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Theory of attosecond transient absorption spectroscopy of strong-field-generated ions
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Strong-field ionization generally produces ions in a superposition of ionic eigenstates. This superposition
is generally not fully coherent and must be described in terms of a density matrix. A recent experiment
[E. Goulielmakis et al., Nature (London) 466, 739 (2010)] employed attosecond transient absorption spectroscopy
to determine the density matrix of strong-field-generated Kr+ ions. The experimentally observed degree of
coherence of the strong-field-generated Kr+ ions is well reproduced by a recently developed multichannel
strong-field-ionization theory, but there is significant disagreement between experiment and theory with respect
to the degree of alignment of the Kr+ ions. In the present paper, the theory underlying attosecond transient
absorption spectroscopy of strong-field-generated ions is developed. The theory is formulated in such a way that
the nonperturbative nature of the strong-field-ionization process is systematically taken into account. The impact
of attosecond pulse propagation effects on the interpretation of experimental data is investigated both analytically
and numerically. It is shown that attosecond pulse propagation effects cannot explain why the experimentally
determined degree of alignment of strong-field-generated Kr+ ions is much smaller than predicted by existing
theory.
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I. INTRODUCTION

The interaction of matter with a light pulse sets electrons
in motion. The associated dynamics frequently occur on time
scales comparable to or smaller than a femtosecond. The time-
domain observation of such fast phenomena was impossible
until a few years ago, when the first pump-probe measure-
ments with attosecond extreme-ultraviolet (EUV) pulses were
demonstrated [1]. Since then, several types of attosecond
spectroscopy have been established or proposed theoretically
[2]. Most of these approaches employ an intense near-infrared
(NIR) laser pulse that either induces or probes dynamics
of interest. Combined with an EUV pulse, an attosecond
pump-probe measurement is performed by varying the delay
between the pulses and observing the results of their interaction
with a system under study. One of the most prominent
examples is attosecond streaking [3–5], where photoelectron
spectra are measured for a set of delays. Attosecond streaking
has proved to be a very powerful technique for measuring
electron dynamics triggered by an attosecond pulse [6], but
it is less suited to probing strong-field dynamics with an
EUV pulse. Historically, the first time-resolved measurements
of electron dynamics induced by a strong light field were
performed with the aid of attosecond tunneling spectroscopy
[7], where ions, rather than electrons, were measured for
different delays between the EUV and NIR pulses. Very
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recently, another promising technique—attosecond transient
absorption spectroscopy—has been established: by measuring
the transmission of an EUV pulse through a gas ionized by an
NIR pulse, the motion of ionic valence-shell electrons has been
observed with attosecond resolution [8].

The earliest implementation of transient absorption spec-
troscopy for the study of ultrafast dynamics involved detecting
the change in absorbance of a narrowband probe pulse as a
function of pump-probe time delay [9–12]. In experiments
that elucidate ultrafast molecular dynamics, tuning the cen-
tral wavelength of the probe pulse tracks the motion of
the nuclear wave packet into and out of different regions
of the excited-state potential energy surface. Advances in
laser-pump–synchrotron-probe techniques have allowed time-
resolved x-ray absorption spectra to be collected in this fashion
[13–19].

Mathies and Shank introduced a variant of transient absorp-
tion spectroscopy in which the photoexcitation of a sample by
an optical pump pulse is followed by probing with a spectrally
broadband, few-cycle visible pulse [20–23]. The probe pulse
that is transmitted through the sample is spectrally dispersed
by a spectrometer. In this method, the time resolution is mainly
determined by the duration of the pump and probe pulses, and it
is independent of the spectral resolution. Hence, compared to
earlier approaches that employed narrowband probe pulses,
spectrally resolved transient absorption spectroscopy with
broadband probe pulses offers the obvious advantages of high
time resolution and high spectral resolution. In the visible,
state-of-the-art experiments on samples of biological relevance
have been done with sub-5-fs pump and probe pulses [24].
This technique has also been applied to femtosecond studies
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of novel materials [25,26]. For an up-to-date summary of the
development of the optical transient absorption technique,
see Ref. [27]. Recently, femtosecond transient absorption
spectroscopy was extended to shorter probe wavelengths by
employing laser-produced bremsstrahlung x rays [28] and
EUV high-order harmonics [29–32], as well as femtosecond
synchrotron x rays [33].

Transient absorption spectroscopy provided direct evidence
for hole alignment in strong-field-generated atomic ions [15].
The ion alignment dynamics driven by electron-ion collisions
in a strong-field-generated plasma were studied in Ref. [34].
However, it was not clear at the time whether strong-field
ionization leads to the formation of a coherent superposition
of ionic eigenstates (in cases where not only the ionic ground
state is populated). In other words, it was not clear whether
strong-field-generated ions undergo any coherent intra-atomic
dynamics. Theory indicated that it is generally not possible
to describe strong-field-generated ions in terms of a perfectly
coherent wave packet; a description in terms of a density matrix
is required [35,36]. Using transient absorption spectroscopy
in combination with theory, the diagonal elements of the
density matrix of strong-field-generated atomic ions were
measured [16,29]. The diagonal elements of the density matrix
(represented in the ionic eigenbasis) are the populations of the
various ionic eigenstates, generated by a strong NIR field.
The measurement of the entire ion density matrix—including
the coherences, i.e., the off-diagonal elements of the ion
density matrix—was made possible by attosecond transient
absorption spectroscopy [8].

