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Coherent transient phenomena in quantum systems by spatially shaping femtosecond optical pulses
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Providing a femtosecond optical pulse with a proper transverse spatial profile represents a fast and relatively
simple method to force a quantum system to follow a prescribed temporal evolution. In the present work, we
show that the quantum system presents a surprisingly high sensitivity with respect to the spatial shape of the
pulse. We discuss an explicit example where differences on the order of a few nanometers in the initial pulse’s
spot size induce completely different responses in the system under study.
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I. INTRODUCTION

Visible light plays a privileged role in the investigation
of material properties. This is due to the fact that electronic
transitions in matter mainly fall in the visible range. This
is also the reason that, from the response of a system of
interest when excited through an incident electromagnetic
field in the visible range, one can get insight about the
dynamics of its degrees of freedom and, ultimately, about the
structure of matter itself [1,2]. Current research is approaching
light-matter interaction from a different viewpoint. In fact,
one is no longer interested in only studying how a system
responds to an external excitation but also wants to force
it to follow specific temporal behaviors. This represents the
growing field called coherent quantum control. In particular,
an electromagnetic field can be properly tailored in order to
induce a certain response on a molecular or atomic system.
To achieve this aim, it is necessary that the system interacts
with a pulse with a temporal length of the order of hundreds
of femtoseconds or shorter. Although the effect of a very short
pulse on the transient of a quantum system was discussed
already some time ago [3], its realization was limited by the
time scale involved and the possibility of generating such short
pulses in practice. With the recent advances in femtosecond
science, the generation of those pulses has become routine
and the control has found application in a great variety of
contexts [4–8].

However, in order to do that, the pulse has usually to
be modified as function of time. The process is known as
pulse shaping. This is usually done by adjusting directly the
temporal-frequency spectrum since the pulse’s oscillations are
too fast to be controlled in time [9]. In this approach, the spatial
variation of the pulse is usually neglected. Recently, some
works studied possible ways to include spatial shaping in this
scenario, with techniques that essentially transform an original
pulse in an array of multiple pulses, spatially separated, each
endowed with its own time behavior [10,11]. In the present
work, we face the issue with a different goal. In fact, our interest
is to investigate how different responses of the quantum system
can be induced by exclusively manipulating the initial spatial
profile of one single pulse. We will show that phenomena like
coherent transients or enhanced transition rates, to name a few,
can be obtained without difficulty, simply by spatially shaping
a single short pulse. However, we will also show that the
interaction between a structured pulse and a system presents

very high sensitivity with respect to the imposed pulse’s spatial
size, an appealing feature with possible important implications
in metrology and spectroscopy.

The paper is organized as follows. In the next section,
we describe the generic formalism for the propagation of
a fully vectorial pulsed beam, with a nontrivial transverse
spatial profile. Then, in Sec. III, we focus on the special
case of a pulse with a Bessel profile and analyze the effect
of this profile by discussing the interaction with a specific
two-state system. Finally, we summarize the main results in the
Conclusions.

II. PULSE WITH STRUCTURED INPUT TRANSVERSE
DISTRIBUTION

Let us suppose a Oxyz Cartesian reference system has been
defined in a spatial region of interest. Let E(x,y,z,t) be the
electric part of an electromagnetic field, propagating in this
region of space. We assume the distribution of the transverse
component E⊥(x,y,0,t) of E(x,y,z,t) on a input plane, z = 0,
say,

E⊥(x,y,0,t) = [x̂f (x,y) + ŷg(x,y)]u(t). (1)

In Eq. (1), f (x,y), g(x,y) denote the spatial distributions
of the x and y components and u(t) is a common temporal
evolution on z = 0. x̂, ŷ, ẑ indicating the Cartesian unit
vectors.

