
PHYSICAL REVIEW A 83, 033407 (2011)

Diatomic molecules in optical and microwave dipole traps
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The dipole forces on rotating diatomic molecules are worked out in detail for optical as well as microwave
radiation fields. The objective is in particular to investigate how the dipole forces and potentials depend on the
subtle internal structure of the molecule, with special emphasis on hyperfine and Zeeman states. Dipole potentials
are obtained from computations of the real part of the complex molecular polarizability, whereas the imaginary
part yields the scattering force. Numerical examples are presented for 23Na2 and OH for optical (laser) fields
related to strong electronic transitions and for microwave fields for the � doubling in the OH ground state.
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I. INTRODUCTION

The study of cold or ultracold molecules is a branch of
physics that attracts much attention at present. Compared
to the even more active field of ultracold atoms, molecules
represent extra challenges, as well as extra opportunities.
Well-established methods to cool and trap atoms will generally
not work for molecules, or the standard methods will cause
extra complications in the molecular case. The present work
will address the problem of trapping diatomic molecules by
means of optical- or generally electromagnetic dipole forces.
The trapping of neutral atoms in optical dipole potentials, e.g.,
optical lattices, represents at present a standard method for
handling ultracold atoms [1,2]. The theory behind the atomic
optical dipole trapping is normally based on the assumption
that the atom has a simple two-level internal structure. For
diatomic molecules there are more internal degrees of freedom
which lead to more complex patterns of energy levels. These
extra complexities, however, open new opportunities to study a
variety of dipole potentials that depend on the specific internal
molecular state.

So far there seems to be few studies of the dipole forces
on diatomic molecules. Kotochigova and Tiesinga [3] have
made a theoretical investigation of the interaction of polar
molecules with optical lattices and microwave fields. A de-
tailed discussion of the possibility of trapping polar molecules
in a microwave cavity was carried out by DeMille et al.
[4]. However, both these studies were limited to molecular
vibrational and rotational states, leaving out the interesting
and characteristic effects related to hyperfine and Zeeman
levels. There are at present numerous articles reporting on
experiments in which cold molecules are held in optical
dipole traps or lattices as part of the production or cooling
process. The general trend is, however, that there is little or no
discussion on details regarding the trapping forces. A recent
overview of articles in the field is found in a special issue of
New Journal of Physics [5], also with a large number of further
references.

The objective of the present work is to make a theoretical
analysis of the dipole force on diatomic molecules, with special
emphasis on the finer internal structure details, like hyperfine
and Zeeman interactions. The small hyperfine and Zeeman
splittings themselves are not necessarily of great importance,
as the relevant resonance frequencies will be much larger.

The important effects arise from the dependencies of the
dipole matrix elements on the hyperfine and Zeeman quantum
numbers. This is particularly pronounced for molecules, where
the interaction is between a “space fixed” external field and the
subtle internal states of a rotating molecule. It will turn out that
the trapping force or potential might be strongly dependent on
the actual internal level of the molecule and also on the state
of polarization of the external laser or microwave field. This
might in turn lead to interesting opportunities for experimental
handling of the molecules in dipole traps or lattices, including
the potential for making workable molecular qubits [6,7].

II. INTERACTION WITH AN EXTERNAL
ELECTRIC LIGHT FIELD

A. General theory

The Hamiltonian for an atomic or molecular system
interacting with an external electric field �E takes the form

H ′ = − �D · �E = −
1∑

µ=−1

(−1)µD−µEµ, (1)

where �D denotes the electric dipole moment given by �D =∑
i qi�ri , where the sum extends over electrons and nuclei and

�E is the external electric field. The spherical components are
defined as

E±1 = ∓ 1√
2

(Ex ± iEy), E0 = Ez. (2)

We now assume that the electric field has just one compo-
nent µ. For a light field µ = 1and µ = −1 respectively means
left and right circular polarization, whereas µ = 0 means linear
polarization. Furthermore, we will in the present work consider
the light field from two counter propagating polarized light
waves so that the electric field components take the form

Eµ = Eµ(�r)[eiωt + e−iωt ] = 2Eµ(�r) cos ωt. (3)

In this case the light-atom–molecule interaction leads to a
time-averaged potential energy (light shift) given by

Udip = − 1
2αn,−µ(ω)

〈
E2

µ

〉
, (4)
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where the dynamic polarizability αn,−µ(ω) for the state |�n〉
is given by the expression

αn,−µ(ω) = −
∑
k �=n

|〈�n|D−µ|�k〉|2

×
[

1

En − Ek + h̄ω
+ 1

En − Ek − h̄ω

]
. (5)

EnandEk denote the energies of the respective states n and k.
Finally, the intensity of the light field takes the form Iµ(�r) =
2ε0c|Eµ(�r)|2, and the expression for the potential of Eq. (4) is
recast as

Udip(�r) = − 1

2ε0c
αn,−µ(ω)Iµ(�r). (6)

The finite life time of the excited states |�k〉 due to
spontaneous emission may effectively be included through the
simple replacement Ek → Ek − i

2h̄�k for the energies in the
expression for the polarizability αn,−µ(ω), which then reads

αn,−µ(ω) = −2
∑
k �=n

(
En − Ek + i

2h̄�k

)|〈�n|D−µ|�k〉|2(
En − Ek + i

2h̄�k

)2 − h̄2ω2
.

