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Photoionization dynamics and angular squeezing phenomenon in intense
long-wavelength laser fields
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We develop a coherent-state Ehrenfest trajectory (CSET) approach for the nonperturbative study of full
electronic and nuclear dynamics of molecules interacting with intense laser fields. In this approach, electrons
and nuclei are characterized by CSETs, dynamic processes are identified by the properties of the CSETs, and
the transition probability of a process is calculated from the number of CSETs in this process. We apply this
approach to simulate the full dynamics of H, in intense linearly polarized laser fields. In the tunneling regime, the
photoelectron energy spectra show a pronounced low-energy structure (LES) and the predicted scaling law of the
LES with respect to the Keldysh parameter is in very good agreement with that observed in the latest experiments.
Moreover, the photoelectron angular distribution is found to be squeezed along the laser field direction with the

increase of laser wavelength and/or intensity.
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I. INTRODUCTION

Recent experiments [1,2] show that in the tunneling ioniza-
tion regime when Keldysh parameter y = /1p/2Up < 1 the
photoelectron energy spectra (PESa) of atoms and molecules
in long-wavelength intense laser fields display some new
features in the low-energy region that cannot be explained by
the existing tunneling-ionization models such as the Keldysh-
Faisal-Reiss model [3-5], where Ip is the field-free ionization
potential and Up = ezsg /4m? is the ponderomotive energy
(here, g9 and w are the amplitude and angular frequency of
the laser field, and e and m are the charge and mass of the
electron, respectively). These features include [1]: (a) The
PESa have an unexpected pronounced low-energy structure
(LES) that can extend up to quite high energy when y < 1;
(b) the width of the LES increases with the decrease of y in
the light of scaling law y ~(78+0:D; and (c) the LES and the
scaling law are universal. Although qualitative exploration to
the first feature has been made for the noble gas atoms using
the semiclassical method [2] the quantitative investigation to
these features is still unavailable. Moreover, the new features
are achieved primarily from the experimental results of atoms.
Thus it is essential to examine these features for molecules so
as to explore their universality. One of the goals of this work
is to quantitatively investigate these features for molecules
through the photoionization of H; in intense long-wavelength
laser fields.

For molecules in long-wavelength laser fields, nuclear
relaxation becomes significant and dynamics study involves
twelve-dimensional (12D) calculation even for the simplest
H, molecule if nuclear motions are taken into account.
However, within the current capability of supercomputers the
conventional fully ab initio methods based on the solution
of the time-dependent Schrodinger equation (TDSE) are only
limited to six-dimensional (6D) systems. Accurate ab initio
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calculations, such as high harmonic generation [6] and double
photoionization [7-9], etc., for two-electron quantum systems
have been accomplished only recently. Direct solution of
TDSE for the systems beyond 6D remains a major compu-
tational challenge at the current time. Thus it is desirable to
develop new theoretical and computational methodologies to
explore the full electronic and nuclear dynamics of molecules
in intense laser fields.

The computational challenge mainly comes from the fact
that the total number of basis functions (grid points) A in the
conventional TDSE methods typically increases exponentially
with the dimension of system M as A ~ KM where K is the
number of basis functions (grid points) for each dimension. In
principle, this obstacle can be conquered simply by decreasing
M. One kind of method to reduce A is to decrease K by using
optimized basis functions [10]. One typical example of this
method is multiconfiguration time-dependent Hartree method
that uses time-dependent single-particle functions as the basis
set [11,12]. This kind of method can indeed reduce A but
it is still suffering from the exponentially scaling difficulty
[13]. This difficulty becomes more aggravated for the electron
dynamics in intense laser fields because the large amplitude
of electronic motion makes it impossible to use small /C [14].
Another kind of method to reduce N is to change the relation
between N and M by developing novel approaches. One such
approach is the coupled coherent state (CCS) method that
makes use of time-dependent coherent states (CSs) as the basis
set [10,15-17]. In the CCS method, N is greatly reduced
because it scales up quadratically with M as A" ~ M?. The
CCS method has been successfully applied to a number of
multidimensional calculations [10,14-18].