Although the knowledge of E⊥(x,y,0,t) is actually already
sufficient to compute the field everywhere, a z component
for the electric field is in general also present. That is a
consequence of having a divergence-free field, that is, ∇ · E =
0. In particular, one can show that

∂zEz(x,y,z,t)|z=0 = −[∂xf (x,y) − ∂yg(x,y)]u(t). (2)

We are interested, first of all, in writing the expression of
electric field E⊥(x,y,z,t) in every plane z > 0. One can
expand this field in terms of spatial and temporal plane waves,
as follows:

E⊥(x,y,0,t) =
∫ ∫ ∫

∞
{S(0)

⊥ (p,q)T (0)(ν)

× exp [i2π (px + qy − νt)]}dpdqdν,

(3a)
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where

S(0)
⊥ (p,q) = S(0)

x (p,q)x̂ + S(0)
y (p,q)ŷ, (4)

S(0)
x (p,q) =

∫ ∫
∞

f (x,y) exp [−i2π (px + qy)]dxdy, (5a)

S(0)
y (p,q) =

∫ ∫
∞

g(x,y) exp [−i2π (px + qy)]dxdy, (5b)

and

T (0)(ν) =
∫ ∞

−∞
u(t) exp (i2πνt)dt, (6)

and p, q represent the spatial and ν the temporal frequencies,
respectively.

Because the effect of propagation on a single plane wave
is known, once the total spectrum at z = 0 is available, it is
possible to compute the spectrum on a different plane, z > 0,
say, as

A(z)(p,q,ν) = A(0)(p,q,ν) exp (i2πmz), (7)

where A(0)(p,q,ν) = [x̂Sx(p,q) + ŷSy(p,q) + ẑSz(p,q)]T (0)

(ν) is the total spectrum at z = 0 and m takes two forms in the
homogeneous and evanescent part of the spectrum:

m =
√

(ν/c)2 − (p2 + q2),
(8)

p2 + q2 < (ν/c)2 (homogeneous)

and

m = i
√

(p2 + q2) − (ν/c)2,
(9)

p2 + q2 > (ν/c)2(evanescent).

Here c denotes the speed of light in a vacuum. It is important
to emphasize that Eqs. (8) and (9) are consequences of
the separation condition (ν being the temporal frequency in
vacuum),

ν2

c2
= p2 + q2 + m2, (10)

which in turn is a consequence of expanding a generic solution
of the wave equation as a collection of plane waves.

Once the complex plane-wave amplitude of all these plane
waves is given, on a plane z, then the field in any other position
and time instant can be easily obtained by inverse Fourier
transforming it:

E(x,y,z,t) =
∫ ∫ ∫

∞
A(z)(p,q,ν)

× exp [i2π (px + qy − νt)]dpdqdν. (11a)

From this, it follows that knowing the spectrum at z = 0
is enough to calculate the electromagnetic field everywhere
within the half space z > 0. An important remark is that while
the total spectrum in z = 0, A(0)(p,q,ν), is actually separable
in the spatial frequencies p,q, and the temporal frequency ν,
this is no longer true for the spectrum in z > 0, A(z)(p,q,ν),
because of the presence of the term exp (i2πmz) in Eq. (7)
that actually mixes the two parts.

From Eqs. (2) and (4), it is straightforward to show that

S(0)
z (p,q) = −

[
pS(0)

x (p,q) + qS(0)
y (p,q)

]
m

. (12)

Hence, once the spectra S(0)
⊥ (p,q) and T (0)(ν) are known, one

can obtain the electromagnetic field as

E⊥(x,y,z,t) =
∫ ∫ ∫

∞
{S(0)

⊥ (p,q)T (0)(ν) exp (i2πmz)

× exp [i2π (px + qy − νt)]}dpdqdν,

(13a)
Ez(x,y,z,t)

=
∫ ∫ ∫

∞
−

[
pS(0)

x (p,q) + qS(0)
y (p,q)

]
m

T (0)(ν)

× exp (i2πmz) exp [i2π (px + qy − νt)]dpdqdν.

(13b)

Equations (13a) and (13b) make explicit the effect of a spatial
profile, amplitude, and phase, over the time behavior of a field,
and vice versa.

