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Energy shifts of Rydberg atoms due to patch fields near metal surfaces
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The statistical properties of patch electric fields due to a polycrystalline metal surface are calculated. The
fluctuations in the electric field scale like 1/z2 when z � w, where z is the distance to the surface and w is
the characteristic length scale of the surface patches. For typical thermally evaporated gold surfaces these field
fluctuations are comparable to the image field of an elementary charge, and scale in the same way with distance to
the surface. Expressions for calculating the statistics of the inhomogeneous broadening of Rydberg-atom energies
due to patch electric fields are presented. Spatial variations in the patch fields over the Rydberg orbit are found
to be insignificant.
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I. INTRODUCTION

Excitation to a Rydberg state enhances an atom’s interaction
with a metal surface. At large atom-surface distances, this
results in energy-level shifts that can be calculated using
first-order perturbation theory [1]. At smaller distances, the
influence of the surface is more drastic—the Rydberg atom can
be “field-ionized” by the surface [2,3]. These phenomena may
be visualized as arising from the interaction of the Rydberg
atom with the electric fields due to its electrostatic “image.”
Compared to an atom in the ground state, a Rydberg atom has
an enhanced susceptibility to these fields. This is because the
Rydberg electron experiences a greatly reduced electric field
from the ion core due to their larger average separation.

Polycrystalline metal surfaces generate inhomogeneous
“patch” electric fields outside of their surfaces [4]. These
fields may also influence Rydberg atoms, potentially causing
both level shifts and ionization and competing with the more
intrinsic image charge effects. In general, patch fields arise
from the individual grains of a polycrystalline surface exposing
different faces of the bulk crystal. Each face has a different
work function due to differing surface dipole layers [5]. For
example, Singh-Miller and Marzari [6] have recently calcu-
lated the work functions of the (111), (100), and (110) surfaces
of gold and found 5.15, 5.10, and 5.04 eV, respectively. These
differing work functions correspond to potential differences
just outside the surface beyond the dipole layer. Consequently,
charge density must be redistributed on the surface to satisfy
the electrostatic boundary conditions, producing macroscopic
electric fields [5]. While patch fields were first discussed
extensively in the context of thermionic emission [4], they
may be present near polycrystalline metal structures of any
type, including electrodes and electrostatic shields.

Recent advances in the trapping of cold atoms near
surfaces have opened up the possibility of precision studies
of Rydberg-atom–surface interactions as a function of atom-
surface distance. For example, Tauschinsky et al. [7] have
recently observed electromagnetically induced transparency
due to Rydberg excitation of atoms at 10 to 200 µm away
from a gold surface. Lesanovsky et al. [8] have calculated
some interesting properties of Rydberg atoms exposed to
inhomogeneous magnetic fields due to magnetic microtraps,
and Crosse et al. [9] have recently calculated level shifts and
transition rates of rubidium atoms near a copper surface at

room temperature. In addition, there are several quantum-
information proposals that will involve Rydberg atoms in
proximity to metal surfaces [10–12]. Consequently, it is
desirable to be able to estimate the influence of patch fields on
Rydberg atoms. In this paper, we examine relevant models
of the surface, report on the statistics of the patch fields,
and determine the influence of these fields on Rydberg-atom
energies. We assume that the atom-surface distance is large
compared to other relevant length scales and that the atomic
energy-level shifts can be treated using perturbation theory.

The model we adopt for the patch fields is similar to one
used by Rzchowski and Henderson [13]. Their work was
motivated by the Witteborn-Fairbank experiment [14], which
was intended to compare the force of gravity on electrons
and positrons. Due to the relatively weak gravitational force,
electrostatic shielding was necessary—the charged particles
traveled down the axis of a hollow copper cylinder used for
shielding. It was important to understand the variations in
electrostatic potential along the axis of this tube due to patch
fields, and Rzchowski and Henderson obtained results relevant
to this geometry. In the present work, we concentrate on a
planar surface and the statistical properties of the electric field
and its spatial derivatives.