In the present paper, we develop a theoretical description
of attosecond transient absorption spectroscopy of strong-
field-generated ions. Our approach allows us to treat the
pump step, i.e., the interaction with a strong NIR field, in
a completely nonperturbative fashion. We assume throughout
that the attosecond EUV probe pulse has no temporal overlap
with the strong NIR pump pulse. In Sec. II, we derive the
basic expressions underlying the theory. The analysis of
the experiment of Ref. [8] becomes particularly transparent
if it is assumed that the attosecond probe pulse remains
sufficiently short as it propagates through the NIR-modified
target medium. This short-pulse approximation is discussed
in Sec. III. Numerical EUV pulse propagation calculations
in Sec. IV allow us to assess the validity of the short-
pulse approximation under the conditions of Ref. [8]. The
distortion of the NIR pump pulse by the target medium is not
considered. Section V concludes the paper. Atomic units are
used throughout, unless otherwise noted.

II. GENERAL CONSIDERATIONS

A. Atomic response

We consider a semiclassical description of the interaction
of the pump and probe pulses with the atoms in the target
gas. Both pulses are approximated by transverse, infinite
plane waves propagating along the x axis and are assumed
to be linearly polarized along the z axis. As mentioned in the
introduction, the NIR pulse is assumed to remain unmodified as
it propagates through the gas. Thus, neglecting diffraction, the
NIR electric field may be written as ENIR(tL − x/c), where tL is

the time measured in the laboratory frame and c is the vacuum
speed of light. For an atom at position x, it is convenient to
introduce the local time t = tL − x/c. Hence, in the electric
dipole approximation, the Hamiltonian for an atom at position
x reads

Ĥ (t) = Ĥ0 − E0 − ENIR(t)Ẑ − EEUV(x,t + x/c)Ẑ. (1)

Here, Ĥ0 is the unperturbed atomic Hamiltonian, E0 is the
atomic ground-state energy, Ẑ is the z component of the
electric dipole operator, and EEUV(x,tL) is the EUV electric
field. In order to calculate the EUV-induced polarization
response of the atoms, we need to solve the time-dependent
Schrödinger equation

i
∂

∂t
|�,t〉 = Ĥ (t)|�,t〉. (2)

Let us assume we have solved the x-independent, NIR-only
problem

i
∂

∂t
ÛNIR(t,−∞) = {Ĥ0 −E0 − ENIR(t)Ẑ}ÛNIR(t,−∞). (3)

A suitable initial condition for the time evolution operator is

ÛNIR(t,−∞) → exp {−i(Ĥ0 − E0)t} as t → −∞. (4)

Therefore, in the absence of the probe pulse, a solution to
Eq. (2) is

|�NIR,t〉 ≡ ÛNIR(t,−∞)|�0〉. (5)

Here, |�0〉 is the initial state of the atom, assumed to be the
ground state.

In order to take into consideration the effect of the probe
pulse, we make the ansatz

|�,t〉 = |�NIR,t〉 + |�,t〉(1) + . . . , (6)

where |�,t〉(1) is a correction that is of first order with respect
to EEUV(x,t + x/c). It follows that

i
∂

∂t
|�,t〉(1) = {Ĥ0 − E0 − ENIR(t)Ẑ}|�,t〉(1)

−EEUV(x,t + x/c)Ẑ|�NIR,t〉. (7)

This equation can be integrated analytically. The result reads

|�,t〉(1) = i

∫ t

−∞
dt ′ÛNIR(t,t ′)ẐEEUV(x,t ′+x/c)|�NIR,t ′〉, (8)

where ÛNIR(t,t ′) = ÛNIR(t,−∞)Û †
NIR(t ′,−∞).

Let us now calculate the polarization along the z axis:

P (x,t + x/c) = nAT〈�,t |Ẑ|�,t〉
= PHG(x,t + x/c) + P (1)(x,t + x/c) + · · · .

(9)

In this expression, nAT is the atomic number density,

PHG(x,t + x/c) = nAT〈�NIR,t |Ẑ|�NIR,t〉 (10)

describes harmonic generation driven by the NIR pulse (with
no EUV pulse present), and

P (1)(x,t + x/c) = nAT〈�NIR,t |Ẑ|�,t〉(1) + c.c. (11)

is the polarization correction to first order with respect to
EEUV(x,t + x/c).
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By using Eq. (8), the first-order polarization correction may
be written as

P (1)(x,t + x/c) = inAT

∫ t

−∞
dt ′{EEUV(x,t ′ + x/c)

×〈�NIR,t |ẐÛNIR(t,t ′)Ẑ|�NIR,t ′〉} + c.c.