In this work, we develop a more feasible coherent-state
Ehrenfest trajectory (CSET) approach for the study of full
dynamics of molecules in intense laser fields based on the
coherent-state trajectories [17] that are determined by coupled
Ehrenfest equations. In this approach, the electrons and nuclei
in real space are mapped to the phase space. Instead of
wave functions the electrons and nuclei are characterized
by a group of quantum trajectories—CSETs in phase space.
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The dynamic processes are identified by the properties of
the CSETs and the transition probability of a process is
calculated from the number of CSETs in this process. The
computational cost of this approach is linearly proportional
to M and thus it can be applied to large molecules. As an
application, the approach is used to simulate the full dynamics
of Hy in laser fields and study energy-angular distribution
of photoelectrons through second-order differential ionization
probability (SDIP). Particularly, the wavelength and intensity
dependence of the PESa of H, in long-wavelength intense
laser fields are investigated to examine the universality of the
LES and the scaling law of the LES observed for atoms in
the recent experiments. The wavelength and intensity de-
pendence of photoelectron angular distribution (PAD) of H,
in laser fields are also explored in order to have a further
insight into the tunneling photoionization. We find that the
PAD is squeezed with the increase of laser wavelength and/or
intensity, and thus the photoelectrons focus on the direction
of the laser field at long-wavelength and/or high-intensity
limits.

II. THEORETICAL METHODOLOGY
A. Coherent-state Ehrenfest trajectory

For a generic system with N, particles, the time-dependent
wave function | W (#)) can be expanded in time-dependent basis
states (TDBSs) {|v,(¢))|n = 1,2, ...} as

N,
(WD) =) ca®)Yn(0)), (D

n=1

where N, is the total number of TDBSs and c,(¢) is the
expansion coefficient. The TDBSs can be constructed by
any kind of basis functions, such as time-dependent single-
particle wave functions [11,12] and time-dependent Gaussian
functions [15,16], etc. In this work, we construct |, (7))
in terms of N, three-dimensional (3D) CSs {|x.(j)).j =
12,...,Np} as [¥,(0)) = [ xn(D) | Xn(2)) - - - | xn(Np)), as in
the CCS method [14-18]. In coordinate space, the 3D CS
of the jth particle in the nth TDBS, (x|x,(j)), is given
by [14,18]

1 1

(X|xa(J)) = ———77 exp [ - —(x—q;)’
(271612,1) / 405,

i i

+hpjn'(x_an)+Epjn'an:|v (2)

where q;, and p;, are the position and momentum of the
CS wave packet, 0j, = \/h/2m;w;, is the width of the
wave packet, m; is the mass of the particle, and @, is
the frequency parameter. In principle, @, can be used to
adjust the width and optimize the quality of the CS during
the propagation. However, frozen wave packets with fixed
widths are more robust in numerical calculation [13,17].
Therefore in our calculations we employ the frozen CSs
and take wj;, =1 [15,16]. The CSs are normalized but
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nonorthogonal. The overlap integral of any two 3D CSs is
given by

Sun' () = (DX ()

Zi,>  |ziw|?
:eXp (Zjn 'Zjn’ - % — | 12| )1 (3)

where z;, = qj,/20, +icj,pjn/h. Obviously, s,,(j) =1
when z;, = z,» and s, (j) is very small when z,, is far from
Zjw- The identity operator of the CS is given by

1

IT=—
(2nh)?

/ X0 (D) n (1P jnd Q- “4)

In phase space, the CS is localized and centered at the
point (q;,P;»), and thus its position can be represented by
Zjn = {qjn,Pn}. Evolution of z;, is governed by a group
of generalized Ehrenfest equations as shown below and
constitutes a trajectory which we call CSET. Since the CS
is uniquely determined by its CSET, the TDBS is uniquely
characterized by a CSET vector of the N, particles Z, =
(Zin,Z2p, - - ,ZNFH)T and the system by an ensemble of N,
CSET vectors {Z;,Z,, . ..,Zy,}. In the ensemble, the CSETs
in different TDBSs are completely different from each other.
With the help of Eq. (3), when the dimension of the system
N4y =3N, — oo, the overlap integral of any two TDBSs

S = ]_[;VL san(J) satisfies

Snn’ = 8nn’ . (5)

Thus the TDBSs constructed in terms of CSs are orthonor-
malized for the system with an infinite number of particles.
For a system with a large number of particles, Eq. (5) offers
a condition for the most probable event of the system. For
molecular systems, Ny > 12 (N; = 12 for the simplest H,)
and the most probable probability obtained by using this
condition provides a good description of the processes of the
systems as shown below.