(7)

The transition rate �k for spontaneous transitions from the
state |�k〉 to all other lower accessible states |�l〉 is given
by [1,8,9]

�k = 1

3πε0c3h̄4

∑
l

1∑
ν=−1

(Ek − El)
3|〈�k|Dν |�l〉|2. (8)

Thus, taking into account spontaneous emission the potential
finally takes the form

Udip(�r) = − 1

2ε0c
Re[αn,−µ(ω)]Iµ(�r), (9)

and the rate �sc of photons absorbed and reemitted (scattered)
at a given frequency ω is given by [1].

�sc,n(�r,ω) = 1

h̄ε0c
Im[αn,−µ(ω)]Iµ(�r). (10)

Generally, the imaginary part of the complex polarizability
yields the strength of absorption. This connection is also
extensively used to compute photoionization cross sections,
e.g., Ref. [10].

B. Rotating diatomic molecules

Next we have to specify the molecular states |�n〉 and |�k〉.
In the diatomic case they may be expanded in terms of
molecular basis functions of the form

|�a〉 = |qν�	SJIFMF 〉, (11)

where q indicates the relevant electronic state, v is a cor-
responding vibrational quantum number, � and 	 refer to
the quantized components of the electronic orbital and spin
angular momenta along the molecular axis, and J denotes the
total molecular angular momentum except for nuclear spin.
This rovibronic part of the basis is referred to as Hund’s
coupling case (a) [11]. I refers to the total nuclear spin,

�F = �J + �I , and MF denotes the quantized component of �F
along a space fixed axis.

The general basis functions given in Eq. (11) may be more
conveniently represented in a decoupled way, factorizing out
the nuclear spin part [12,13]:

|�a〉 =
∑

MJ ,MI

(−1)J−I+MF (2F + 1)1/2

(
J I F

MJ MI −MF

)

× |qν�	SJMJ 〉|IMI 〉, (12)

with MJ + MI = MF , and where MJ and MI respectively
refer to the quantized components of �J and �I along a space
fixed axis. In a similar way the nuclear spin state |IMI 〉 may
be given in a decoupled form:

|IM1〉 =
∑

MI1 ,MI2

(−1)I1−I2+MI (2F + 1)1/2

(
I1 I2 I

MI1 MI2 −MI

)

× ∣∣I1I2MI1MI2

〉
. (13)

Here I1,MI1 ,I2,andMI2 refer to the nuclear spins of the two
nuclei, I1 and I2 have fixed values.

To work out the matrix elements of the space fixed
components of the dipole moment in Eqs. (7) and (8) we
also have to take into account the molecular symmetries. For
a general diatomic molecule there are two basic symmetri
operators: the inversion E∗ of the coordinates of all electrons
and nuclei and a reflection σv of the electron positions in a
plane containing the molecular axis. The effect of the total
inversion operator E∗ (parity) on a Hund’s case (a) basis state
is given by [14–18]:

E∗|qν�	SJMJ 〉 = (−1)J−S+Sn |qν − � − 	SJMJ 〉, (14)

where sn is related to the reflection symmetry σν through the
relation

σν |qν�	SJMJ 〉 = (−1)Sn |qν − � − 	SJMJ 〉, (15)

Here we have sn = 0 for � �= 0 and for 	+ molecular
states, whereas sn = 1 for 	− states. Thus, eigenstates for
the inversion operator E∗ are obtained by forming the linear
combination

|�a〉 = 1√
2

[|qν�	SJMJ 〉] + (−1)s |qν − � − 	SJMJ 〉,
(16)

with eigenvalues given by

E∗|�a〉 = (−1)J−S+Sn+S |�a〉, (17)

For given values of J,S,andsn the value of s may be chosen
as 0 or 1 to give the two possible eigenvalues for E∗.