(12)

This result, which is valid for arbitrary pump intensities, gen-
eralizes Eq. (17b) in Ref. [22] and shows that Eq. (21) in that
paper is not quite correct.1 Note that the integrand in Eq. (12)
depends explicitly on t via 〈�NIR,t | and ÛNIR(t,t ′). Therefore,
even if the EUV pulse may, effectively, be approximated by
a delta function centered at, say, t ′ = tEUV, the polarization
induced by the EUV pulse contains information not only on
atomic properties at the instant of the EUV pulse, but, in
principle, also on atomic properties after the EUV pulse (for
t > tEUV). As we will see, this causes no difficulty for the
situation considered in this paper.

We assume that the EUV probe pulse comes after the NIR
pump pulse, so that the NIR pulse does not affect the electronic
states reached via EUV photoabsorption. Hence, we have, for
the time evolution operator in Eq. (12),

ÛNIR(t,t ′) = e−i(Ĥ0−E0)(t−t ′). (13)

Let |I 〉 denote an eigenstate of the unperturbed atomic
Hamiltonian Ĥ0 with eigenenergy EI . We may then expand
the NIR-only state vector, after the NIR pulse, as follows:

|�NIR,t〉 =
∑

I

αI e
−i(EI −E0)t |I 〉. (14)

The expansion coefficients αI are time-independent. Thus,
Eq. (12) goes over into

P (1)(x,t + x/c) = inAT

∑
I,I ′

α∗
I αI ′

∑
F

〈I |Ẑ|F 〉〈F |Ẑ|I ′〉

×
∫ t

−∞
dt ′EEUV(x,t ′ + x/c)

×e−i(EF −EI )(t−t ′)+i(EI −EI ′ )t ′ + c.c., (15)

where |F 〉 is an eigenstate of Ĥ0 with eigenenergy EF , which
is in general assumed to be complex. More precisely, the
imaginary part of EF is either zero or negative.

B. EUV pulse propagation

We assume that the high harmonics generated by the NIR
pulse [Eq. (10)] do not overlap with the spectral range of the
EUV pulse. Hence, the propagation of the EUV electric field
through the medium can be described by the following scalar
wave equation:(

∂2

∂x2
− 1

c2

∂2

∂t2
L

)
EEUV(x,tL) = 4π

c2

∂2

∂t2
L

P (1)(x,tL). (16)

1Equation (21) in Ref. [22] should read

σ (ω,t0)

= 4πω

h̄c
Re

[∫ ∞

0
dte−γ21t eiωt ×〈i(t0)|eih1t/h̄µ∗

21e
−ih2t/h̄µ21|i(t0)〉

]
.

With the Fourier representations

EEUV(x,tL) =
∫ ∞

0

dω

2π
{ẼEUV(x,ω)e−iω(tL−x/c) + c.c.}, (17)

P (1)(x,tL) =
∫ ∞

0

dω

2π
{P̃ (1)(x,ω)e−iω(tL−x/c) + c.c.}, (18)

it follows from Eq. (16) that(
∂2

∂x2
+ 2i

ω

c

∂

∂x

)
ẼEUV(x,ω) = −4π

ω2

c2
P̃ (1)(x,ω). (19)

In the situation considered, the spatial derivative of the
electric field amplitude at a given ω changes slowly over
a wavelength 2πc/ω. This allows us to neglect in Eq. (19)
the second derivative with respect to x. Thus, the differen-
tial equation governing the spatial evolution of ẼEUV(x,ω)
reads

∂

∂x
ẼEUV(x,ω) = 2πi

ω

c
P̃ (1)(x,ω). (20)

Equation (20) can be integrated analytically if P̃ (1)(x,ω) is
proportional to ẼEUV(x,ω):

P̃ (1)(x,ω) = χ (1)(x,ω)ẼEUV(x,ω). (21)

Here, χ (1)(x,ω) is the linear susceptibility. If Eq. (21) is valid,
it follows from Eq. (20) that

ẼEUV(x,ω) = ẼEUV(x0,ω) exp

{
2πi

ω

c

∫ x

x0

dx ′χ (1)(x ′,ω)

}
.

(22)

In the attosecond transient absorption experiment described
in Ref. [8], the EUV radiation transmitted through the sample
(length L) was spectrally dispersed and analyzed. The detected
signal is then proportional to

|ẼEUV(L,ω)|2 = |ẼEUV(0,ω)|2e−4π ω
c

∫ L

0 dxIm[χ (1)(x,ω)], (23)

which, for a homogeneous target medium, goes over into

|ẼEUV(L,ω)|2 = |ẼEUV(0,ω)|2e−4π ω
c
LIm[χ (1)(ω)]. (24)

Equation (24) is Beer’s law.
To understand what determines the validity of Eq. (21)

and thus the applicability of Beer’s law, we calculate, using
Eqs. (15), (17), and (18), the Fourier transform of the EUV-
induced polarization:

P̃ (1)(x,ω) =
∫ ∞

−∞
dtP (1)(x,t + x/c)eiωt

= nAT

∑
I,I ′

α∗
I αI ′

∑
F

〈I |Ẑ|F 〉〈F |Ẑ|I ′〉

×
{

1

EF − EI − ω
+ 1

E∗
F − EI ′ + ω

}
× ẼEUV(x,ω + EI − EI ′). (25)

Therefore, the ratio P̃ (1)(x,ω)/ẼEUV(x,ω) is independent of the
EUV electric field—i.e., a well-defined linear susceptibility is
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obtained—only if

ẼEUV(x,ω + EI − EI ′)

ẼEUV(x,ω)
= const. (26)

This condition is always satisfied if only terms with I ′ = I con-
tribute to the polarization response in Eq. (25). Generally, this
is not the case. Still, Eq. (26) serves as a good approximation if
the EUV pulse is much shorter than 2π/(EI − EI ′) for I ′ �= I .
Furthermore, for Beer’s law to be rigorously applicable, this
short pulse must not undergo any significant distortion as it
propagates through the dense gas, so that the EUV pulse
remains short in comparison to the dynamical time scales
characterizing the target medium prepared by the NIR pump
pulse. If Eq. (26) is not satisfied, the propagation equation (20)
must be solved numerically. In the following sections, we
discuss both regimes in more detail.

C. The configuration expansion

So far, our treatment of the electronic-structure problem has
been general. In order to describe resonant EUV absorption
by laser-generated ions, we now adopt the mean-field model
discussed in Ref. [36] and write the NIR-only state vector after
the NIR pulse in terms of Slater determinants:

|�NIR,t〉 =
∑

I

αI e
−i(EI −E0)t |I 〉

= α0|	0〉 +
∑

i

∑
a

αa
i e

−i(εa−εi )t
∣∣	a

i

〉
. (27)

In this approximation, the set {|I 〉} contains the ground-state
determinant |	0〉 and all particle-hole configurations |	a

i 〉
obtained from |	0〉 by exciting or ionizing an electron from
an occupied spin orbital i (a “hole” orbital) to an unoccupied
spin orbital a (a “particle” orbital) [37–39]. A particle-hole
configuration corresponds to an excited or ionized electron
plus an ion core with a hole in some shell that is fully occupied
in the ground state of the neutral atom. The orbital energies of
the hole and the particle are denoted by εi and εa , respectively.
The numerical calculation of the coefficients α0 and αa

i in
Eq. (27) is described in Ref. [36]. Since Ẑ is a one-body
operator, the sum over the states |F 〉 in Eqs. (15) and (25)
extends over |	0〉, the particle-hole configurations, and the
two-particle–two-hole configurations. The various terms that
arise in this way describe processes such as EUV absorption
by the neutral ground-state atoms and EUV absorption by the
ion core.

In the following, we focus on the experiment of Ref. [8]
(see Sec. I), which studied the structures in the EUV absorption
spectrum of strong-field-generated Kr+ ions associated with
exciting an inner-shell 3d electron in Kr+ into the outer-
valence 4p vacancy created by the NIR pulse. Resonant 3d-4p
photoabsorption by the Kr+ ion core was used to study the
properties of the hole generated via strong-field ionization.
Since such transitions involve only hole orbitals, we refer
to them as hole-hole transitions. The relevant transitions are
indicated in Fig. 1. The transition energies shown in Fig. 1 were
calculated using the multiconfiguration Dirac-Fock program
package GRASP [40]. The configurations that were included in
the calculation are 4p−1

3/2, 4p−1
1/2, 4s−1

1/2, 3d−1
5/2, and 3d−1

3/2.

FIG. 1. Atomic levels of Kr+ associated with resonant absorption
at photon energies near 80 eV. The notation nl−1

j indicates that relative
to the closed-shell ground state of the neutral atom, an electron is
missing (a hole is present) in the nlj subshell.

We neglect that the EUV field might induce particle-particle
transitions. This is an excellent approximation, because the
NIR-generated photoelectron interacts only weakly with the
EUV field. Since the electron excited or ionized by the NIR
pulse is a spectator in the hole-hole transitions of the ion
core, one can describe the ions with a reduced density
matrix [36]:

ρ
(ion)
ii ′ (t) = ei(εi−εi′ )t

∑
a

αa
i α

a
i ′

∗ = ei(εi−εi′ )t ρ̃
(ion)
ii ′ , (28)

where the summation is performed over all unoccupied
orbitals. Since we consider the regime where the NIR and
EUV pulses do not overlap, the auxiliary matrix ρ̃

(ion)
ii ′ is

time-independent.
The polarization response of the ions to the field of the EUV

pulse can be expressed via the density matrix by inserting
the ansatz (27) for |�NIR,t〉 into Eq. (12) and following
the same steps in the derivation that led to Eq. (25). This
yields

P̃ (1)(x,ω) = nAT

∑
i,i ′

ρ̃
(ion)
ii ′

∑
ĩ

zĩi ′ziĩ

{
1

εi ′ − εĩ − ω

+ 1

εi − ε∗
ĩ

+ ω

}
ẼEUV(x,ω + εi − εi ′ ). (29)

Here, the absorption of an EUV photon fills a hole in orbital
i with an electron from orbital ĩ, which has the orbital energy
εĩ . This process is described by the dipole matrix element ziĩ .
The second dipole matrix element, zĩi ′ , describes the process
upon which the hole created in orbital ĩ is filled by an electron
from orbital i ′.