B. Ehrenfest equation for the coherent-state
Ehrenfest trajectories

In general, both c¢,(¢) and Z,(¢) are time dependent and
coupled together during the propagation. The general form
of coupled equations can be derived using the quantum
time-dependent variational principle. These equations are very
difficult to solve for the system with many particles [17]. A
more feasible method is to optimize one of c,(¢) and Z,(¢)
using the variational principle after the other is reasonably
chosen prior. One option is to choose Z,(¢) from the Hamilton
canonical equation and optimize c,(¢). This will give the
equations of the CCS method [16,17]. Another alternative
option is to choose ¢,(¢) and apply the variational principle to
Z,(t). For the system described by the wave function of Eq. (1)
and the TDBSs constructed in terms of CSs, the Lagrangian is
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given by

ih

L0
L= (W@l — HOWO) = { >

m,n

Zjn : Zm ZIn : Zm >j|

-z -z, -7,
(m ( )+ 2 2

where H(t) is the Hamiltonian of the system, ¢, = dc¢,/dt,
7, = dZ,/dt, the asterisk and dagger represent the complex
conjuga}te and complex conjugate transpose, respectively, and
Hya(Z),,Z,) is the ordered Hamiltonian. The ordered Hamilto-
nian is introduced in the calculation of the Hamiltonian matrix
element (¥, | H |y, = Hord(ZL,ZH)Smn. For the systems with
simple potentials, the ordered Hamiltonian can be calculated
by using the ordered operator method [15,16]. For the systems
with complicated potentials, such as the Coulomb potential,
the ordered Hamiltonian has to be calculated by the direct
integral method [14,18]. Obviously, (H), = (Y, |H|Y,) =
Hord (lel s Zn)-

To derive the motion equation for the CSETs, the expansion
coefficient c,(¢) is rewritten as [17]

Cn(t) =M eXP[iAn(f)], (7)

where 1, is a time-independent parameter and A,(¢) is the
“classical” action given by

"Tin . .
An(t) = / [%(Zi : Zn - Zjl : Zn) - (H)ni| dr'. (8)
0
From the quantum variational principle [17], the Lagrange

equations of motion for the Lagrangian £ is given by

oL d oL
— — ——— =0. )
Az, Atz
Substituting Eq. (7) into Eq. (6) and applying Eq. (6) to Eq. (9),
one obtains a group of generalized Ehrenfest equations for the
most probable CSETs:

dZ, i d(H),

= 10

dt h 0Z: (19)

Since (H), = Ord(Z,T,,Z,,) retains quantum effects, such as
electron dynamic exchange, etc., the CSETs are quantum

trajectories.

The equations given above offer a procedure for the study of
dynamic processes of a system with a large number of particles.
This procedure is very similar to that proposed in Ref. [17].
However, this procedure strongly depends on the initial wave
function of the system since the electrons and nuclei are
described by the wave functions. For the systems with a large
number of particles such as polyatomic molecules, it is difficult
to accurately calculate the initial states and propagate the wave
functions. In the following we propose an alternative but more

[k én — ¢ cnlSmn + %[((Z,'n —Z) -7, +

CpCn
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2 2

Spn — € Cn Sn Hord<ZI,,,Zn>}, (6)

feasible method. In this method, instead of the wave functions,
the electrons and nuclei are characterized by the CSETs in the
phase space. The dynamic processes related to the electrons
and nuclei are identified by the properties of the CSETs and
the transition probability of a dynamic process is computed
from the number of CSETS in this process.

