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Theory of two-photon double ionization of helium at the sequential threshold
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We analyze in this paper the process of double-electron ejection through two-photon absorption from the funda-
mental state of helium. We focus on the case of photon energies close to 2 a.u., which marks the threshold between
direct and sequential double-ionization regimes. We demonstrate the crucial role of two-photon excitation-plus-
ionization process of nlk′l′ Rydberg series. We show that the latter channel must be taken into account in the theory
in order to properly describe two-electron ejection. A simple expression is derived for the electron energy spec-
trum, leading to better insights into the physics underlying two-photon absorption close to the sequential threshold.
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I. INTRODUCTION

During recent years, there has been tremendous activity in
investigations of helium two-photon double ionization (TPDI).
In helium the ionization potential for double ionization is
about 2.903 a.u.; therefore TPDI is energetically forbidden for
photon energies lower than 1.45 a.u. (39.5 eV). If we consider
a long pulse duration and a relatively low intensity (such that
three-photon double ionization can be neglected) TPDI is a
direct process for photon energies lower than 2 a.u. (54.42 eV)
while it is dominated by sequential ionization for larger photon
energies [1]. In the latter case the helium atom is first ionized;
in a second step the residual ion, He+, is also ionized. The
electrons in the double continuum share the excess energy Eexc

(Eexc = −2.903 + 2h̄ω). Despite the efforts of theoreticians,
many problems remain to be resolved, in particular in the
direct regime. For example, cross sections reported in different
publications do not agree, and neither do the photoelectron
energy distributions [2]. In addition to these discrepancies
between theoretical results, there is a new issue, namely, the
sharp rise of the TPDI cross section around 2 a.u. [3–8], that is
the subject of ongoing debates [9]. This brings our attention to
TPDI in the threshold region of the sequential process, i.e., at
photon energies close to 2 a.u. As far as we know, TPDI has not
been thoroughly investigated in this region, at least from the
formal point of view. The purpose of this paper is to report on
TPDI theory in the threshold region of the sequential process.

We have noticed above that, for photon energies larger
than 2 a.u., sequential ionization dominates. The natural
continuation of the double ionization channel below threshold
is the excitation-plus-ionization channel, where one of the
electrons is expected to be in a Rydberg state, while the other
is in the continuum; see Fig. 1. When the photon energy is
lower but close to 2 a.u., the latter channel is expected to play
an important role. To be more specific, one must investigate
both nlk′l′ and klk′l′ series of states (which are related to
excitation-plus-ionization and double-ionization channels, re-
spectively) populated through two-photon absorption. It is easy
to understand that solving the time-dependent Schrödinger
equation (TDSE) would lead to tremendous difficulties in the
present context. Indeed, TDSE methods involve in general
a radial “box,” of fixed dimension, or expansions over L2
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functions, limiting the number of nl Rydberg states taken into
account (n < nmax). Furthermore, the TDSE also implies a
laser pulse of given duration, with laser bandwidth effects
complicating the problem [9]. Here we reconsider an approach
developed some years ago, based on the resolvent operator
formalism [1]. The atomic structure is represented using
a zero-order representation (in 1/Z) in perturbation theory
while the treatment of the laser-atom interaction includes all
photoabsorption processes up to two-photon absorption. These
approximations have been thoroughly discussed in our previ-
ous paper. Although crude, the representation of the atomic
structure is not unphysical since electron correlations are not
required for TPDI to occur, in contrast to one-photon double
ionization. Also, the resolvent operator method is suitable to
explore the limit of laser pulse of infinite duration, getting rid of
laser bandwidth effects. As we shall see below, the approach
provides clear physical insights into the dominant physical
mechanisms underlying the TPDI process.The theoretical
approach and its application are presented in the following
section. The resolvent operator technique has been extensively
used in the past and we only present the main steps of the
development; details can be found in [10,11]. We provide a
simple expression of the electron energy spectrum in the region
close to threshold. The conclusion is given in the last section.