II. RYDBERG-ATOM ENERGY SHIFTS IN
EXTERNAL FIELDS

We first calculate the energy-level shifts of a single atom in
response to the local electrostatic potential V (x,y,z) created by
the patches. This will allow us to calculate the statistics of the
energy shifts once the statistics of the patch fields are known.

We consider an addition to the atom’s Hamiltonian H0 of
the form [15]

H1 =
∑

i

µiDiV (x,y,z) + 1

6

∑
i,j

Qi,jDiDjV (x,y,z) + · · · ,

(1)

where µi and Qi,j are the dipole and quadrupole moment
operators, respectively, and Di is the operator representing the
derivative with respect to the ith argument. The quadrupole
and higher-order moments will allow us to consider
the influence of an electric field varying over the extent of the
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atom—of particular interest because Rydberg atoms are much
larger than ground-state atoms.

We will consider the shift given in Eq. (1) using first-order
perturbation theory. In the absence of preexisting external
fields, there would normally be no contribution from the dipole
term to the first-order shift. However, we will assume that a
dc electric field aligned with the surface normal ẑ has been
applied. This may be done to enhance sensitivity to patch
fields, break degeneracies, or for technical reasons (see, for
example, Ref. [12]). The effect of this field is incorporated into
H0. Our basis states (eigenstates of H0) will be considered to
have a cylindrically symmetric charge distribution about the
surface normal. This symmetry constricts the moments, so that
µx = µy = 0, Qxx = Qyy = − 1

2Qzz, etc.
Equation (1) involves the evaluation of arbitrary order

mixed derivatives of the potential in all three spatial di-
mensions. However, the introduction of cylindrical symmetry
allows a considerable relaxation in this requirement if spherical
(instead of cartesian) multipole moments are used. Therefore,
the external potential due to the patches is expanded in the
form

V =
∑
�,m

d�,mr�C�,m(θ,φ) (2)

about the location of the atom, where d�,m are the expansion
coefficients, r is the distance away from the center of the
expansion, θ and φ the normal spherical coordinates with
the polar axis aligned with the surface normal, and C�,m are
rescaled spherical harmonics; C�,m = √

4π/(2� + 1)Y�,m.
To obtain an expression analogous to Eq. (1), this new

expansion of the potential is substituted into the volume
integral for the electrostatic energy due to a charge distribution
ρ in an external potential, E = ∫

dτ ρV , with dτ as the
differential volume element. We obtain

E =
∑

�

d�,0

∫
dτρr�P�(cos θ ), (3)

where terms involving m �= 0 do not appear due to the
cylindrical symmetry of the charge distribution, and P� are
the Legendre polynomials (=C�,0). The values of the d�,0

coefficients in the expansion can be readily determined from
Eq. (2) by evaluating the derivatives of the potential with
respect to the distance to the surface z evaluated at the origin
of the expansion, giving d�,0 = (1/�!)D�

zV (x,y,z), where D�
z

means take the �th derivative with respect to the z coordinate.
The first-order energy shift can be written in a form that only
depends on the gradients of the field in the z direction evaluated
at the location of the atom:

E1 =
∑

�

M�

[
D�

zV (x,y,z)
]
, (4)

where M� has been introduced to simplify notation. To
evaluate these matrix elements, we assume that only the
charge distribution due to the Rydberg electron needs to be
accounted for, so that M� = (1/�!)qe〈ψ0|r�C�,0|ψ0〉, where qe

is the electron charge, and |ψ0〉 are the energy eigenstates
of the zeroth-order Hamiltonian H0. The values of M� are
proportional to the normal spherical multipole moments (see,
for example, Ref. [16]).