Now, the matrix elements of the dipole operator are diagonal
in the nuclear spin quantum numbers IandMI [cf. Eq. (12)]
and also independent of these quantum numbers except for
the 3j symbol in Eq. (12). Hence, we may concentrate on the
symmetrized space and electronic spin states of Eqs. (16) and
(17). Working out the matrix element we obtain

〈�a|D−µ|�′
a〉 = 1

2 [1 − (−1)J+J ′−2S+sn+s ′
n+s+s ′

]

×〈qν�	SJMJ |D−µ|q ′ν ′�′	SJ ′M ′
J 〉,
(18)
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with � � 0 and �′ � 0. For the special case � = �′ = 0
we have to set 	 � 0. Primed quantities all refer to |�a

′〉.
However, the special cases � > 0 and �′ = 	′ = 0, or � =
	 = 0 and �′ > 0, have to be handled separately, and the
result is

〈�a|D−µ|�′
a〉 = 1√

2
[1 − (−1)J+J ′−2S+sn+s ′

n+s ′′
]

×〈qν�	SJMJ |D−µ|q ′ν ′�′	SJ ′MJ
′〉. (19)

Here s ′′ equals s for � �= 0 and s ′ for �′ �= 0 [cf. Eq. (16)].
By the derivation of Eqs. (18) and (19) we have used the fact
that D−µ changes sign under the operation E∗. Equations (18)
and (19) clearly show the selection rules we have to observe
to have dipole matrix elements differ from zero.

C. Homonuclear diatomic molecules

For a homonuclear diatomic molecule there are two extra
symmetry operations denoted (12) and i, where i represents
inversion of the electronic coordinates through the midpoint
between the nuclei, and (12) interchanges the coordinates of
the two nuclei. From the expression for |IMI 〉 in Eq. (13) we
notice that an interchange of the two nuclei merely results in
an interchange of the quantum numbers MI1 and MI2 in the 3j
symbol, and with I1 = I2, this leads to a factor (−1)I1+I2+I ,
and consequently

(12)|IMI 〉 = (−1)I1+I2+I |IMI 〉. (20)

For a homonuclear molecule we have the following simple
relation between the symmetry operators

(12) = E∗i. (21)

Hence, Eqs. (14) and (17) yield

(12)|qν�	SJMJ 〉 = (−1)J−S+sn+s+si |qν − � − 	SJMJ 〉,
(22)

where si refers to the eigenvalues of the electronic inversion
operator i, i.e., si = 0 for electronic g states and si = 1 for
u states. For homonuclear molecules the total molecular state,
including nuclear spin, has to be antisymmetric under (12) for
Fermionic nuclei (I1 = I2 = half − integer), and symmetric
for bosons (I1 = I2 = integer). From Eqs. (20) and (22) we
then have the following allowed combinations.

From Eqs. (11), (12), and (17) we may now write down
the expression for the dipole matrix element for two general
symmetrized molecular states |�〉 and |� ′〉:
〈�|D−µ|� ′〉 =

∑
MJ ,MI

∑
MJ

′
(−1)J+J ′−2I+MF +M ′

F

× [(2F + 1)(2F ′ + 1)]1/2

(
J I F

MJ MI −MF

)

×
(

J ′ I F ′
MJ

′ MI −M ′
F

)
〈�a|D−µ|�′

a〉 (23)

The last factor in the equation above is obtained from
Eqs. (18) or (19).

What remains to be worked out is the dipole matrix element
of Eqs. (18) and (19). The complication here arises from
the fact that the dipole moment component D−µ refers to a

space-fixed coordinate system, whereas the molecular state is
expressed in terms of coordinates and variables referred to
a molecule-fixed system. There is, however, a rather simple
relation between space-fixed and molecule-fixed components
[13,16,18]:

〈qν�	SJMJ |D−µ|q ′ν ′�′	SJ ′MJ
′〉)

=
1∑

ν=−1

〈qν�|dν |q ′ν ′�′〉(−1)MJ
′−�′−ν−µ

×[(2J + 1)(2J ′ + 1)]1/2

×
(

J 1 J ′
� −ν −�′

)(
J 1 J ′
MJ µ −MJ

′

)
. (24)

Here � = � + 	 and �′ = �′ + 	′, and dν denotes
spherical components of the dipole operator in the molecule
fixed coordinate system. We notice from Eq. (24) that for
given values of � and �′ just one component dν contributes,
i.e., ν = � − �′ = � − �′.

For a homonuclear molecule there is no nuclear contribution
to the electric dipole moment, as the origin is placed midway
between the nuclei. The inversion symmetry i leads to an
additional selection rule, as it is clear from Eq. (24) that the
matrix element for dν will be zero unless the two states have
opposite eigenvalues of i (g-u selection rule).

D. Intermediate coupling

Generally, a molecular state does not take the simple form
of a case(a) basis function [cf. Eqs. (11) and (12)]. In a
more general intermediate coupling the case (a) basis will
be replaced by linear combinations of the form

|qν�SJMJ 〉 =
S∑

	=−S

C	|qν�	SJMJ 〉. (25)

The coefficients C	 are obtained by diagonalizing a Hamil-
tonian matrix containing several molecular parameters like
the rotational constant and the spin-orbit coupling constant. A
molecular state of 	 symmetry (� = 0) will normally be close
to a Hund’s case (b) state, which in terms of the case (a) basis
is expressed as [16,18]

|qν�NSJMJ 〉 = (2N + 1)1/2
S∑

	=−S

(−1)J−	−�

×
(

N S J

−� −	 �

)
|qν�	SJMJ 〉. (26)

Here the quantum number N represents the total molecular
orbital angular momentum �N = �J − �S, which is quantized in
the case (b) basis.