C. Husimi distribution and transition probability
of a dynamic process

For the N ,-particle system described by the wave function
|\W (1)), the Husimi distribution in the phase space spanned by
the CSs {|x,(j)),j = 1,2, ...,N,} is defined by [19,20]

P (Zn) = [(Xn(Np) - - a D xa(DIW (@) . (1)

It represents the probability density in the phase space
for the N, particles to occupy N, volumes of magnitude
(2mh)3 at the trajectories Z,. From Egs. (1), (5), and (11),
for the system with a very large number of particles, the
population probability density on the nth TDBS can be
computed by

2

N;
Z Snn/cn’(t)

n'=1

lea(t))? = = pu(Zy). (12)

It indicates that the population probability density on the nth
TDBS is equal to the probability density of the N, particles at
the trajectories Z,, in the phase space. Furthermore, in the nth
TDBS, the expectation values of position (X ), and momentum
(Px;)n of the jth particle are equal to q ;, and p;,, respectively.
Thus a particle in the real space can be represented uniquely by
a CSET in the phase space. Based on these correspondences,
we propose to calculate the transition probability of a dynamic
process by the percentage of the CSETs in this process.
For example, the ionization probability of the nth TDBS is
proportional to the number of electrons whose |q;,|’s are
greater than the presupposed critical distance of ionization in
this TDBS. The total ionization probability is the weighted sum
of the ionization probability by |c,(¢)|> over all the TDBSs.
Note that the population probability |c,(t)|> = |1,|* is time
independent for the proposed method from Eq. (7). However,
each TDBS can contain various processes simultaneously
depending on the properties of Z,,. During the evolution of the
system, the trajectories Z, in a TDBS vary with time and thus
the dynamic processes also change with time in this TDBS. For
instance, a bound-state electron at this moment may become a
photoelectron at the next moment.
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Conventionally, the initial state of the system is used
to determine the coefficient 5, ; the TDBSs are constructed
first and then the value of 7, is optimized to reproduce
the initial state. However, from Eq. (1), the initial state
can also be reproduced by adjusting the TDBSs after the
distribution of 5, is given. Although the choice of 7, is
flexible to some extent, a suitable choice with reasonably
physical consideration will make the calculation simple and
more accurate. To determine 7, and initial CSETs, we make
use of the initial state probability distribution and initial state
energy of the system. More specifically, we first generate
a set of CSETs and CSs using the Monte Carlo sampling
technique together with the initial state probability distribution
(using Gaussian distribution as an approximate initial state
probability distribution for the complicated system whose
initial state cannot be exactly known), then we construct the
TDBSs and calculate the expectation value ( H ), using the CSs,
and finally we pick up the CSETs by which the expectation
value (H), is equal to or close to the energy of the initial state
as the initial CSETs. Based on the correspondence principle, in
the limit of a large number of particles, the states of the system
with the same energy have the same population probability.
The values of |5,|? for different TDBSs with similar energies
are close to each other in the system with a large number
of particles. In the proposed approach, the values of |1, |?
are supposed to be the same for all the TDBSs. The basic
equation of motion of the approach is the generalized Ehrenfest
equations given by Eq. (10) for the CSETs. Once the initial
CSETs are given, the CSETs at any time are obtained by
solving Eq. (10). The dynamic processes can be identified by
the properties of the CSETs and the transition probability of a
process can be computed by the number of the CSETS in this
process.

III. RESULTS AND DISCUSSION

A. Dynamic processes of H, in laser fields

The proposed approach is applied to the study of full
dynamics of H; in laser fields for the case that the internuclear
axis is parallel to the laser fields. In the laser field, if nuclear
motions are taken into account, the Hamiltonian of H, is
given by

H(r,r;R,Ry; 1)

2 2 2 2
Pu

PZ &2 e
J
= 2m;  |r; — 1| ; 2M, IR} —Ry|
2 2 2 2
=22 gt | LR 2w )
j=1 pu=1 J H n=1 j=1

13)

where e is the electronic charge, &(¢) is the laser field, m;
(M), r; (Ry), and p; (P,) are the mass, position, and
momentum of the jth electron (the uth nucleus), respectively.
To acquire (H),, we calculate the expectation values of kinetic
energies and interaction energies with laser fields using the
ordered operator method [15,16] and the expectation values
of Coulombic potentials employing the direct integral method
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[14,18]. The CSETs of electrons and nuclei are computed by
solving Eq. (10) with the fourth-order Runge-Kutta scheme.
The dynamic properties of each electron or nucleus, such as the
position, energy, and motion direction, etc., can be extracted
from the CSETs.