Let us suppose now that one is interested in getting a given
time behavior in a specific point x,y,z. This can be obtained
in two different ways. One method could be to directly impose
the desired time behavior by tailoring the signal in time. The
problem with this technique is that in optics field oscillations
are so fast that this is almost impossible in practice. One can
circumvent the problem by working in the Fourier domain.
This is the common way pulse shaping has been performed so
far, and important results were obtained using this approach
[4]. In particular, the possibility of controlling a quantum
system has been proven both theoretically and experimentally.
However, as we already wrote in the introduction, almost all
works based on this method neglect the spatial dependence of
the involved electromagnetic fields. Light pulses have the trait
of beams, in other words, of fields localized in space around a
given mean direction of propagation. Although in many cases
the spatial profile is trivial enough that it does not play any
important role, in other situations it can be fundamental. In
fact, from what we have said so far, once the time evolution
u(t) on z = 0 is given, one can try to design a proper spatial
profile in order to induce a determined desired behavior on
x,y,z. The aim of the next section is to provide a concrete
example of how that is possible by discussing the interaction
of a two-state system with a specific field.

III. INTERACTION OF A STRUCTURED PULSED BEAM
AND A TWO-STATE SYSTEM: THE CASE OF

VECTORIAL BESSEL BEAMS

In the present section, we will consider an electromagnetic
field with a specific E⊥(x,y,0,t) value. With reference to the
notation introduced in the previous section, we choose

f (x,y) = J0(βr⊥), (14a)

g(x,y) = J0(βr⊥), (14b)

where r⊥ =
√

x2 + y2. For the time being, we still leave the
functional form of u(t) unspecified. In Eqs. (14), J0 indicates
the zeroth-order Bessel function of first type; β is the spatial
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frequency that controls the effective beam size since the radius
of the beam, r0, can be considered roughly equal to β/2.4,
that is, in correspondence to the first zero of the J0 function.
Monochromatic Bessel beams are the best known examples of
nondiffracting beams and can nowadays be generated in the
laboratory using different methods [12–15]. Strictly speaking,
they are not physically realizable, because their total energy in
plane z constant is infinite, but in practice the introduction
of an envelope removes this problem, as in the known
case of Bessel-Gauss beams [16,17]. The nondiffracting nature
of these fields stems from noticing that all plane waves,
constituting the angular spectrum, possess the same phase
velocity along the z direction and thus interfere always in the
same way during propagation. It follows that the field changes
during propagation only by a trivial phase factor, while the
amplitude remains the same. In terms of the angular spectra
S(0)

x (p,q) and S(0)
y (p,q), this can be mathematically expressed

in the form

S(0)
x (p,q) = δ

(
� − β

2π

)
β

, (15a)

S(0)
y (p,q) = δ

(
� − β

2π

)
β

, (15b)

where � =
√

p2 + q2 and δ(ξ ) is the Dirac function of
argument ξ . Since the two components on z = 0 have equal
amplitude and are always in phase, the transverse field E⊥ is
linearly polarized. Later on, in the appendix, the case of fields
endowed with nonuniform polarization through the whole x,y

plane is also considered. In case of a Bessel-Gauss beam, the
input distribution takes the expression

J0(βr⊥) exp (−r2
⊥/w2

0), (16)

with w0 as the waist of the Gaussian. However, the presence of
the Gaussian modulation affects the spectrum of the original
Bessel field. Interestingly, the closed-form expression for such
spectrum is available and reads [18]

πw2
0 exp

( − β2w2
0/4

)
exp

( − π2w2
0ρ

2
)
I0

(
πβw2

0ρ
)
, (17)

where I0 is the zeroth-order modified Bessel function of the
first kind. This spectrum tends, with good accuracy, to those
in Eqs. (15) when the product βw0 is sufficiently large (larger
than 10, let us say) [19].