Atomic units are used unless otherwise stated.

II. FORMALISM AND APPLICATIONS

A. Theoretical approach

In order to derive an expression for the photoelectron
energy spectrum, we consider |1s2〉 as the initial atomic state,
in the presence of the field represented by photon number state
|N〉. The interacting system “atom + field” will be denoted
by |I 〉 = |1s2〉|N〉. The intermediate states |1sk′l′〉, populated
through one-photon absorption from |1s2〉, are denoted by
|C〉 = |1sk′l′〉|N − 1〉. The final double-continuum states
|klk′l′〉, produced through two-photon absorption, are denoted
by |F 〉 = |klk′l′〉|N − 2〉. As explained in the Introduction, we
must also include the Rydberg series of states |nlk′l′〉, denoted
by |R〉 = |nlk′l′〉|N − 2〉, in our treatment. The energy of state
|I 〉 is given by EI = E1s2 + Nω. In zero order of perturbation
theory E1s2 = 2E1s + 〈1s2|1/r12|1s2〉, E1s being the energy
of the 1s orbital of He+. Note that, during the ionization
of He, the electron interaction energy 〈1s2|1/r12|1s2〉 is
transferred to the ionized electron and transformed into
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FIG. 1. A schematic diagram of the levels involved in
two-photon absorption for a photon energy slightly below 2.
Two-electron ejection is a direct process (vertical dashed arrows)
while sequential absorption (vertical full arrows) populates the He
continuum and He+ Rydberg states. The series of thin horizontal
lines below He2+ represents He+ Rydberg states (not at scale)
converging to the He double ionization threshold.

kinetic energy. The energy of the other states, |1skl〉, |klk′l′〉,
and |nlk′l′〉, are given by the sum of the corresponding
hydrogenic orbital energies, calculated for Z = 2. Therefore
the energies of states |C〉, |F 〉, and |R〉 are given by EC =
E1s + Ek′l′ + (N − 1)ω, EF = Ekl + Ek′l′ + (N − 2)ω, and
ER = Enl + Ek′l′ + (N − 2)ω, respectively. Note that, within
the lowest-order perturbation theory (LOPT), l = l′ = 1.
Denoting as V the dipole interaction between atom and field,
the resolvent operator approach leads to the set of equations [1]

(z − ωI )GII = 1 +
∫

C

VICGCI , (1)

(z − ωC)GCI = VCIGII +
∫

F

VCF GFI +
∑
R

VCRGRI , (2)

(z − ωF )GFI =
∫

C

VFCGCI , (3)

(z − ωR)GRI =
∫

C

VRCGCI . (4)

Using Eqs. (3) and (4) with Eq. (2) we obtain

(z − ωC)GCI = VCIGII +
∫
F

|VCF |2
z − ωF

GCI

+
∑
R

|VCR|2
z − ωR

GCI . (5)

In the following we assume that the continuum states are
normalized on the energy scale.

B. The sequential regime (ω > 2)

Following the standard procedure, we set z = ωC + iη in
the denominators of the right-hand-side term

∫
F

|VCF |2
z−ωF

GCI , in
Eq. (5), and we calculate the limit η → 0+. The integral over
F separates into a real and an imaginary part, the first leading
to a shift and the second to the width of state C. It has the
expression

γC = γHe+ = 2π |〈kl|µ|1s〉|2 (6)

with Ek = E1s + ω (Ek denotes Ekl); µ is the dipole coupling.
The term

∑
R

|VCR |2
ωC−ωR

GCI has no pole in the denominator; it is
real and it corresponds to a shift. Neglecting the shifts, Eq. (2)
now reads

(
z − ωC + 1

2 iγC

)
GCI = VCIGII . (7)

Similarly to Eq. (2), we introduce the width of state I in Eq. (1):

(
z − ωI + 1

2 iγI

)
GII = 1 (8)

with

γI = γHe = 2π |〈1sk′l′|µ|1s2〉|2 (9)

and Ek′ = E1s2 + ω − E1s . Now, using the above equations
for GII and GCI , we express GFI as