The dynamic processes of H, in intense laser fields, which
include electronic and nuclear excitation, single-electron
ionization, double-electron ionization, dissociation, disso-
ciative electron ionization, dissociative electron attachment,
and double-electron ionization Coulomb explosion, can be
identified from relative positions of electrons and nuclei by
the following conditions. Assume r; andRp are the critical
distances of electron ionization and nuclear dissociation,
respectively. If the internuclear distance is less than Rp, then
the process is the electronic and nuclear excitation when the
distances of the two electrons to at least one of the nuclei are
less than r;, the single-electron ionization when the distances
of one and only one electron to both nuclei are larger than ry,
and the double-electron ionization when the distances of
the two electrons to both nuclei are larger than r;. If the
internuclear distance is larger than Rp, then the process is
the dissociation when the distances of the first electron to one
nucleus and the second electron to another nucleus are less
than r;, the dissociative electron ionization when the distances
of one electron to both the nuclei are larger than r; and the
distance of another electron to one of the nuclei is less than r;,
the dissociative electron attachment when the distances of the
two electrons to one nucleus are less than r;, and the double-
electron ionization Coulomb explosion when the distances of
the two electrons to any of the two nuclei are larger than ;. To
avoid overlap and overslaugh of the dynamic processes we take
Rp = 2r;. To justify the conditions proposed above, we also
perform calculations employing energy criteria. It is shown
that when Rpand r; are sufficiently large the results obtained
from the above conditions are insensible to the values of R
as well as r; and are in fairly good agreement with those
from the energy criteria, demonstrating that the conditions are
reasonable.

The transition probability of one process can be calculated
from the number of CSETs in this process. For example, for
the single-electron ionization, the SDIP d*P(E ,0,0)/dEdS2,
where d2 = sinfd6d¢, can be estimated from the number
of photoelectrons within the solid angle A2 on the direction
of (0,¢) and energy interval AE at the energy E at the end
of the laser pulse. For axially symmetric systems, d2(6) =
27 sin 8d6, which only depends on 6.

To obtain converged results, we employ up to 500000
trajectories for every electron and nucleus in the calculation.
To determine the initial electron trajectories, we first randomly
generate a group of trial trajectories Z, and CSs using the
Monte Carlo sampling technique with a Gaussian distribution,
then calculate the expectation values (H), = Om1(ZJL1,ZH)
using these trajectories, and finally pick up the trajectories Z,
whose expectation values (H), are close to those of lower
bound states as the initial electron CSETs [14]. Since the
mass of nucleus is much larger than the electron’s (about 1840
times the electron’s), we assume that initially the nuclei are
symmetrically located on the z axis with equilibrium distance
and the momentum of each nucleus being zero. The laser fields
are depicted by e(t) = &¢ f(¢) sin(wt + «), where &g, w, o, and
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FIG. 1. (Color online) Evolution of transition probabilities of
dynamic processes for H, in the laser fields with I, = 500 TW cm™2
but A = 800 nm (a) and A = 2000 nm (b).

f(¢) are the amplitude, angular frequency, phase, and envelope
shape factor of the laser fields, respectively. In the calculations
given below, sine square pulses with duration of 15 optical
cycles are used for intense laser fields and ramp-up-constant
pulses for the calculation of photoionization cross sections in
weak laser fields. In the calculation, all the dynamic processes
are included and the critical distances used for the ionization
and dissociative processes are r; = 20 a.u. and Rp = 40 a.u.

In Fig. 1 we show evolution of transition probabilities
of dynamic processes for H, in intense laser fields with
intensity Iy = 500 TW cm™ but different wavelength A.
In the case of shorter wavelength with A = 800 nm (also
shorter laser duration) in Fig. 1(a), only single ionization and
double ionization are induced. However, in the case of longer
wavelength with A = 2000 nm (also longer laser duration)
in Fig. 1(b), the dissociation, dissociative ionization, and
double-ionization Coulomb explosion also take place apart
from the single ionization and double ionization. Because
the nucleus is much heavier than the electron, the dynamic
processes related to the nucleus always come out later than
those related to the electron. In both cases, the dominant
and secondarily dominant processes are the single ionization
and double ionization apart from the (survival) excitation.
The probability of the double ionization is less than that of
the single ionization by at least one order of magnitude. The
probabilities for all the other processes, such as dissociation
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and dissociative ionization, etc., are even smaller than the
double-ionization probability. Thus we will focus our study
on the single-ionization process in this work.