Within this assumption, using the circular coordinates in
spatial Fourier space, and inserting in Eqs. (13) the spectra of
Eqs. (15), we obtain

Eα(x,y,z,t)

= J0(βr⊥)
∫

ν

T (0)(ν) exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν, (18a)

with α = x,y.
The advantage of using a Bessel field as input distribution

derives from the fact that, due to the particular form of
the spatial spectra S(0)

x (p,q) and S(0)
y (p,q) [Eqs. (15)], the

dependence on the transverse coordinate r⊥ is the same in
any plane where z = constant, and, additionally, the temporal
behavior depends on the initial transverse spatial profile by
means of the parameter β only. In fact, Eq. (18) shows that

the field in any plane z can be written as the product of a
factor depending on the transverse spatial coordinate only and
a factor depending on time t and z. In case of other field
distributions, the effect of space on time would be less simple.
For instance, in case of an input Gaussian distribution, it would
not be possible to reduce the expression for the propagated field
in the same simple form as in Eq. (18a), where the transverse
spatial dependence is multiplied by the z-temporal one. Hence,
using a nondiffracting field as input spatial modulation for the
original pulse partly disentangles spatial effects from temporal
ones, making the subsequent analysis much easier.

Coming back to the electric field, one can write the
expression for the z component as well, which results in

Ez(x,y,z,t) =
∫ ∞

−∞

∫ ∞

∞

∫ ∞

∞
− 1√

ν2/c2 − (p2 + q2)

× [
pS(0)

x (p,q) + qS(0)
y (p,q)

]
T (0)(ν)

× exp [i2π (px + qy − νt)]

× exp (i2πmz)dpdqdν

=
∫ ∞

−∞

∫ ∞

0

∫ 2π

0
− 1√

ν2/c2 − �2

× [
� cos ϕS(0)

x (�,ϕ) + � sin ϕS(0)
y (�,ϕ)

]
T (0)(ν)

× exp [i2π�r⊥ cos(ϕ − ϑ)] exp (−i2πνt)

× exp (i2πmz)�d�dϕdν, (19a)

where the circular coordinates in real and Fourier domain were
defined as follows:

x = r⊥ cos ϑ, (20a)

y = r⊥ sin ϑ, (20b)

and

p = � cos ϕ, (21a)

q = � sin ϕ, (21b)

with r⊥,� ∈ [0,∞) and ϑ,ϕ ∈ [0,2π ). On substituting the
spectra in Eq. (15) into Eq. (19), one gets

Ez(x,y,z,t) = −i
β

2π
J1(βr⊥)(cos ϑ + sin ϑ)

×
∫ ∞

−∞

1√
ν2/c2 − β2/(4π2)

T (0)(ν)

× exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν, (22a)

where J1(βr⊥) is the first-order Bessel function of first
type. From this equation, we see that while the transverse
components have a maximum on the z axis, the z component
has always a zero exactly there because of the presence of a
phase singularity.

So far, we have simply described the propagation in free
space of an electromagnetic pulse with assigned space and
time dependence on an starting plane z = 0. We now turn our
attention to how this field interacts with a quantum system
located somewhere in the half space z > 0. Our aim is to show
how different the system response can be, after being excited
by the field, just by changing the field spot size on the z = 0

033412-3



EL GAWHARY, PEREIRA, AND URBACH PHYSICAL REVIEW A 83, 033412 (2011)

plane. The field-matter interaction is described in the dipole
model approximation.

A. Dipole model

Let us assume, from now on, that a quantum system, being
an ensemble of atoms or molecules, occupies a region of space
around the point (0,0,z). Since the system spatial sizes are
usually much smaller than any optical field spot size, we
will consider only the incident field on the z axis. This is
equivalent to saying that, from a spatial point of view, the field
is actually seen as a uniform plane wave in any x,y plane. The
quantum system is described as a two-state system, |g〉 and |e〉,
with energy levels Eg and Ee, respectively. When the external
field is present, the system is in a state |�〉, which is a linear
combination of the two possible states

|�〉 = cg(t) exp (−iEgt/h̄)|g〉 + ce(t) exp (−iEet/h̄)|e〉, (23)

where h̄ = h/(2π ), with h being the Planck’s constant.
In the framework of the first-order perturbation theory of

quantum mechanics, the time evolution of the coefficients
ce(t), related to the transition probability from |g〉 to |e〉, can
be written as

ce(t) = 1

ih̄

∫ t

−∞
H

′
eg exp (i2πνegt

′
)dt

′
, (24)

where it is assumed that in a remote past the system was
initially in the state |g〉. In Eq. (24) νeg = (Ee − Eg)/(2πh̄)
is the transition frequency and H