III. STATISTICS OF THE PATCH FIELDS

As shown in the previous section, the energy of any
particular atom depends on the field at its location. Consider
an ensemble of atoms placed a certain distance z away
from the surface. In general, the patch fields are statistical
in nature, so that spatial inhomogeneities in the field will
cause an inhomogeneous broadening in the ensemble. We can
characterize this by the variance in the energy of a given state,
calculated using Eq. (4), assuming that the average shift is
zero:

〈(�E)2〉C =
∑
�,�′

M�M�′
〈[
D�

zV (x,y,z)
][

D�′
z V (x,y,z)

]〉
C
, (5)

where 〈· · ·〉C is used to specify an ensemble (classical)
expectation value.

Therefore, to calculate the variance of atomic energy
levels 〈(�E)2〉C due to the statistical fluctuations in the
field above the surface, we will develop expressions for
〈[D�

zV (x,y,z)][D�′
z V (x,y,z)]〉C . For example, the most impor-

tant statistical fluctuation for Rydberg-energy-level shifts is of
the electric field in the z direction, which can be characterized
by its root mean square (rms) value: [〈F 2

z 〉 − 〈Fz〉2]1/2, which
is given by {〈[D1

zV (x,y,z)][D1
zV (x,y,z)]〉C}1/2.

To calculate these statistical averages, we start by con-
sidering the solution of Laplace’s equation ∇2V (x,y,z) = 0
above a plane surface when the potential on the surface is
specified. One particular solution of Laplace’s equation is:
V (x,y,z) = V0 eikxx+ikyy e−kz, where k =

√
k2
x + k2

y and kx ,
ky and V0 are constants. Consider the following superposition
of similar solutions (all integrations are assumed to run from
negative to positive infinity, unless otherwise specified):

V (x,y,z) =
∫

dkxdkyṼ (kx,ky) eikxx+ikyye−kz. (6)

We may use this expression to determine the potential over
any surface in the plane z = 0 with a defined potential Vs(x,y)
by using the inverse Fourier transform to determine Ṽ (kx,ky):

Ṽ (kx,ky) = 1

(2π )2

∫
dxdyVs(x,y) e−ikxx−ikyy . (7)

Putting Eqs. (6) and (7) together gives

V (x,y,z) = 1

(2π )2

∫
dkxdkye

ikxx+ikyye−kz

×
∫

dx ′dy ′Vs(x
′,y ′)e−ikxx

′−ikyy
′
. (8)

Consider the covariance between derivatives of the field
evaluated at two points a and b in space, determined using the
preceding equation:

〈[
D�

pV (xa,ya,za)
][

D�′
q V (xb,yb,zb)

]〉
C

= 1

(2π )4

∫
dkx,adky,adkx,bdky,bdx ′

ady ′
adx ′

bdy ′
b

× exp[ikx,axa + iky,aya − kaza − ikx,ax
′
a − iky,ay

′
a

− ikx,bxb − iky,byb − kbzb + ikx,bx
′
b + iky,by

′
b]

× (αp,a)�(α∗
q,b)�

′ 〈Vs(x
′
a,y

′
a)Vs(x

′
b,y

′
b)〉C, (9)
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where α1,a = ikx,a , α2,a = iky,a , α3,a = −kz,a , α1,b = ikx,b,
α2,b = iky,b and α3,b = −kz,b. As Eq. (5) shows, we only need
p = q = 3 (derivatives in the z direction), but it is not difficult
to deal with this slightly more general form, which will also
allow us to calculate additional quantities, possibly of use to
others, such as the total rms electric field.