GFI = VFCVCI

(z − ωF )
(
z − ωC + 1

2 iγC

)(
z − ωI + 1

2 iγI

) (10)

or

GFI = VFCVCI

(z − z1)(z − z2)(z − z3)
(11)

with z1 = ωF , z2 = ωC − 1
2 iγC , and z3 = ωI − 1

2 iγI . The
two-photon transition amplitude UFI (T ) is obtained as the
inverse Laplace transform of GFI (z); at the end of the laser
pulse (i.e., at time T ), it reads

UFI (T ) = VFCVCI

[
e−iz1T

(z1 − z2)(z1 − z3)
+ e−iz2T

(z2 − z1)(z2 − z3)

+ e−iz3T

(z3 − z2)(z3 − z1)

]
. (12)

The photoelectron spectrum corresponds to the spectrum of
final states of the two-photon two-electron transition; it is given
by limT →∞ |UFI (T )|2. In the above expression, two of the
three exponentials (i.e., the two last ones) decay as T → ∞.
Finally, after some straightforward algebraic manipulation, the
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transition amplitude is written as

U
(2)
k,k′(T → ∞) = 〈1sk′l′|µ|1s2〉〈kl|µ|1s〉{

[Ek + Ek′ − (E1s2 + 2ω)] + 1
2 iγHe

}{
[Ek − (E1s + ω)] + 1

2 iγHe+
} . (13)

Taking into account antisymmetrized states and all channels
leading to double ionization, the resulting one-electron energy
spectrum given by

dPk

dk
= 1

2

∫
Ek′

dEk′ |U (2)
k,k′(T → ∞) + U

(2)
k′,k(T → ∞)|2

(14)

is dominated by two peaks, centered at energies E1 =
E1s2 + ω − E1s and E2 = E1s + ω. In the resonance regions

the interference term plays a negligible role in the above
expression. Therefore, around the peaks

dPk

dk
≈ 1

2

∫
Ek′

dEk′
[∣∣Ũ (2)

k,k′(T → ∞)
∣∣2 + ∣∣Ũ (2)

k′,k(T → ∞)
∣∣2]

,

(15)

with

∣∣Ũ (2)
k,k′(T → ∞)

∣∣2 = 1

4π2

γHeγHe+[
(Ek + Ek′ − E1s2 − 2ω)2 + 1

4γ 2
He

][
(Ek − E1s − ω)2 + 1

4γ 2
He+

] . (16)

Figure 2 shows the electron energy spectrum calculated
for ω = 2.1. It is based on realistic values of the ionization
rates of He and He+, 0.066 and 0.061, respectively. These
rates have been calculated for an intensity of 0.1 (14.04 ×
1015 W/cm2). This rather large value has been chosen for
the sake of clarity in Fig. 2 , a smaller intensity resulting in
narrower (and higher) peaks. We recognize the two structures,
at the expected positions. It is worth recalling that the peaks
have unequal heights and that their widths are the result of a
convolution, and not from a simple Lorentzian.

C. The direct regime (ω < 2)

We focus on Eq. (5); the term
∫
F

|VCF |2
z−ωF

GCI has no pole, it is
real, and it corresponds to a shift. On the other hand, the term∑

R
|VCR |2
z−ωR

GCI now has a pole, associated with a resonant (or
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FIG. 2. TPDI one-electron energy spectrum calculated for three
photon energies, given in the figure. The equation (15) is used with
γHe = 0.066 and γHe+ = γR = 0.061.

quasiresonant) coupling between the 1s state and a Rydberg
state nl (E1s + ω � Enl). Considering the latter case, in the
limit of high-lying Rydberg series the discrete summation over
R in the right-hand side of Eq. (5) is written