′
eg = 〈e|H ′ |g〉 is the matrix

element from |g〉 to |e〉. In the dipole approximation, we have
H

′ = −Qr · E(x,y,z,t), where Q is the electric charge of the
dipole and r = (x,y,z). Since only the field on z-axis will be
considered, Eq. (24) can be rewritten as

ce(t) = −Q

ih̄

∫ t

−∞
〈e|r · E(0,0,z,t

′
)|g〉 exp (i2πνegt

′
)dt

′
. (25)

The dipole is supposed to be located at (0,0,z) and oscillating
along the x axis. Under these hypotheses, Eq. (25) becomes

ce(t) = Meg

ih̄

∫ t

−∞
Ex(0,0,z,t

′
) exp (i2πνegt

′
)dt

′
, (26)

where Meg = −Q〈e|x|g〉 is the dipole moment matrix ele-
ment. As to the function u(t) appearing in Eq. (6), the following
expression will be assumed:

u(t) = exp (−t2/τ 2) cos (2πν0t), (27)

with τ representing the pulse length and ν0 representing
the carrier. It follows that, within the present model, the
system-field interaction is completely determined once Meg ,
νeg , β, τ , and ν0 are specified. From now on, we take ν0 =
νeg = 1.998616 × 1014 Hz (corresponding to a wavelength in
vacuum of λ0 = 1.5 µm) and τ = 100 fs, and in our analysis
we will consider the interaction for different choices of β. Our
interest is to show that only by adjusting the field spot size,
on z = 0, can completely different dynamics be induced in the
quantum system.

(a)

(b)

FIG. 1. Behavior of the normalized spectrum
|T (0)(ν) exp [i2π

√
ν2/c2 − β2/(4π 2)z]|, when the spatial distribution

on z = 0 is a zeroth-order Bessel function of first type, for z = 0
(subplot a) and z = 2λ0 (subplot b). ν0 = c/λ0. In the plot, we
have chosen λ0 = 1.5 µm, β = 2πνc/c, where νc = 0.9995ν0 is the
cutoff frequency.

B. Transition rates

In all cases we assume that the interaction will take place
far from the input plane. In other words, the quantum system
is located at a position (0,0,z) with z � λ0.

Three main cases will be considered. First, we start by
considering a pulse that at z = 0 has no spatial structure; that is,
when in Eqs. (18)–(22), we set β = 0. This is the case usually
treated in the literature. In practice, it deals with an uniform
plane wave, in space, modulated by a Gaussian envelope, in
time, on z = 0.

In the other two cases, the Bessel profile is considered, and
we choose β = β1 = 2πν1/c and β = β2 = 2πν2/c respec-
tively. Here, ν1 = νeg/1.0005 and ν2 = νeg/0.9995 represent
two different cutoff frequencies. In fact, from Eqs. (18) and
(19), one sees that once a spatial profile is imposed, on z = 0,
some of the plane waves constituting the pulse can fall in
the evanescent part of the field spectrum, being, in this way,
suppressed under free space propagation. For the reader’s
convenience, we report in Fig. 1 the effect of propagation on the
spectrum T (0)(ν) exp [i2π

√
ν2/c2 − β2/(4π2)z]. Figure 1(a)

is evaluated at z = 0 while Fig. 1(b) is evaluated at z = 2λ0.
In the plots, the cutoff frequency is chosen to be 0.9995ν0,
where ν0 = c/λ0 is the carrier. However, as we are going
to show soon, it makes a big difference, from a system
point of view, whether its resonance frequency, νeg , resides
in the homogeneous or evanescent region of that spectrum. In
particular, when ν1 = νeg/1.0005 the transition frequency νeg

is actually carried by the field, while when ν2 = νeg/0.9995
it belongs to that part of the spectrum that is under the cutoff
and is not able to reach the far zone.