B. Photoionization cross sections of H,

For justification, the proposed approach is applied to the
calculation of photoionization cross sections of H, in weak
laser fields. The laser pulses are ramped up linearly over
5 optical cycles and then kept constant thereafter. In the laser
field that is not very strong, the norm of the wave function
of bound states decreases exponentially as exp(—R?) during
the constant amplitude of the laser, where R is the ionization
rate [21]. The ionization probability increases with time as
1 — exp(—R¢) if the ionization is dominant. In the weak field
limit, the ionization probability increases linearly with time as
Rt. From the evolution of the ionization probability obtained,
the ionization rate R is estimated and the photoionization cross
sections ¢ are computed by

o(w) = ——. (14)

In the laser fields that are not very strong, the ionization
rate R ~ Iév ', where N, is the minimum number of photons to
ionize H,. For the case considered here, the photon energy w
is greater than the ionization energy of H, and N; = 1. The
cross sections are independent of the laser field strength and
polarization direction, and thus the orientation of H; in the laser
fields. In Fig. 2, we plot the calculated photoionization cross
sections of H; in the case where the laser fields are polarized
along the internuclear axis together with the experimental
data [22-24] and other theoretical results [25,26]. Since the
ionization rate is estimated from the time evolution of the
ionization probability the laser fields used in the calculation
should not be very weak [21], depending on the laser

14

—_
n
1

—_
o
|

Photoionization cross sections (Mb)
(o)}
1

T T T T T
0.5 0.6 0.7 0.8
Photon energy (a.u.)

0.9 1.0

FIG. 2. (Color online) Photoionization cross section of H, in
weak laser fields. The solid line, the dashed line [25], and the
dash-dotted line [26] are the theoretical results of the proposed
approach in this work, the quantum-defect method, and the explicit
Hilbert-space techniques, respectively, and the open circles [24], open
triangles [23], and open diamonds [22] are the experimental data.
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FIG. 3. (Color online) Energy-angular distribution of the nor-
malized SDIP of H, in the laser field with A =660 nm and
Iy = 150 TW cm™2.

frequency. In our calculation the laser intensities range from
1 x 10" to 5 x 10'> W/cm?. It is shown that our calculated
results are close to the theoretical results of the quantum-defect
method [25] in the given energy range but smaller than
those of explicit Hilbert-space techniques [26] in the high-
energy region. Our results are also in good agreement with
the experimental results [22-24].This demonstrates that the
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proposed approach can be used to describe the photoionization
process of H, in the laser fields.

C. Energy-angular distribution of photoelectrons

To investigate the energy-angular distribution of photoelec-
trons, the proposed approach is applied to calculate the SDIP
of H; in intense laser fields. For the sine square laser pulse with
Iy = 150 TW cm 2 and A = 660 nm, the normalized SDIP on
a plane through the internuclear axis is shown in Fig. 3 in the
polar coordinates (E,6), where E is the photoelectron energy
and 6 is the angle of the photoelectron momentum with respect
to the laser field. Due to cylindrical symmetry, the SDIP on
the half plane of 180° < 6 < 360° is the mirror of that on
the half plane of 0° < 6 < 180°. The distribution of SDIP is
a dumbbell shape with distinct boundaries on both E and 6
directions.

To see the details of the photoelectron distribution, we
plot the PESa on different directions in Figs. 4(a)—4(d). For
the laser field used in this calculation, y = 1.124 and the
main contribution to the photoionization comes from the
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FIG. 4. (Color online) Photoelectron distribution of H, in the laser field with A = 660 nm and I, = 150 TW cm™2. (a)—(d) PESa on different

angular direction, and (e)—(h) PADs for different photoelectron energy.
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FIG. 5. (Color online) Normalized energy-averaged SDIPs on the direction of & = 6° for H, in various laser fields: (a)—(d) for the laser
fields with I, = 150 TW cm™2 but different X; (e)—(h) for the laser fields with A = 2000 nm but different I,; and (i)—(1) for the laser fields with

different A and I, but the same y = 0.371.

multiphoton above-threshold ionization (ATI) although the
tunneling also contributes [27]. The PESa display the typical

70 -
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40
% ]
~ 30_
z
W o
1 O
10 - ©
0 T T T T T 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7
v

FIG. 6. (Color online) Ey versus y. The open circles are the
numerical results and the solid line is the fitting result to y = with
o~ 1.77.