∑
R

|VCR|2
z − ωR

GCI ≈
∫

R

dER

�ER

|VCR|2
z − ωR

GCI (17)

with �ER = Z2

n3 , that is, the spacing between Rydberg states,
and Z = 2. In the above expression, we have simply trans-
formed a discrete summation into an integral one by introduc-
ing the density of energy 1/�ER . Following the procedure
previously explained, the integration over R separates into a
real and an imaginary part. The latter contribution corresponds
to a width, given by

γR = 2π
1

�ER

|〈nl|µ|1s〉|2 (18)

with Enl � E1s + ω. It is important to notice that this proce-
dure is valid provided that γR � �ER; in other cases γR is not
defined. Here we do not consider the particular problem of core
resonances, where the 1s state of He+ is resonantly coupled to
an isolated He+ nl state. It is well known that core resonances
strongly perturb two-photon single-ionization cross sections,
but there is no evidence that they also affect TPDI; the problem
remains open [4] and is out of the scope of the present
paper. Here, the He+(1s) state “decays” to a dense He+(nl)
Rydberg series, with a rate γR . This problem has similarities
with a discrete state coupled to a discretized continuum (a
detailed development of which may be found in Cohen-
Tannoudji et al. [12], Chap. I; see also [13], Appendix B).
Following the development leading to Eq. (10), GFI now
reads

GFI = VFCVCI

(z − ωF )
(
z − ωC + 1

2 iγR

)(
z − ωI + 1

2 iγI

) . (19)
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The transition amplitude is given by

U
(2)
k,k′(T → ∞) = 〈1sk′l′|µ|1s2〉〈kl|µ|1s〉{

[Ek + Ek′ − (E1s2 + 2ω)] + 1
2 iγHe

}{
[Ek − (E1s + ω)] + 1

2 iγR

} . (20)

In contrast with the case of ω > 2, (E1s + ω) is strictly negative
(therefore [Ek − (E1s + ω)] > 0). It is easy to show that the
above amplitude is maximum for [Ek + Ek′ − (E1s2 + 2ω)] =
0 and Ek = 0, since these values minimize the denominator.
The resulting one-electron spectrum, given by

dPk

dk
= 1

2

∫
Ek′

dEk′
∣∣U (2)

k,k′(T → ∞) + U
(2)
k′,k(T → ∞)

∣∣2
,

(21)

will show two maxima at the edges (i.e., at the excess and
zero energies), corresponding to the absorption of most of the
excess energy by one of the electrons while the other electron
has minimum energy. This behavior of the electron energy
distribution has been in fact already noticed for ω = 1.84
(50 eV) [2]. It is worth noticing that neglect of γR in the
expression of the two-photon amplitude given above would
lead to a divergence as ω and Ek (Ek′) tend to 2 and 0,
respectively.

Figure 2 shows the one-electron energy spectrum calculated
for ω = 1.95. The calculation is based on expressions (20)
and (21), with γR = γHe+ (see Sec. II D). In the present
case �ER ≈ 0.018 (n = 6) and the condition given above,
γR � �ER , is fulfilled. Incidentally we note that, at intensities
of the order of 1012–1013 W/cm2, γR is much smaller and
the photon energy should be much closer to threshold in
order to fulfill the above inequality. In practice, Eq. (15) can
be used to calculate the one-electron energy spectrum. For
ω = 2.1 (which is the case examined in the previous section),
the TPDI total probability (obtained by integrating the density
of probability shown in Fig. 2) is close to 1, it is interesting
to note that the double continuum is much less populated in
the present case. Indeed, TPDI is now in competition with
two-photon excitation-plus-ionization (TPEI) process, which
dominates.