In the following, we express the hole orbital energies in
terms of ionization potentials, Ii = −εi being defined as the
minimum energy required to create an ion with a hole in orbital
i from a neutral atom in its ground state. Furthermore, since
P̃ (1)(x,−ω) = [P̃ (1)(x,ω)]∗, it is sufficient to calculate the
polarization response only for positive frequencies. Dropping
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the counterrotating term in Eq. (29) and using ionization
potentials instead of orbital energies, we obtain

P̃ (1)(x,ω > 0) = nAT

∑
i,i ′

ρ̃
(ion)
ii ′

∑
ĩ

zĩi ′ziĩ

Iĩ − i
�ĩ

2 − Ii ′ − ω

× ẼEUV(x,ω − Ii + Ii ′), (30)

where �ĩ is the decay width of the one-hole channel ĩ. We
emphasize that Eq. (30) is valid only if the EUV pulse comes
after the NIR pulse. Recall also that the NIR pulse is assumed
to remain unmodified as it propagates through the gas. If we
dropped this assumption, then the ion density matrix would
depend explicitly on the atomic position x along the NIR pulse
propagation axis. The computationally expensive electronic
wave-packet problem (3) would then have to be solved not
only once, but for every grid point used in the discretization
of x.

III. SHORT-PULSE APPROXIMATION

We now analyze the EUV-induced polarization by assuming
that the probe field may be approximated by a delta function
centered at t = tEUV; i.e.,

EEUV(x,t + x/c) ∝ δ(t − tEUV). (31)

Within this approximation, the Fourier transform of the EUV
electric field is

ẼEUV(x,ω) ∝ eiωtEUV . (32)

Therefore, we obtain from Eqs. (21), (28), and (30) the linear
susceptibility as

χ (1)(ω > 0)= P̃ (1)(x,ω)

ẼEUV(x,ω)

=nAT

∑
i,i ′

ρ
(ion)
ii ′ (tEUV)

∑
ĩ

zĩi ′ziĩ

Iĩ − i
�ĩ

2 − Ii ′ − ω
. (33)

This equation shows that the linear susceptibility has poles
that are simply related to transition energies of the ion core.

The existence of an x-independent linear susceptibility allows
one to use Beer’s law [Eq. (24)] to calculate the spectrum of the
EUV radiation transmitted through the target medium. From
a practical perspective, this means the following: Under the
conditions assumed, one obtains, by taking the logarithm of
|ẼEUV(L,ω)|2/|ẼEUV(0,ω)|2, a quantity that is proportional to
the EUV one-photon cross section

σ (1)(ω) = 4π
ω

c

Im[χ (1)(ω)]

nAT
. (34)

Now we are ready to give an explicit expression for the EUV
one-photon cross section of strong-field-generated Kr+ ions.
Let j be the total-angular-momentum quantum number of an
orbital hole created by the NIR pulse, and let m be the corre-
sponding projection quantum number. We exploit the fact that
the reduced ion density matrix is diagonal in m [36] and denote
the ion density matrix elements by ρ

(m)
j,j ′ . Furthermore, it can be

shown that terms containing ρ
(−m)
j,j ′ give the same contributions

to the polarization response as those containing ρ
(m)
j,j ′ . We refer

to the off-diagonal element ρ
(1/2)
3/2,1/2(tEUV) of the density matrix

between the 4p−1
3/2, m = +1/2 and the 4p−1

1/2, m = +1/2
ionization channels as the coherence. This element is equal to
ρ̃

(1/2)
3/2,1/2e

−i(I4p3/2 −I4p1/2 )tEUV [cf. Eq. (28)]; i.e., |ρ(1/2)
3/2,1/2(tEUV)| =

|ρ̃(1/2)
3/2,1/2| = const. The complex constant ρ̃

(1/2)
3/2,1/2 generally

differs from zero, unless the statistical mixture described
by the ion density matrix is completely incoherent. For a
perfectly coherent hole wave packet, |ρ̃(1/2)

3/2,1/2| would equal√
ρ

(1/2)
3/2,3/2ρ

(1/2)
1/2,1/2. As demonstrated theoretically in Ref. [36]

and experimentally in Ref. [8], strong-field ionization does
not in general produce perfectly coherent hole wave packets.

In other words, generally |ρ̃(1/2)
3/2,1/2| <

√
ρ

(1/2)
3/2,3/2ρ

(1/2)
1/2,1/2.