E. Sum rules

Using known summation rules for the 3j symbols, we obtain
after some algebra the following rather simple sum rules for
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the dipole matrix elements [cf. Eqs. (11), (13), and (14)]:
∑
MF

∑
F ′,M ′

F

|〈qν�	SJIFMF |D−µ|q ′ν ′�′	SJ ′IF ′M ′
F 〉|2

= 1

3
|〈qν�|dν |q ′ν ′�′〉|2(2F + 1)(2J ′ + 1)

×
(

J 1 J ′
� −ν −�′

)2

. (27)

We notice that the sum is independent of the space fixed
component -µ, which is also reflected by the factor 1/3
in front of the expression on the right-hand side. In the
expression for the complex polarizability given by Eq. (7) the
energy difference En − Ek + ih̄

2 �k will have an insignificant
dependence on F ′,M ′

F , and MF if the energies En and Ek

refer to different electronic or vibrational energies. Thus,
the sum rule of Eq. (27) may be very useful for computing
polarizabilities in such cases.

Another useful sum rule might be the following:

1∑
ν=−1

∑
F ′,M ′

F

|〈qν�	SJIFMF |Dν |q ′ν ′�′	SJ ′IF ′M ′
F 〉|2

= |〈qν�|dν ′ |q ′ν ′�′〉|2 (
2J ′ + 1

) (
J 1 J ′
� −ν ′ −�′

)2

.

(28)

This sum rule may be very useful for computing transition
rates according to Eq. (8), since in this case we also have to
make a summation over all polarizations ν of the radiation
field. Furthermore, we notice that the sum in Eq. (28) above is
independent of the initial state quantum numbers F and MF .

For the more general intermediate case of Eq. (25) analogs
to the sum rules of Eqs. (27) and (28) also exist. However,
the squared 3j symbols in these equations will have to be
replaced by somewhat more complex double sums involving
the coefficients C	 and C	′ , which normally will not depend
on F or MF .

III. EXAMPLES

A. The 23Na2 molecule in an optical field

As a first example we will consider the prospects for
trapping a 23Na2 molecule in its electronic, vibrational, and
rotational ground state. From the X1	+

g ground state there is
a strong transition to the excited A1	+

u electronic state. The

X1Σ+
g

v′ = 8

v = 0

J ′ = 1

J = 0
+

A1Σ+
u

FIG. 1. The proposed trapping transition for 23Na2.

TABLE I. Allowed combinations of quantum numbers and
symmetry labels for homonuclear diatomic molecules.

I1 + I2 + I J − S + sn + s + si

Fermions Even Odd
Odd Even

Bosons Even Odd
Odd Even

electric dipole transition element 〈qν�|dν |q ′ν ′�′〉 of Eq. (24)
in this case takes the form

〈X1	+
g ,ν = 0|d0|A1	+

u ,ν ′〉, (29)

with a maximum value of 1.67 a.u. for ν ′ = 8. The dipole matrix
elements needed for the present investigation were calculated
from potential curves and dipole transition elements versus R
given by Stevens and Hessel [19]. Starting from the lowest
rotational level J = 0 with parity +1, only the rotational level
J ′ = 1 with parity −1 for the excited A1	+

u state is attainable in
an electric dipole transition (cf. Fig. 1). For the 23Na2 molecule
we have I1 = I2 = 3/2, and Table I yields the following
allowed combinations: X1	+

g , J = 0: I = 2, F = 2, and I = 0,
F = 0, A1	+

u , J = 1: I = 2, F = 3, 2, 1, and I = 0, F = 1.
The energy difference for the transition v = 0, J =

0 to ν ′ = 8, J ′ = 1 is approximately 4.670 × 108 MHz
(15 575 cm−1), and the detuning in the subsequent calculations
are with reference to this center frequency. Now, there are
very significant values of the matrix element of Eq. (29)
for several vibrational states around ν ′ = 8. In the present
calculations of the polarizability ν ′ = 6, 7, 9, and 10 were also
included in addition to the resonance level ν ′ = 8. The energy
difference between adjacent vibrational levels around ν ′ = 8
is approximately 110 cm−1 ≈ 3300 GHz. Thus, the detuning
will be kept less than half of this energy difference.