At this point it is important to discuss our approach in view
of other models developed in the context of direct TPDI. It
is worth noticing that, if γR 	 �ER , γR is not defined [see
the remarks below Eq. (18)] and the Rydberg series plays no
role. Under the latter conditions, our approach is similar to the
simple model developed in [3] that ignores both correlation
and screening in the final and intermediate states. The model
leads to a simple expression of the differential TPDI cross
section (since the TPDI probability varies linearly with T

within LOPT it is appropriate to calculate cross sections); see
Eq. (8) in [3]. The results agree qualitatively and quantitatively
with other calculations, at least for ω > 1.84 (50 eV), where
it is not critical for the electrons to interact strongly in order
to overcome the attraction of the nucleus [2]. In particular
the model shows the U-shaped electron distribution and the
rise of the TPDI probability as the photon energy increases,
in agreement with TDSE results (see [2] and [7], and other
references therein). The present work is complementary to
previous calculations. It shows that the situation becomes

more complex for ω ≈ 2: close to threshold the notion of
the cross section loses its pertinence; the TPDI cannot be
simply expressed as a rate for given pulse parameters (intensity,
wavelength, and duration), and Eq. (12) should be used to
calculate the differential probability. At resonance the TPDI
regime is neither direct nor sequential and there is a third open
channel; the two-photon excitation-plus-ionization channel.
Finally, for ω > 2, we reach the sequential regime analyzed
above, where the TPDI probability varies quadratically with
T far from the saturation regime.

D. The sequential threshold limit (ω = 2)

Finally we compare γR and γHe+ at the threshold limit.
There exists a well-known analytical expression for the radial
part of the orbitals kl and nl in the region of the nucleus
(r 	 n/Z and kr 	 1; see Bethe and Salpeter [14]),

Rkl ≈ n3/2

Z
Rnl (22)

with Z = 2 in the present case. The immediate consequence
[see Eqs. (6) and (18)] is that, in the region of threshold,

γR ≈ γHe+ . (23)

Considering the above equality, the similarity between
Eqs. (20) and (13) is obvious. This simply demonstrates the
continuity of the TPDI process, from the direct (ω < 2) to the
sequential (ω > 2) regime.

Figure 3 shows the one-electron energy spectrum calculated
at ω = 2. Using negative values of Ek (Ek′), it is easy to
calculate the one-electron energy spectrum associated with
TPEI; it is shown in Fig. 3 for ω = 2, beside the TPDI one-
electron energy spectrum. Here TPDI and TPEI have equal
total probability.

-0.4 0.0 0.4 0.8 1.2 1.6
Electron energy (a.u.)

0
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TPEI
TPDI

FIG. 3. TPDI and TPEI one-electron energy spectrum calculated
for ω = 2. The equation (15) is used with γHe = 0.066 and γHe+ =
γR = 0.061 (see the text).
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III. CONCLUSIONS

We have investigated two-photon double ionization in the
region of the sequential ionization threshold. Within the given
approximations, our treatment is rigorous and it takes into
account all open channels, including the Rydberg state series
populated through TPEI. The latter channel plays an important
role. We have found a simple formula to calculate the TPDI
electron spectrum in the region of threshold [Eqs. (20) and
(21)]; it can be easily extended to TPEI. As the photon energy
decreases from values larger than 2 to lower ones, TPDI
continuously evolves from sequential to direct double ion-
ization. In the sequential regime, the electron energy spectrum
is dominated by two peaks, related to the ionization of He
and He+. We have already noticed that the electron interaction
energy (〈1s2|1/r12|1s2〉 in our model) is fully transferred to the
first ionized electron. A U-shaped structure emerges when the

direct regime is reached (1.45 	 ω � 2). In the latter case, the
two-step model (ionization of He followed by the ionization
of He+) still holds, with the difference that the first ionized
electron absorbs most of the electron interaction energy, while
the remaining interaction energy is transferred to the other
electron. As we go “deeper” in the direct regime (e.g., with
ω = 1.65) the latter picture is not valid; the two electrons being
emitted almost simultaneously, they strongly interact, with
important consequences on the angular and energy electron
distributions (see [15], and other references therein). Regard-
ing future investigations, a more sophisticated treatment of
electron correlations is certainly required in order to evaluate
accurately the relative importance of the different open
channels at threshold. As a matter of fact, we do not expect that
correlation effects, calculated beyond the zero-order approxi-
mation, will modify the qualitative conclusions of this work.
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