATI) peaks start to appear [32]. Since the one-
photon process is highly correlated and depends critically
on the exchange of energy between the two electrons, it
becomes less important at stronger fields, and two-photon
double ionization takes over as the dominating channel. At
the highest intensity, more structures appear in the energy
spectrum, caused by sidebands in the pulse, and the one-
photon-ionization process has become negligible.

The two-photon DATI component manifests itself as a
single-peaked structure in Fig. 5, in contrast to the common
double-peak structure associated with sequential ionization
[32]. With the ultrashort pulse considered here, the second
photon is absorbed before the residual ion has had time to
relax to the ground state, but if the duration is increased to
beyond 20 cycles, relaxation may occur and a double-peak
structure appears (not shown here). The fact that the two peaks,
corresponding to sequential two-photon double ionization in
the long-pulse limit, shift toward each other in the short-pulse
regime and eventually merge into one single peak (located at
equal energy sharing) is well known and has been studied
in a series of papers in the weak-field (perturbative) limit
[33,56–65]. The results in Fig. 5 demonstrate that this feature
survives in the superintense field regime, representing a clear
departure from the independent-electron model [Eq. (11)].

Figure 6 shows the conditional angular distributions of the
ejected electrons obtained at the two-photon DATI peak in
Fig. 5, with equal energy sharing, and one of the electrons
emitted along the polarization direction (indicated with an

FIG. 6. (Color online) Angular distributions for double ionization
with equal energy sharing E1 = E2 = (2ω − Ip)/2. The arrow
indicates the fixed direction of the first electron. Solid (blue) line:
E0 = 1 a.u. Dashed (green) line: E0 = 10 a.u. Dotted (red) line:
E0 = 20 a.u.
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arrow in the figure). The figure clearly shows that the
distribution has a backward-forward asymmetry even at the
highest intensity considered, demonstrating the breakdown of
the single-particle picture, wherein a symmetric double-lobe
(dipole) distribution would be found. The results are in accor-
dance with recent results obtained at weaker fields [56,57,63],
and shows that the back-to-back ejection mechanism is largely
preserved even at very strong fields.

From numerical studies of stabilization in atomic hydrogen,
it is known that the stabilization phenomenon is accompanied
by the appearance of slow electrons [15]. As the intensity is
increased beyond the ionization maximum, where stabilization
sets in, and for sufficiently short pulses, a peak structure near
zero energy appears in the electron energy spectrum, becoming
increasingly dominant as the intensity becomes large. This may
be understood from the Kramers-Henneberger analysis above
and the importance of the V0 potential in the limit of short,
intense pulses. In order to provide a baseline comparison for
the two-electron case considered here, we have calculated the

FIG. 7. (Color online) Energy distributions as a function of
laser field strength. Top panel: He+. Bottom panel: helium (single
ionization). See text for details.

FIG. 8. (Color online) Ratio of slow to fast electrons for the
double-ionization process, shown for different pulse frequencies and
durations, and plotted as a function of α0. The blue bar indicates
the region where the corresponding double-ionization probability is
maximum, where stabilization sets in.

energy distribution for ionization of He+, with identical pulse
characteristics as those used in Fig. 5. The result is shown in the
upper panel of Fig. 7. We note the presence of above threshold
ionization peaks, and, at the highest intensities, a slow electron
peak (SEP) near zero energy [15,66]. The corresponding
single-ionization energy distribution of helium is shown in
the lower panel of Fig. 7, and indeed, a slow electron peak
is visible. Note that the onset of slow electrons occurs at
lower-field strengths in the single ionization of helium than
in He+, which is related to the different ionization potentials
(Ip).

Now, examining the lower panel in Fig. 5, it appears
that slow electrons do not emerge in the double-ionization
process at this intensity. However, the ionization potential is
greater than that for single ionization, and, therefore, higher
intensities are needed to reach the regime where a SEP may
appear. Since He+, with an ionization potential of Ip = 2 a.u.,
exhibits an onset of slow electrons around 50 a.u., similar
or possibly even higher-field strengths may be required for a
SEP to appear in the double ionization of helium. We may,
however, observe the onset of slow electrons by partitioning
the double-ionization energy distribution into a low- and a
high-energy part, and considering the ratio of these two (cf.
Fig. 8). In this figure, values of the ratio P (E < Ec)/P (E >

Ec), where Ec = 3/2ω − Ip, for different frequencies and
pulse durations are shown, and in all cases, we observe an
increase of low-energy electrons after the stabilization peak
(indicated by the blue bar); however, it is most pronounced for
the shorter pulses.

IV. CONCLUSION

In conclusion, we have presented an in-depth analysis of
two-electron dynamics driven by high-intensity ultrashort laser
pulses in the xuv regime. Expanding on our earlier investiga-
tion of correlation effects in the stabilization of helium, we
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have shown that stabilization occurs within a narrow interval
of values of α0, independent of frequency and pulse duration.
This is also the point at which an independent-electron
picture begins to break down, demonstrating the important
role of the electron-electron interaction at high intensities.
Through an analysis of a high-intensity limit form of the
Hamiltonian, expressed in the Kramers-Henneberger frame,
this feature may be understood. Further indications of intense-
field correlation effects are found in the angular distributions,
where a backward-forward asymmetry is found for a wide

range of intensities. Finally, we have shown that slow electrons
emerge at high intensities, as they do in one-electron systems,
but at different intensities for single and double ionization.
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