To compute the basic complex polarizability αn,−µ(ω) of
Eq. (7) we need the rates �k for spontaneous emission from the
various levels Ek included in the calculation, i.e., the rotational
level J ′ = 1 of the A1	+

u vibrational levels v′ = 6–10. Here
transitions from the upper state to all accessible lower states
for all polarizations (µ) have to be included. The sum rule of
Eq. (28) is in particular useful for this purpose, showing that
the transition rate is independent of the upper state quantum
numbers I, F, and MF . Transition rates and lifetimes for a
series of vibrational and rotational levels of the A1	+

u state
were calculated by Stevens and Hessel [19]. According to
their results the transition rates are quite independent on the
vibrational or rotational state, also in good agreement with
observed lifetimes. From the results of Stevens and Hessel we
have adopted the value �k = 1.90 × 10−9 a.u. = 7.8 × 107 s−1

for the transition rates for all the vibrational levels ν ′ = 6–10
of present interest.

The complex polarizability was calculated from Eq. (7),
also with application of the convenient sum rule of Eq. (27).
Computed real- and imaginary polarizabilities were obtained
for various values of h̄ω, detuned from the v = 0 → ν ′ = 8
transition frequency. The results obtained are given in Table II.
Subsequently the depth of the dipole potential Udip and the
rate of scattered photons �sc were obtained from Eqs. (9)
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TABLE II. Computed potential depths and scattering rates for 23Na2. Similar positive (blue) detunings give quite identical numerical results,
with a change of sign for for Re(α). The intensity of the laser light is set to 103 W cm−2.

Detuning (GHz) Re(α) (a.u.) Im(α) (a.u.) Udip (MHz) Temperature (K) Scattering rate �sc(s−1) Lifetime τ (s)

−500 2.29 × 104 0.323 1.05 1.0 × 10−4 186 0.13
−1000 9.18 × 103 0.097 0.42 4.0 × 10−5 56 0.18
−1500 3.11 × 103 0.064 0.14 1.3 × 10−5 37 0.091

and (10) respectively, with an assumed intensity of the laser
light of 1000 W cm−2. Neglecting the small nuclear spin-spin
coupling, there is no degeneracy in the 23Na2 ground state.
Representing the initial state by a mixed state of the form

|�n〉 = 1√
2F + 1

F∑
MF =−F

|qν�	SJIFMF 〉, (30)

it is seen from Eq. (27) that neither the potential nor the
scattering rate will depend on the initial state quantum numbers
I, F, or MF , and even not on the state of polarization (µ) of
the laser light.

The temperatures listed in Table II were obtained according
to the simple relation 1

2kBT = Udip. We notice from Table II
that trapping of the 23Na2 molecules by the present mechanism
requires that they are precooled to about 10−5 K. The recoil
energy for emission or absorption of a photon is given by

Erec = h̄2ω2

2Mc2
, (31)

and in the present case we have Erec ≈ 0.021 MHz. Assuming
an energy transfer of two times Erec pr. scattering, the lifetime
τ of the molecule in the trap may be estimated from the relation

2τ�scErec = Udip. (32)

From Table II we notice that the estimated lifetimes for
all detunings are around a tenth of a second. Increasing the
light intensity by an order of magnitude will increase Udip,
�sc and the trapping temperature proportionally by an order of
magnitude. The estimated lifetime, however, will according to
Eq. (32) remain invariant.

We also note from Table II that increasing the absolute
detuning from 500 GHz to 1500 GHz has a rather small effect
on the estimated lifetime. This rather unexpected or irregular
feature tends to stem from the fact that we do not have a
two-level system, but rather a multilevel case. Increasing the
detuning above 1000 GHz or lowering it below −1000 GHz
rapidly brings in a contribution from the nearest vibrational
levels ν ′ = 9 or ν ′ = 7 respectively. Thus, increasing the detun-
ing does not bring the potential depth and scattering rate down
to zero but rather leads to oscillations, as the laser frequency
comes close to other vibrational resonances. Unfortunately,
production of Na2 molecules in their electronic, vibrational,
and rotational ground state with 10−5 K temperatures seems to
belong to the future. The heavier molecules Cs2 and KRb have,
however, already been produced in their rovibronic ground
state [20–22].

B. The OH molecule: Trapping with laser light

As a second example we will consider the possibility
of trapping an OH molecule in the lowest vibrational and
rotational level of its electronic ground state. The electronic
ground state of the OH molecule has a rather complex structure
of energy levels due to spin-orbit coupling, �-doubling and
magnetic hyperfine interaction. To be more specific, we will
calculate the trapping force and scattering rate (lifetime)
for individual hyperfine- and Zeeman levels of the lowest
�-doublet component of the 2�3/2 substate (cf. Fig. 2). In
this case there is a rather strong transition from the X2�

ground state to the first excited A2	+ state. The electric dipole
transition element of Eq. (24) now takes the form

〈X2�,v = 0|d±1|A2	+,ν ′〉, (33)

and peaks strongly at ν ′ = 0, with a value of 0.104 a.u. Thus, no
other vibrational levels of the A2	+ state will be included in
the present calculations. Bauschlicher and Langhoff [23] have
presented theoretical potential curves and dipole transition
moments for both these electronic states, and their results were
used for the present study.