We now make an assumption about the statistical nature of
the field: the correlation function C for the surface potential
only depends on the separation between the two points a′ and
b′ (i.e., it is a “stationary” process):

〈Vs(x
′
a,y

′
a)Vs(x

′
b,y

′
b)〉C ≡ C(x ′

b − x ′
a,y

′
b − y ′

a), (10)

and rewrite Eq. (9) using �x ′ = x ′
b − x ′

a and �y ′ = y ′
b − y ′

a:〈[
D�

pV (xa,ya,za)
][

D�′
q V (xb,yb,zb)

]〉
C

= 1

(2π )4

∫
dkx,adky,adkx,bdky,bdx ′

ady ′
ad(�x ′)d(�y ′)

× exp[ikx,axa + iky,aya − kaza − ikx,ax
′
a − iky,ay

′
a

− ikx,bxb − iky,byb − kbzb + ikx,b(�x ′ + x ′
a)

+ iky,b(�y ′ + y ′
a)](αp,a)�(α∗

q,b)�
′
C(�x ′,�y ′). (11)

Use of the familiar relationship
∫

dx ′ exp[ix ′(ka − kb)] =
2πδ(ka − kb), where δ(· · ·) is the Dirac δ function, allows
simplification to〈[

D�
pV (xa,ya,za)

][
D�′

q V (xb,yb,zb)
]〉

C

= 1

(2π )2

∫
dkxdky(αp)�(α∗

q )�
′
exp[ikx(xa − xb)

+ iky(ya − yb) − k(za + zb)]
∫

d(�x ′)d(�y ′)

× exp[ikx(�x ′) + iky(�y ′)]C(�x ′,�y ′). (12)

Assuming the surface has no preferred direction, C(�x ′,�y ′)
is only a function of �r ′ =

√
�x ′2 + �y ′2, and the evaluation

of the last integral in Eq. (12) is equivalent to taking the two-
dimensional (2D) Fourier transform of a radially symmetric
function (see, for example, Ref. [17]):

W (k) ≡ 1

2π

∫
d(�x ′)d(�y ′) exp[ikx(�x ′)

+ iky(�y ′)]C(�x ′,�y ′)

=
∫ ∞

0
d(�r ′)�r ′J0(k�r ′)C(�r ′), (13)

where J0(· · ·) is the zeroth-order Bessel function. Equa-
tion (12) may then be written as〈[

D�
pV (x,y,z)

][
D�′

q V (x + �x,y + �y,z + �z)
]〉

C

= 1

2π

∫
dkxdky(αp)�(α∗

q )�
′
W (k)

× exp[ikx�x + iky�y − 2kz − k�z]. (14)

A generalisation of this result to mixed derivatives is straight-
forward, but the notation is cumbersome. To evaluate Eq. (5),
we need a slightly less general expression:〈[

D�
zV (x,y,z)

][
D�′

z V (x,y,z)
]〉

C

= (−1)�+�′
∫ ∞

0
dkW (k)k1+�+�′

exp[−2kz]. (15)

It is helpful to rewrite this in a dimensionless form. A
natural length scale for the surface is w = 1/

√
d, where d

is the mean areal density of the surface patches. We assume
that the covariance of the surface potential depends on w

in such a way that it can be written in terms of a scaled
covariance function C̃ as C(�r ′) = �2

rmsC̃(�r ′/w), where
�rms � [〈Vs(x,y)2〉 − 〈Vs(x,y)〉2]1/2 is the rms variation of
the surface potential from the mean. We now introduce

W̃ (u) ≡
∫ ∞

0
d(�r ′/w)(�r ′/w)J0(u�r ′/w)C̃(�r ′/w),

(16)

which allows us to rewrite Eq. (15) as

〈[
D�

zV (x,y,z)
][

D�′
z V (x,y,z)

]〉
C

�2
rms/w

�+�′

= (−1)�+�′
∫ ∞

0
duW̃ (u)u1+�+�′

exp[−2u(z/w)]. (17)

In general, for the W̃ (u) that we are interested in (see below),
these integrals do not have closed forms. However, they may
be approximated for large z/w using an asymptotic technique.
Part of the integrand, W̃ (u)u1+�+�′

, may be written as a Taylor
series in u about u = 0. Once multiplied with the rest of the
integrand (exp[−2u (z/w)]), the terms in the resulting series
can be individually integrated in closed form (see, for example,
Ref. [18]). Introducing G(� + �′,z/w) as a shorthand for the
left-hand side of Eq. (17), we obtain:

G(L,z/w) = (−1)L
∑

i=0,2,4,...