ATI characters: fast decay, plateau, and cutoff. But the details
of the PESa, for example, peak, and cutoff positions change
with 6. On the direction of small 6, such as 8 = 0, the PESa
have distinct peaks that are well separated by an approximately
equal (photon) energy. On the direction with large 6, the peaks
become blurred. The PESa extend beyond the classical cutoff
2U, = 12.20 eV when 6 < 50°, spread up to the classical
cutoff when 50° < 6 < 70°, and end before the classical cutoff
when 70° < 6 < 90°.

In Figs. 4(e)-4(h), we show the PADs in different photo-
electron energy regions. The PADs have peak structures over
the angles and the peak structures change with the energy.
Overall, the PADs decrease with 6 when 6 < 90°, increase
with & when 6 > 90°, arrive at the maximum at 6 = 0 and
180°, and the minimum occurs at # = 90°. In the regions of
low and intermediate (plateau) energies, the photoelectrons
distribute over all the angles, while in the regions of classical
cutoff energy and beyond, the photoelectrons mainly distribute
in small solid angles along the laser field. This conclusion is in
good agreement with that predicted for hydrogen atom [28].

Figures 3 and 4(e)—4(h) show that the PADs have a “cutoff”
angle just as the PESa have cutoff energy. The “cutoff” angle
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FIG. 7. (Color online) Color contour plots of the normalized SDIPs, log,,(3%P /3 Ed), in the polar coordinates (E,6) for H; in the laser
fields with 7, = 150 TW cm~2 but different A. (a) For A = 660 nm and radial scale of 25 eV, (b) for A = 800 nm and radial scale of 30 eV,
(c) for & = 1500 nm and radial scale of 70 eV, and (d) for A = 2000 nm and radial scale of 120 eV. The dashed lines correspond to the maximum

first “cutoft” angles.

is defined by an obvious change of the overall slope of PADs.
The “cutoff” angles depend on photoelectron energy. For each
energy, there are two “cutoff” angles 6; < 90° and 6, > 90°,
which we call the first and second “cutoff” angles, respectively.
In the range of ; < 6 < 6,, the PADs are much smaller than
those in the other range. The larger the energy, the smaller
the “cutoff” angle. The maximum “cutoff” angles of the

PADs in Fig. 3 are ¢, ~ 28° and o =~ 152°, as shown in
Figs. 4(e)—4(h), where the PADs in different photoelectron
energy regions—the low region (e), the plateau region (f), the
cutoff region (g), and the energy region beyond the cutoff
(h)—are displayed in detail. Because of the cutoff energy
in PESa and the “cutoff” angle in PADs, the photoelectrons
distribute within a dumbbell.
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FIG. 8. (Color online) The maximum first “cutoff” angles v
for different laser fields: (a) sin(¢%;) versus A for the laser fields of
Iy = 150 TW cm~2 and (b) sin(%;) versus I, for the laser fields of
A = 800 nm.

D. Scaling law for the PESa

To explore the LES features of PESa recently observed
[1,2], we study the PESa of H; in the laser fields with different
A and Iy. To make the PESa from both ATI and tunneling
regimes comparable, we calculate energy-averaged SDIPs on
the direction of & = 6°. The normalized SDIPs are shown in
Figs. 5(a)-5(1) for the laser fields with Iy = 150 TW cm~2 but
different A, with A = 2000 nm but different I, and with the
same y (=0.371) but different A and Iy, respectively. When
y 2 1, there is only one peak near the ionization threshold on
the PESa, as shown in Fig. 5(a). When y < 1, apart from the
peak close to the threshold, there is a wide hump on the PESa,
as shown in Figs. 5(b)-5(1), showing the LES [1,2].

To quantitatively study the LES, we introduce the width
of the hump Ey which is defined by a distinct change of the
slope of PESa [1]. For a given Iy, Ew increases with A and
extends to high energy at long A, as shown in Figs. 5(a)-5(d).
These features are in accord with those observed recently
for atoms [1,2]. For a given A, Eyw increases with I, as
shown in Figs. 5(e)-5(h). For a given y, the PESa have
very similar LES no matter what I, and A are, as shown in
Figs. 5(1)-5(1). Thus the LES can be well characterized by y.
In Fig. 6 we plot the calculated Ey versus y in open circles
for the laser fields with different A and Iy. To find out the
relation between Eyw and y, we fit the numerical results with
y~* and find that o &~ 1.77. This scaling relation is in very
good agreement with that obtained in the recent experiment
for atoms [1], demonstrating it is universal for atoms and
molecules.