Figure 2 shows the lowest �-doublet of the X2�3/2

substate, with hyperfine splittings. We consider transitions
from the lowest �-component (J = 3/2, parity −) to the
lowest rotational level (N = 0, J = 1/2, parity +) of
the A2	+state. The resonance frequency is approximately
32 440 cm−1 (972 540 GHz), and the detunings introduced
later are with reference to this resonance frequency. The
energy gap up to the next relevant rotational level (N = 2,
J = 3/2, and J = 5/2, parity +) is approximately 3100 GHz,
which is much larger than the present detunings. Thus, excited
rotational levels of the A2	+state are not included in the
present calculations.

53.17 MHz

55.13 MHz

776.3 MHz

32440.5 cm−1

F = 1

F = 0

F = 2

F = 1

F = 2

F = 1

X2Π3/2

A2Σ+

J = 3/2

N = 0, J = 1/2 +

+

1612.23 MHz≈ 1660 MHz

−J = 3/2

FIG. 2. Relevant energy levels for the OH molecule (not to scale).
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TABLE III. Computed potential depths and scattering rates related to the electronic transition in the OH molecule. The (red) detuning is
−100 GHz (cf. text). A detuning of 100 GHz would yield quite similar numerical results, except for a change of sign for Re(α), and a repulsive
potential. The intensity of the laser light is set to 105 W cm−2.

F MF µ Re(α) (a.u.) Im(α) (a.u.) Udip (MHz) T (K) �sc (s−1) τ (s)

1 ±1 ∓1 185 2.13 × 10−4 0.85 8.2 × 10−5 12.3 0.29
1 ±1 0 73.8 8.50 × 10−5 0.34 3.3 × 10−5 4.90 0.30
1 0 ±1 73.8 8.50 × 10−5 0.34 3.3 × 10−5 4.90 0.30
1 0 0 148 1.71 × 10−4 0.68 6.5 × 10−5 9.85 0.29
2 ±2 ∓1 444 5.10 × 10−4 2.04 2.0 × 10−4 29.5 0.29
2 ±1 ∓1 111 1.27 × 10−4 0.51 4.9 × 10−5 7.32 0.29
2 0 ±1 73.8 8.50 × 10−5 0.34 3.3 × 10−5 4.90 0.29
2 0 0 148 1.71 × 10−4 0.68 6.5 × 10−5 9.85 0.29

To compute the transition rates �k for spontaneous emis-
sions is, just as for Na2, a demanding matter, as all transitions
to lower accessible states of the X2�3/2 and X2�1/2 substates
have to be included. However, also in this case Eq. (28) tells us
that these rates will be independent of the upper state quantum
numbers F and MF . Thus, a unique lifetime can be assigned to
a given rotational level (J ′), irrespective of the hyperfine and
Zeeman quantum numbers. Lifetimes in good agreement with
experiment were calculated by Bauschlicher and Langhoff
[23], and from their results we have adopted the value
�k = 3.50 × 10−11 a.u. = 1.4 × 106 s−1. With this common
value of �k real and imaginary parts of the polarizability α−µ

of Eq. (7) were computed for a (red) detuning of −100 GHz
from the resonance frequency mentioned above. Intermediate
coupling actually applies to the X2�3/2 substate [cf. Eq. (25)],
and the A2	+ state is close to coupling case (b) [cf. Eq. (26)].
The depth of the dipole potential Udip and the photon scattering
rate �sc were obtained from Eqs. (9) and (10) respectively, with
an assumed light intensity of 105 W cm−2. Table II also lists
the temperature according to 1/2kBT = Udip, and the lifetime
τ from Eqs. (31) and (32), with Erec = 0.12 MHz. Results
for all the hyperfine and Zeeman levels are given in Table III,
which also shows explicit values for all polarizations (µ) of
the external light field. Negative detunings give positive values
of Re(α) and, according to Eq. (6), an attractive potential.

The potential depths show a rather strong dependence on
the trapping state as well as on the polarization of the laser
light, ranging from around 0.3 to 2 MHz. Corresponding
upper bounds for the trapping temperature are in the range
3 × 10−5 K to 2 × 10−4 K. The lifetimes are all quite similar,
around 0.3 s. Increasing the red detuning by a factor of 2, i.e., to

−200 GHz, would reduce the potential depth and temperature
by a factor of 2 but increase the lifetime by a factor of 4,
an effect that is typical for a two-level system. Cooling of
OH by means of Stark deceleration [24–26] has generally led
to lowest temperatures of the order of magnitude mK. This,
unfortunately, tends to be an order of magnitude higher than
the temperature that would enable Stark-cooled OH molecules
to be loaded into and stored in an optical dipole trap, at least
with lifetimes in the trap of the order of magnitude of seconds.
A crucial point is, however, the intensity of the laser field,
as the potential depth and temperature are proportional to the
intensity, whereas the lifetime stays invariant.