Figure 2(a) shows the corresponding transition rates in
Eq. (26) for the three cases when the system is positioned
at (0,0,20λ0). The continuous curve represents the β = 0
case (as we said, a simple transform-limited pulse) where the
system undergoes a rapid transition, on a time scale of about
100f s, and then reaches the final state. In particular, for large
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time delays (longer than the pulse duration), the transition
probability depends only on the energy content at frequency
νge contained in the incident field. In contrast, the dotted curve
represents the transition rate of the same identical system, at
position z, when excited by the pulse field having β = β1. As is
clear from the plot, the transient shows a completely different
behavior, tending, in any case to the same asymptotic value.
This is due to the fact that the long time limit depends only
on the amplitude of the spectral component at νeg frequency,
that is actually carried by the field. One should also note
that in some time instants the transition rate is enhanced
with respect to the case of just using a transform-limited
pulse (β = 0). This effect is purely determined by the input
spatial modulation. The oscillations around the asymptotic
value are a confirmation that a real coherent transient is taking
place. Additionally, it was elsewhere recognized already that
this enhancement is produced by a change of the destructive
interference occurring between two frequency components,
belonging to the field spectrum, in symmetrical position with
respect to νeg [6]. In this case, the spatial shaping does not turn
such an interference into a constructive one but just unbalances
the two contributions in order to reduce the effect of destructive
interference.

Finally, the third curve shows the same response of the same
system when β = β2. In this case, the resonance frequency
is under the cutoff (i.e., all corresponding plane waves are
evanescent). Because the system is far enough from the input
plane, there is no component at νeg frequency. This means
that the long time delay value must be zero, as is shown in
the plot. Additionally, although there are residual oscillations,
proving that coherent phenomena take place, the transition
rate is notably damped if compared to the previous two cases.
For completeness, in the subplots b and c we also report the
evolution in the phase space (Re{ce(t)},Im{ce(t)}) (Re and Im
stand for real and imaginary part) from the initial state toward
the final one, only for the cases where β is different from zero.

It is very interesting to notice that such a variety of
behaviors is only induced by changing the parameter β

that in turn determines the beam size. More important, the
system shows an extremely high sensitivity with respect to
such beam size, which represents a central result of the
present work. For instance, the different transients shown
in Fig. 2 (dashed and dotted curves) correspond to a beam
diameter of 1.1464 µm (β = β1) and 1.1453 µm (β = β2),
respectively. The difference between the two is only 1.1 nm.
We can justify this surprisingly high sensitivity with a simple
argument. First of all, we estimate the beam’s radius by
looking at the position of the first zero in the Bessel function
J0(βr⊥), which is located, as we said before, at r0

∼= 2.4/β.
In our example, we have chosen β = 2πνc/c, where by νc

indicates the cutoff frequency; r0 is related to νc through the
relation

r0
∼= 2.4c

2πνc

. (28)

The sensitivity of νc with respect to r0 is then

∂νc

∂r0

∼=
∣∣∣∣ 2.4c

2πr2
0

∣∣∣∣ . (29)
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FIG. 2. Transition rates induced in an two-state system by a pulse
with a Bessel spatial profile for different values of the field spot size
on the z = 0 plane. In panel (a), the absolute value of the transition
rate ce(t) as a function of time is shown. The solid line in represents
a diffraction limited pulse (β = 0), with uniform spatial distribution
on z = 0. The dotted line describes the case when β = β1 = 2πν1/c,
with ν1 = νeg/1.0005. The line-dotted line refers to the third case,
when β = β2 = 2πν2/c with ν2 = νeg/0.9995. The interaction with
the quantum system is supposed to take place on z = 20λ0, where
λ0 = 1.5 µm. Panels (b) and (c) show the evolution in phase space
for the cases of β1 and β2, respectively.