By using Eq. (34) and the notation just introduced, the
EUV one-photon cross section associated with the hole-hole
transitions reads, in the case of krypton,

σ (1)(ω) = 4π
ω

c
Im

{ ∣∣〈4p−1
3/2||D||3d−1

5/2

〉∣∣2

I3d5/2 − i �3d

2 − I4p3/2 − ω

[
ρ

(3/2)
3/2,3/2

2

15
+ ρ

(1/2)
3/2,3/2

1

5

]

+
∣∣〈4p−1

3/2||D||3d−1
3/2

〉∣∣2

I3d3/2 − i �3d

2 − I4p3/2 − ω

[
ρ

(3/2)
3/2,3/2

3

10
+ ρ

(1/2)
3/2,3/2

1

30

]
+

∣∣〈4p−1
1/2||D||3d−1

3/2

〉∣∣2

I3d3/2 − i �3d

2 − I4p1/2 − ω
ρ

(1/2)
1/2,1/2

1

3

+ 1

3
√

10

〈
4p−1

3/2||D||3d−1
3/2

〉 〈
4p−1

1/2||D||3d−1
3/2

〉[ ρ
(1/2)
3/2,1/2(tEUV)

I3d3/2 − i �3d

2 − I4p1/2 − ω
+

[
ρ

(1/2)
3/2,1/2(tEUV)

]∗

I3d3/2 − i �3d

2 − I4p3/2 − ω

]}
. (35)

Here, 〈4p−1
j ||D||3d−1

j ′ 〉 is a reduced dipole matrix element
[41–43] (not to be confused with a matrix element of the
reduced density matrix of the ion). Equation (35) consists of
four distinct terms. The first three terms are independent of
the time delay (because the hole populations ρ

(m)
j,j after the

NIR pulse are constant) and describe Lorentzian line shapes

associated with the three resonant transitions indicated in
Fig. 1. The fourth term is a sum of absorptive and dispersive
line shapes and depends on the coherence ρ

(1/2)
3/2,1/2(tEUV), which

is a periodic function of the pump-probe time delay. The period
(6 fs [35]) is defined by the energy difference between the
4p−1

3/2 and 4p−1
1/2 channels. Note that for the hole dynamics to
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be observable in the spectrum of the transmitted radiation, it is
not necessary for the relevant resonance lines (4p−1

3/2 → 3d−1
3/2

and 4p−1
1/2 → 3d−1

3/2) to spectrally overlap. Only the coherent
excitation of the two resonances is required, which we achieved
by using an attosecond probe pulse, i.e., a pulse with sufficient
coherent bandwidth.

Once the EUV one-photon cross section is measured as a
function of the photon energy ω and the time delay tEUV, one
can use Eq. (35) to extract all nontrivial entries of the ion
density matrix [ρ(3/2)

3/2,3/2, ρ
(1/2)
3/2,3/2, ρ

(1/2)
1/2,1/2, and ρ

(1/2)
3/2,1/2(tEUV)].

This is the basic idea underlying the analysis presented in
Ref. [8]. Such an analysis allows one to characterize (a) the
degree of alignment of the j = 3/2 level by comparing ρ

(3/2)
3/2,3/2

and ρ
(1/2)
3/2,3/2 [the system is fully aligned if ρ

(3/2)
3/2,3/2 = 0 and

ρ
(1/2)
3/2,3/2 �= 0, and it is unaligned if ρ

(3/2)
3/2,3/2 = ρ

(1/2)
3/2,3/2]; (b) the

population of the j = 1/2 level relative to the population of the
j = 3/2 level [ρ(1/2)

1/2,1/2/(ρ(3/2)
3/2,3/2 + ρ

(1/2)
3/2,3/2)]; and (c) the degree

of coherence by calculating |ρ(1/2)
3/2,1/2|/

√
ρ

(1/2)
3/2,3/2ρ

(1/2)
1/2,1/2.

In order to be able to determine the ion density
matrix elements using Eq. (35), the reduced dipole
matrix elements must be known. To this end, we
proceeded as follows. Using GRASP [40], we calculated
the oscillator strengths for transitions from the 3d−1

j

levels to the 4p−1
j ′ levels. In this way, we obtained

|〈4p−1
3/2||D||3d−1

5/2〉|2 = 0.119 a.u., |〈4p−1
3/2||D||3d−1

3/2〉|2 =
0.0126 a.u., and |〈4p−1

1/2||D||3d−1
3/2〉|2 = 0.0695 a.u. The

relative ratios are very close to what would be obtained
within the LS coupling scheme. This allowed us to
employ standard angular-momentum algebra within the LS
coupling scheme [41–43] to determine the relative sign
between 〈4p−1

3/2||D||3d−1
3/2〉 and 〈4p−1

1/2||D||3d−1
3/2〉. Thus,

〈4p−1
3/2||D||3d−1

3/2〉〈4p−1
1/2||D||3d−1

3/2〉 = −0.0296. The natural

lifetime broadening from the Auger decay of the 3d−1
j levels

is �3d = 0.00323 a.u. [44]. We mention that when analyzing
experimental transient absorption data, the spectrometer
resolution must also be taken into consideration.