C. Trapping OH by microwaves

Another possibility for trapping OH molecules might
be to utilize the �-doubling microwave transition at about
1660 MHz (cf. Fig. 2). The small energy separation will in
this case lead to a very small scattering rate, which, combined
with a very small recoil energy [cf. Eqs. (31) and (32)], will
lead to a virtually infinite lifetime in the trap. Fortunately, the
microwave transition is quite strong, enabling considerable
potential depths at modest microwave intensities. The perma-
nent dipole moment, including the nuclear contribution, was
computed to be 〈X2�,ν = 0|d0|X2�,ν = 0〉 = 0.707 a.u. It
should here be noticed that the permanent dipole moment of
a polar molecule does not lead to any direct or first-order
contribution to the trapping force. Its contribution vanishes
due to the time averaging in the rapidly oscillating external
field. Thus, the dipole potential is given by Eqs. (7) and (9)
also for polar molecules. The rate for spontaneous emission

TABLE IV. Computed potential depths and scattering strengths related to the �-doubling microwave transitions in OH (cf. text). The
detuning is −5 MHz, and the microwave intensity is set to 1 W cm−2. The results given are for µ = 0 (linear polarization).

Transition Re(α) (a.u.) Im(α) (a.u.) Udip (MHz) �sc (s−1) T (K) τ (s)

F = 1 → F ′ = 1 3.40 × 108 5.25 × 10−10 15.6 2.9 × 10−10 1.5 × 10−3 ∞
F = 1 → F ′ = 2 1.35 × 108 2.10 × 10−10 6.2 1.2 × 10−10 0.58 × 10−3 ∞
F = 2 → F ′ = 1 8.10 × 107 1.25 × 10−10 3.7 7.3 × 10−10 0.36 × 10−3 ∞
F = 2 → F ′ = 2 3.94 × 108 6.05 × 10−10 18.1 3.5 × 10−10 1.7 × 10−3 ∞
2,2 → 2,2 8.45 × 108 1.32 × 10−9 39.2 7.7 × 10−10 3.8 × 10−3 ∞
1,1 → 1,1 4.86 × 108 7.50 × 10−10 22.2 4.4 × 10−10 2.2 × 10−3 ∞
1,1 → 2,1 1.78 × 108 2.74 × 10−10 8.2 1.6 × 10−10 0.78 × 10−3 ∞
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FIG. 3. (Color online) The real part of the polarizability α0 [cf.
Eq. (7)] for detunings in the range −5 to 5 MHz. The curves
correspond to the transitions listed in the lowest three lines of
Table IV. (a) Transition 1,1 → 2,1; (b) Transition 1,1 → 1,1; and
(c) transition 2,2 → 2,2.

from the upper �-doublet level is easily obtained as there is
just one transition to include. As in the previous examples it
will be independent of the hyperfine and Zeeman quantum
numbers F and MF of the upper state, and the common value
for all the relevant microwave transitions is calculated to be
�k = 2.33 × 10−27 a.u. = 9.63 × 10−11 s−1.

Real and imaginary parts of the complex polarizability were
calculated from Eq. (7), with the energy difference |En − Ek|
set to the relevant resonance energies as given in Fig. 2.
Table IV shows the results for various transitions for a detuning
of −5 MHz. The upper four rows of the table are for mixed
initial states of the form |�n〉 = 1√

2F+1

∑F
MF =−F |FMF 〉,

where F refers to the lower and F ′ to the upper level of
the � doublet. The lower three entries represent examples
of transitions between separate hyperfine and Zeeman states,
denoted by F, MF → F ′,M ′

F . Results are given only for linear
polarization of the external field, i.e., µ = 0. Inclusion of
circular polarization (µ = ±1) would add similar, although
different, potential depths and scattering rates to the results
presented in Table IV.

From the results of Table IV we see that a microwave
intensity of 1 W cm−2 and a negative detuning of −5 MHz
leads to considerable potential depths of up to 40 MHz
and upper bounds for the trapping temperature in the range
4 × 10−4 to 4 × 10−3 K. The scattering rate �sc is in all cases

insignificant, with infinite lifetimes in the trap. As the lifetime
poses no problem, deeper potentials and higher temperatures
might be obtained with smaller detuning or higher microwave
intensity. Thus, microwave trapping should hold a realistic
potential for accommodating OH molecules precooled by
Stark deceleration. The real parts of the polarizabilities α−µ

for µ = 0 are shown in Fig. 3 as a function of the detuning.
For absolute detunings lower than 2 MHz there is a steep rise
in the polarizabilities, and small microwave intensities will
yield large potential depths. A recent successful experiment
on microwave lensing of NH3 molecules [27] might represent
the first important step toward microwave trapping of polar
molecules.