From Eq. (29), one sees that around the value of 1 µm for
the beam’s diameter (2r0), the sensitivity becomes 2.29024 ×
1014 Hz/m. Since the response of the system strongly depends
on whether its resonance frequency νeg is under cutoff, this
high sensitivity shows that in principle even a few nanometers
change in the beam size can be enough to go from one
situation (νeg under cutoff) to the other (νeg above cutoff).
However, it is important to realize that this does not imply
that a control of the beam size on a scale of nanometers is
necessary in order to obtain the described effects, because
the marked difference in situations occurs for any pair of
frequencies of which one is above and the other below cutoff. In
any practical implementation, it would suffice to choose two
different beams, with different spot sizes (i.e., two different
values of β), such that the corresponding cutoff frequencies
would be one bigger and the other smaller than νeg . In any
case, this strong dependence on the initial spatial size of the
beam, around the cutoff frequency, is an appealing property
that makes the proposed method interesting for future possible
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applications such as, among others, in selective excitation of
small emitters like nanoparticles.

IV. CONCLUSIONS

We have discussed the role that a nontrivial spatial modula-
tion can play in the field of quantum control. In particular, we
showed how one can induce completely different behaviors in
a quantum system just by changing the transverse spatial size
of a pulse of interest, even in vacuum. We provided the general
mathematical descriptions, and we focused on a particular case
where the spatial distribution of the pulse, on the starting plane,
is a Bessel function. Under the assumption that the quantum
system is modeled by means of a two-state model, we derived
the transition rate associated to a particular spatial size. We
also discussed the sensitivity of the whole process on the input
beam size. As we showed, since the frequency cutoff occurring
during propagation, caused by the imposed spatial shape, gets
really sharp a few wavelengths from the input plane (in the
sense clarified in the previous sections), the excitation of the
system is strongly affected by change in the field’s diameter
of even a few nanometers.
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APPENDIX: SHAPING THE INPUT FIELD TO EXCITE
DIPOLES IN OTHER DIRECTIONS

In Sec. III, we have described the interaction of a femtosec-
ond pulse, endowed with a Bessel lateral profile, and an atomic
system, modeled as a two-state system, positioned on the
z axis. For the interaction, the standard dipole approximation
has been used and, additionally, the assumption that only the
field on axis was seen by the quantum system. With the choice
made in Eq. (14), we had a z field component with a zero on
z = 0, which did not allow interaction with dipoles oriented
along the z direction. The aim of the present section is to
describe a more general case, where the input electric field on
z = 0 has a nonuniform polarization state, and to show how
that actually flips the field on axis, in order to interact with
a dipole oriented along z, too. Also, this is an occasion to
generalize the formalism to fields with linear, but nonuniform,
polarization states.

With reference to Eq. (1), we take now

f (x,y) = Jm(βr⊥) cos (mϑ + α), (A1a)

g(x,y) = Jm(βr⊥) sin (mϑ + α), (A1b)

where Jm(·) denotes a mth-order Bessel function of first kind,
α ∈ [0,2π ) is a constant angle, and r⊥ and θ are defined
in Eq. (20). In particular, the transverse field E⊥ is still
linearly polarized in every point on the x,y plane, but with a

polarization direction that depends on the angular variable ϑ

and forms, in any point, an angle α with the radial direction.
Optical, monochromatic beams with such a state of polariza-
tion were studied recently in the paraxial framework [20] as
well as their free-space behavior in the nonparaxial regime
or when focused by high numerical aperture optical systems
[21,22]. From a practical viewpoint, these types of fields can
be generated using a spatial light modulator that shapes the
amplitude and phase at the same time, or by special classes of
laser sources, like a concentric-circle-grating, surface-emitting
(CCGSE) semiconductor laser [23,24]. It is of some interest
to derive the structure of the field’s lines on z = 0, that are
determined by the equation

dy

dx
= Ey

Ex

= tan (mϑ). (A2)

This equation can be rewritten in polar coordinates and gives

sin ϑdr⊥ + r⊥ cos ϑdr⊥
cos ϑdr⊥ − r⊥ sin ϑdr⊥

= tan (mϑ). (A3)