Based on the approach just described, a fit was performed
in Ref. [8] to determine, directly from the experimental
attosecond transient absorption data, the reduced density
matrix elements of strong-field-generated krypton ions. The
results are collected in Table I. Also shown in Table I are
the ion density matrix elements calculated using the time-
dependent multichannel theory developed in Ref. [36]. The
NIR pulse parameters assumed in the calculation were taken

TABLE I. Normalized density matrix elements of strong-field-
generated Kr+ ions (a) extracted from experiment [8] using Eq. (35)
and (b) calculated using the theory from Ref. [36] assuming the NIR
pulse parameters specified in Ref. [8].

Element (a) Experiment (b) Theory

2ρ
(3/2)
3/2,3/2 0.23 0.05

2ρ
(1/2)
3/2,3/2 0.42 0.69

2ρ
(1/2)
1/2,1/2 0.35 0.26

|ρ(1/2)
3/2,1/2| 0.12 0.13

from Ref. [8]. Note that the ion density matrix elements have
been normalized such that the trace of the ion density matrix
equals unity. It is evident from Table I that experiment and
theory give a similar degree of coherence. Also, experiment
and theory give a similar value for the population of the
j = 1/2 level relative to the population of the j = 3/2 level.
However, the experimental data suggest a much smaller degree
of alignment of the j = 3/2 level than predicted by our theory.

The attosecond transient absorption cross sections
[Eq. (35)] for the two sets of density matrix elements are
plotted in Fig. 2. Again, there is no overlap between the
NIR and EUV pulses; that is, the NIR pulse is centered at
a large negative value of tEUV. The strongest of the three
absorption lines does not depend on the time delay. This
absorption line corresponds to a transition to the 3d−1

5/2 level.

Since this level can be reached only from the 4p−1
3/2 level, but

not from the 4p−1
1/2 level (see Fig. 1), the strongest absorption

line is insensitive to the coherence between 4p−1
3/2 and 4p−1

1/2.

The other two transitions, which both involve the 3d−1
3/2 level

(see Fig. 1), display a conspicuous dynamical behavior as a
function of the time delay. The modulation of the weakest
line, which corresponds to the transition 4p−1

3/2 → 3d−1
3/2, is

most pronounced due to the coupling to the relatively strong
4p−1

1/2 → 3d−1
3/2 transition. Moreover, for certain delays the

absorption cross section for that line even becomes negative.
This happens when the coherent population transfer from 4p−1

1/2

to 4p−1
3/2 via 3d−1

3/2 dominates over the absorption from the 4p−1
3/2

state.
Apart from the oscillation of the respective line strengths

with the spin-orbit period of 6 fs, the energetic positions of the
resonance lines oscillate as well. This is particularly easy to
see in panels (b) and (d) in Fig. 2. These energy oscillations
are a consequence of the interplay between the absorptive
and dispersive terms mentioned earlier in connection with
Eq. (35).

IV. THE ACCURACY OF BEER’S LAW

In the previous section, our discussion was based on
the approximation that different frequency components of
the EUV pulse propagate independently. The assumption
P̃ (1)(x,ω) ∝ ẼEUV(x,ω) allowed us to describe the polarization
response with a linear susceptibility χ (1)(ω) and to integrate
Eq. (20) analytically. In this section, we investigate the
accuracy of this approximation.

As follows from Eq. (30), the polarization response
P̃ (1)(x,ω) is not proportional to ẼEUV(x,ω) if the density matrix
contains nonzero off-diagonal elements that correspond to
states coupled by dipole transitions through an intermediate
excited state. Physically, this means that an ion that absorbs a
photon with an energy ω1 can coherently emit a photon with
a different energy ω2, provided that the initial ionic state is a
coherent superposition of two or more states. In this typical
� scheme, the polarization response at the photon energy
ω2 obviously depends not only on ẼEUV(x,ω2) but also on
ẼEUV(x,ω1). In this case, Eq. (21) is an approximation.

To go beyond this approximation, we numerically solve the
first-order propagation equation (20) using Eq. (30) to evaluate
the polarization response of the medium at each propagation
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FIG. 2. (Color online) Attosecond transient absorption cross section (in Mb) of strong-field-generated Kr+, plotted as a function of the
photon energy and the time delay. The cross section was calculated using Eq. (35). Panels (a) and (b) show the attosecond transient absorption
cross section for the theoretical ion density matrix elements in Table I. In panels (c) and (d), the attosecond transient absorption cross section
is shown for the experimental ion density matrix elements in Table I.

step. Even though P̃ (1)(x,ω) is no longer proportional to
ẼEUV(x,ω), we compare the results of numerical propagation
with those obtained in the previous section in terms of the
apparent one-photon cross section:

σapp(ω) = 1

nATL
ln

|ẼEUV(0,ω)|2
|ẼEUV(L,ω)|2 . (36)

In Fig. 3, we show a false-color representation of σapp(ω)
evaluated for different delays between the NIR pump and EUV
probe pulses. For this simulation, we used a bandwidth-limited
Gaussian EUV pulse with a central photon energy of 80.8 eV
and a full width at half maximum of intensity equal to 150 as.
The elements of the density matrix were taken from Table I.
The propagation in a gas of strong-field-generated Kr+ ions
with an atomic number density of nAT = 2.2 × 1018 cm−3 was
terminated after L = 1 mm. The spectrum of the EUV pulse
before and after propagation, for the experimental ion density
matrix elements in Table I, is shown in Fig. 4.