IV. CONCLUDING REMARKS

We have made a detailed study of the dipole force on a
rotating diatomic molecule from an external polarized electro-
magnetic wave field. Our approach is based on the calculation
of complex polarizabilities for individual molecular states,
with specification of hyperfine as well as Zeeman quantum
numbers (F and MF ). First we investigate the prospects for
optical trapping of diatomic molecules by means of laser light.
Our examples are the electronic, vibrational, and rotational
ground states of 23Na2 and OH. Disregarding the small nuclear
spin-spin interaction, there is no degeneracy in the ground state
of Na2 and consequently no individual state dependencies of
the dipole force. Table II presents results for a laser intensity
of 103 W cm−2 and (red) detunings in the range −500 to
−1500 GHz. With this choice of parameters attractive dipole
potentials with depths in the range 0.1 to 1 MHz are obtained.
The upper bounds for the trapping temperatures are of order
of magnitude 10−5 to 10−4 K, and trapping times are around
0.1 s.

OH with its degenerate ground state offers several interest-
ing opportunities. Computed results for the various hyperfine
and Zeeman states are listed in Table III. With a (red) detuning
of −100 GHz and a laser intensity of 105 W cm−2, we
find dipole trap depths in the range 0.3–2 MHz, trapping
temperatures in the range 3 × 10−5 to 2 × 10−4 K, and a
trapping time around 0.3 s.

The possibility of microwave trapping of OH tends to
offer the most promising prospects (cf. Table IV). In this
case the lifetime in the trap is infinite, and there seems to
be choices of detuning and microwave intensities that lead
to very deep trapping potentials, and trapping temperatures
high enough to hold OH molecules precooled, e.g., by Stark
deceleration. The fact that the trapping potentials are rather
strongly dependent on the specific hyperfine or Zeeman state,
might offer opportunities for interesting manipulations of the
molecules in the trap. One such opportunity could be to utilize
OH molecules in a microwave trap as future molecular qubits.

[1] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, Adv. At.
Mol. Opt. Phys. 42, 95 (2000).

[2] I. Bloch and M. Greiner, Adv. At. Mol. Opt. Phys. 52, 1 (2005).
[3] S. Kotochigova and E. Tiesinga, Phys. Rev. A 73, 041405(R)

(2006).

[4] D. DeMille, D. R. Glenn, and J. Petricka, Eur. Phys. J. D 31, 375
(2004).

[5] L. D. Carr and Jun Ye, New J. Phys. 11, 055009
(May 2009).

[6] C. Lee and E. A. Ostrovskaya, Phys. Rev. A 72, 062321 (2005).

033407-7

http://dx.doi.org/full_text
http://dx.doi.org/full_text
http://dx.doi.org/10.1103/PhysRevA.73.041405
http://dx.doi.org/10.1103/PhysRevA.73.041405
http://dx.doi.org/10.1140/epjd/e2004-00163-6
http://dx.doi.org/10.1140/epjd/e2004-00163-6
http://dx.doi.org/10.1088/1367-2630/11/5/055009
http://dx.doi.org/10.1088/1367-2630/11/5/055009
http://dx.doi.org/10.1103/PhysRevA.72.062321


MARIUS LYSEBO AND LEIF VESETH PHYSICAL REVIEW A 83, 033407 (2011)

[7] B. L. Lev, E. R. Meyer, E. R. Hudson, B. C. Sawyer, J. L. Bohn,
and Jun Ye, Phys. Rev. A 74, 061402(R) (2006).

[8] B. H. Brandsen and C. J. Joachain, Physics of Atoms and
Molecules, 2nd ed. (Prentice Hall, London, 2003).

[9] C. J. Foot, Atomic Physics (Oxford University Press, Oxford,
2005).

[10] L. Veseth, Phys. Rev. A 44, 358 (1991).
[11] G. Herzberg, Spectra of Diatomic Molecules, 2nd ed. (D. Van

Nostrand, New York, 1965).
[12] D. M. Brink and G. R. Satchler, Angular Momentum, 3rd ed.

(Clarendon Press, Oxford, 1993).
[13] A. R. Edmonds, Angular Momentum in Quantum Mechanics

(Princeton University Press, Princeton, NJ, 1960).
[14] J. T. Hougen, N.B.S. Monogr. 115 (1970).
[15] R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, and D. L.

Albritton, J. Mol. Spectr. 46, 37 (1973).
[16] J. M. Brown and B. J. Howard, Mol. Phys. 31, 1517 (1976).
[17] M. Larsson, Physica Scripta 23, 835 (1981).
[18] L. Veseth, Institute of Physics Report Series, 86-05 (University

of Oslo, Oslo, 1986).

[19] W. J. Stevens and M. M. Hessel, J. Chem. Phys. 66, 1477 (1977).
[20] J. G. Danzl, M. J. Mark, E. Haller, M. Gustavsson, R. Hart,

J. Aldegunde, J. M. Hutson, and H. C. Nägerl, Nat. Phys. 6, 265
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