After simple algebra, Eq. (A3) yields

dr⊥
r⊥

= dϑ
cos[(m − 1)ϑ + α]

sin[(m − 1)ϑ + α]
. (A4)

To get the shape of field lines, we have to distinguish two cases:
m 	= 1 and m = 1. When m 	= 1, the field’s lines become

r⊥ = R| sin[(m − 1)ϑ + α]1/(m−1)|, (A5)

with R a constant. To show how these fields’ lines look, we
plot in Fig. 3 the case when m = 4 and α = π/4. The shape
reminds us of a daisy, with the number of petals 2(m − 1)
depending on the integer m. The angle α represents just an
offset: Varying it leads to an overall rotation of the daisy. The
other case corresponds to choosing m = 1. Equation (A4) then

Ex

E
y  α

FIG. 3. Field’s lines, r⊥ = R| sin[(m − 1)ϑ + α]1/(m−1)|, when
the field components are f (x,y) = Jm(βr⊥) cos (mϑ + α) and
g(x,y) = Jm(βr⊥) sin (mϑ + α), respectively [see Eqs. (A1)]. The
figure was obtained by choosing m = 4 and α = π/4. Considered the
special properties of nondiffracting beams, such polarization state is
invariant during free-space propagation.
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leads to the following form for the field’s lines:

r⊥ = R exp

(
ϑ

tan α

)
, (A6)

which is the expression of a logarithmic spiral. It is very
interesting that such polarization states are invariant during
propagation. In fact, one has for Ex and Ey

Ex(x,y,z,t) = imJm(βr⊥) cos(mϑ + α)
∫ ∞

−∞
T (0)(ν)

× exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν, (A7a)

Ey(x,y,z,t) = imJm(βr⊥) sin (mϑ + α)
∫ ∞

−∞
T (0)(ν)

× exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν. (A7b)

fulfilling exactly the same equation [Eq. (A2)] for all values of
z. As to the z component, Ez, after simple, but lengthy, algebra
one obtains

Ez(x,y,z,t) = −1

2
{i(m+1)Jm+1(βr⊥) cos [(m + 1)ϑ + α]

+ i(m−1)Jm−1(βr⊥) cos [(m − 1)ϑ + α]

+ imJm+1(βr⊥) sin [(m + 1)ϑ + α]

− imJm−1(βr⊥) sin[(m − 1)ϑ + α]}
×

∫ ∞

−∞

1√
ν2/c2 − β2/(4π2)

T (0)(ν)

× exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν. (A8a)

Let us focus on one specific case, for instance when m = 1.
Equation (A8) reduces to

Ez(x,y,z,t) = −1

2
{−J2(βr⊥) cos (2ϑ + α) + J0(βr⊥) cos α

+ iJ2(βr⊥) sin (2ϑ + α) − iJ0(βr⊥) sin α}
×

∫ ∞

−∞

1√
ν2/c2 − β2/(4π2)

T (0)(ν)

× exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν. (A9a)

The presence of the phase vortex in the transverse components
Ex and Ey has two effects. On one hand, it creates a phase
singularity on z = 0 for Ex and Ey . Hence, these two fields
must vanish everywhere along the z axis during propagation.
In fact, as it is easy to show, they take the expressions (recall
that α = x,y)

Ex(x,y,z,t) = iJ1(βr⊥) cos (ϑ + α)
∫ ∞

−∞
T (0)(ν)

× exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν, (A10a)

Ey(x,y,z,t) = iJ1(βr⊥) sin (ϑ + α)
∫ ∞

−∞
T (0)(ν)

× exp [i2π
√

ν2/c2 − β2/(4π2)z]

× exp (−i2πνt)dν, (A10b)

and they vanish when r⊥ = 0, as they should. On the other
hand, since the total electric field is divergence free, the third
component, Ez, has to be different from zero on the same
axis. The presence of such z component on the axis allows the
excitations of dipole oriented along z as well, which is what
we wanted to show in this appendix.
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