E. Scaling law for the PADs

To investigate how the “cutoff” angles change with laser
fields, we calculate the SDIPs for the laser fields with
Iy = 150 TW cm~2 but different A. The results are plotted in
Figs. 7(a)-7(d) with color contours in the polar coordinates
(E,0). Also plotted in the figures are the dashed lines
corresponding to the maximum first “cutoff” angles ;. The
maximum first “cutoff” angles are about 28°, 20°, 8°, and 5°,

PHYSICAL REVIEW A 83, 033406 (2011)

respectively, for the SDIPs in Figs. 7(a)-7(d). Obviously, the
PADs change greatly with A. As A increases, ¢} decreases
quickly and thus the PADs are squeezed. In Fig. 8(a) we plot
sin(¥;) versus A in solid circles. We find that the relation
between %, and A can be well represented by sin(9;) ~ A3/2,
as shown in Fig. 8(a) in the solid line. Thus sin(¥ ) is inversely
proportional to A3 and the photoelectrons will focus on the
direction of the laser field in the case of the long-wavelength
limit.

In order to investigate the relation between ¥, and Iy, we
also calculate the SDIPs for the laser fields with A = 800 nm
but different y. In Fig. 8(b), we show sin(#;) versus I, with
the solid circles. We find that the relation between #; and I
can be well depicted by sin(;) ~ I(;l/z, as shown in Fig. 8(b)
in the solid line. Combining the results in Figs. 8(a) and 8(b),
the scaling law of ¥ with respect to A and I is given by

sin(d) oc A1 12, (15)

We have also checked this relation for the laser fields with
different A and I, but the same )»’3/21(; 172 The values of
sin(?1) do not change evidently in this case.

IV. CONCLUSIONS

In summary, we have developed a more feasible CSET
approach for the study of full dynamics of molecules interact-
ing with intense laser fields. In this approach, the system is
described by the coupled TDBSs of time-dependent CSs with
pre-established coupling coefficients. The initial TDBSs are
optimized by adjusting the positions and distribution density
of the CSs to reproduce the initial state (probability density
distribution) and energy of the system, and the TDBSs at
any time are constructed by the time-dependent CSs whose
positions are given by the CSETs—the CS trajectories deter-
mined by the coupled Ehrenfest equations. Through Husimi
distribution as well as correspondence of the particle’s position
and momentum to those of the CS wave packet, evolution of a
particle in real space is mapped to a CSET in phase space. The
dynamic processes are distinguished by the properties of the
CSETs and the transition probability of a process is calculated
by the number of CSETs in this process. Since the CSETs
are quantum trajectories, the proposed approach retains the
quantum effects. The computational cost of the approach is
linearly proportional to the dimension of the system and the
larger the dimension of the system, the more accurate the
approach will be.

We first computed the photoionization cross sections of
H; in the weak laser fields employing the proposed approach
together with the Monte Carlo sampling technique. The results
are in good agreement with the experimental data and other
theoretical results. We then applied the proposed approach to
explore the PESa of H; in the intense laser fields with different
A and Iy. The PESa show the typical characters of ATI spectra
when y > 1. When y < 1, the PESa display LES and the
LES extends to high energy with the increase of A and [y. In
particular, the scaling law of the LES with respect to y is in
very good agreement with that observed recently for atoms,
demonstrating the universality of the scaling law. We also
applied the proposed approach to investigate the PADs of H; in
the intense laser fields with different A and /. We find that just
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as the PESa have cutoff energy, the PADs have “cutoff” angle.
The maximum of the first “cutoff” angle decreases greatly with
A and Iy. Thus the PADs are squeezed as A and [j increase,
and the photoelectrons focus on the direction of the laser field
in the limit of long A or/and high Ij. Finally, since the TDBSs
tend to be orthogonal as the number of particles increases, the
proposed approach is expected to provide a more effective,
efficient, and accurate method for the systems with a large
number of particles, in particular, for the polyatomic molecules
in intense laser fields, where the existing quantum methods
cannot be reached.
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