A careful inspection of Figs. 2, 3, and 4 reveals that the
approximation underlying Beer’s law notably affects the line
at 81.1 eV, which corresponds to the transition 4p−1

3/2 → 3d−1
3/2.

This is not surprising: For the same reasons that this absorption
line exhibits strong quantum beats, it is also sensitive to other
effects related to off-diagonal elements of the density matrix.
Still, in spite of the strong absorption, the discrepancy between

the model assuming the validity of Beer’s law and the results
obtained by numerically solving the propagation equation is
rather small.

It is instructive to repeat the analysis based on Eq. (35) and
retrieve the density matrix from the apparent absorption cross
section as if Beer’s law were rigorously valid. Table II gives
these apparent density matrix elements. The good agreement
between Tables I and II indicates that Beer’s law is indeed a
good approximation for extracting electronic-structure infor-
mation from transient absorption data, even though it should
be used with care. We may conclude, in particular, that the

TABLE II. Apparent density matrix elements of strong-field-
generated Kr+ ions extracted from the apparent attosecond transient
absorption cross section for (a) the experimental ion density matrix
elements in Table I and (b) the theoretical ion density matrix elements
in Table I.

Element (a) Experiment (b) Theory

2ρ
(3/2)
3/2,3/2 0.21 0.03

2ρ
(1/2)
3/2,3/2 0.44 0.71

2ρ
(1/2)
1/2,1/2 0.35 0.26

|ρ(1/2)
3/2,1/2| 0.14 0.14
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FIG. 3. (Color online) Apparent attosecond transient absorption cross section (in Mb) of strong-field-generated Kr+, plotted as a function
of the photon energy and the time delay. The cross section was calculated by applying Beer’s law to the numerically propagated EUV field.
Panels (a) and (b) show the apparent attosecond transient absorption cross section for the theoretical ion density matrix elements in Table I.
In panels (c) and (d), the apparent attosecond transient absorption cross section is shown for the experimental ion density matrix elements in
Table I.

discrepancy between the experimental and theoretical degrees
of ion alignment (j = 3/2 level) cannot be explained by a
failure of Beer’s law.
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FIG. 4. (Color online) The spectrum of the EUV pulse before
(dash-dotted line) and after propagation for tEUV = 0. The dashed
line, representing a simulation assuming the validity of Beer’s law,
corresponds to panels (c) and (d) in Fig. 2. The solid line shows the
result of numerical propagation, corresponding to panels (c) and (d)
in Fig. 3.

V. CONCLUSIONS

In this paper, we discussed the theory underlying attosecond
transient absorption spectroscopy of strong-field-generated
ions. This theory was employed in Ref. [8] to experimentally
determine the reduced density matrix of Kr+ ions produced by
an intense NIR pulse. Good agreement between experiment
and theory was found for the degree of coherence and for
the population of the j = 1/2 level relative to the population
of the j = 3/2 level. However, experiment suggests strongly
suppressed alignment of the j = 3/2 level, which is not
consistent with calculations based on the theory described in
Ref. [36]. The origin of this discrepancy is currently unknown.

As demonstrated in this paper, EUV propagation effects
beyond Beer’s law do not explain the discrepancy between
experiment and theory found for few-cycle NIR pulses [8].
Earlier measurements on Kr+ ions generated using 50-fs
NIR pulses gave a degree of alignment in rather good
agreement with an adiabatic strong-field-ionization theory
[16]. A noticeable reduction of ion alignment, in comparison
to the adiabatic strong-field-ionization theory, was observed in
Xe+ ions generated using 45-fs NIR pulses [29]. But the effect
was not as pronounced as it is in the current case, and it was
surmised at the time that the discrepancy was a consequence
of nonadiabatic effects [29]. However, nonadiabatic effects
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cannot explain the disagreement between the experimental and
theoretical ion density matrix elements shown in Table I, for
the strong-field-ionization theory employed [36] is based on
numerical wave-packet propagation and does not suffer from
the limitations of the adiabatic approximation.

It seems likely that the origin of the discrepancy must be
sought in either of the following two possibilities. The first
possibility is that, in the experiment of Ref. [8], multielectron
effects beyond the multichannel theory of Ref. [36] played an
important role. Since, in view of Ref. [16], these multielectron
effects would appear to have a smaller impact when using
longer NIR pulses, the observed discrepancy might suggest
an enhancement of multielectron effects by few-cycle pulses.
The second possibility is that the experiment of Ref. [8] was

affected by substantial NIR propagation effects. This could be
clarified by repeating the experiment at a lower target density.
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