(L + 1 + i)!

i!
W̃ (i)(0)

(
w

2z

)L+2+i

,

(18)

where L = � + �′ and W̃ (i)(0) is the ith derivative of W̃ (u)
evaluated at u = 0. Note that from its definition [Eq. (16)],
the odd derivatives of W̃ (u) vanish at u = 0. For use later in
this paper, we write out the first few terms of this series for
small L:

G(0,z/w) = 1

4
W̃ (0)

(
w

z

)2

+ 3

16
W̃ (2)(0)

(
w

z

)4

+ · · · ,
(19a)

G(1,z/w) = −1

4
W̃ (0)

(
w

z

)3

− 3

8
W̃ (2)(0)

(
w

z

)5

+ · · · ,
(19b)

G(2,z/w) = 3

8
W̃ (0)

(
w

z

)4

+ 15

16
W̃ (2)(0)

(
w

z

)6

+ · · · ,
(19c)

G(3,z/w) = −3

4
W̃ (0)

(
w

z

)5

− 45

16
W̃ (2)(0)

(
w

z

)7

+ · · · .
(19d)

The first terms of these series are almost certain to dominate
when z � w. From the definition of W̃ (u) in Eq. (16), it can
be seen that W̃ (0) = 0 requires that the covariance function
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satisfies C(�r ′) < 0 over some range of �r ′, so that the
integral taken over �r ′ is zero. This can be interpreted
physically as antiferroelectric ordering of the surface potential;
a case which seems unlikely to apply to polycrystalline metal
surfaces.

It is important to note that, subject to the assumptions
above, the details of C(�r ′) do not affect the (z/w) scaling of
G(L,z/w) but only its magnitude. Therefore, the z scaling of
the patch fields is independent of the form of C(�r ′).

IV. MODELS FOR THE SURFACE PATCH POTENTIALS

We will now calculate G(L,z/w) using several different
models for the electrostatic potential distribution on the
surface. We start by calculating C(�r ′) for the model and
then use this to find W̃ (0) and thus G(L,z/w).

A commonly used model for the surface potential covari-
ance is of the form [13,19,20]

C(�r ′) = �2
rmse

−γ ( �r′
w

), (20)

where γ is dimensionless and on the order of 1. This model
follows from Poisson waiting statistics for grain boundary
crossings. This, however, is an assumption, and a formal
justification does not appear in the literature. An advantage
of this model is that W̃ (u) has a closed form [using Eq. (16)]:

W̃ (u) = γ

[γ 2 + u2]3/2
, (21)

and thus the coefficients in the expansion of Eq. (19) are readily
determined [W̃ (0) = 1/γ 2, W̃ (2)(0) = −3/γ 4, etc.].

Motivated to provide a justification for Eq. (20) (and to
determine a specific value for γ ), we performed Monte Carlo
simulations to calculate a surface potential covariance function
according to the following recipe: (1) A total of N patch
“centers” were randomly put within a square with sides of
length w

√
N (for a mean areal patch density of 1/w2). (2) At

the center of this square, the patch with the closest center was
determined. (3) As we move out from the center of the square
in a specific direction, eventually another patch center becomes
closer in distance than the initial one. The point at which this
happens is considered to be at a grain boundary, and beyond
this point there is zero correlation between the local potential
and the potential at the starting point in the center of the square.
(4) By repeating this process (generating N new patch centers
within the square, and traveling out from the center until a
grain boundary is reached), we may accumulate a surface
potential correlation function. Provided N is sufficiently large,
this model seems physically reasonable—we are assuming
that grains have grown isotropically outwards from randomly
placed centers on a surface. Figure 1 illustrates the results of
one of these Monte Carlo simulations. A least -squares fit to
Eq. (20) gives γ ≈ 1.9, so that W̃ (0) ≈ 0.28.

We find that, instead of Eq. (20), the covariance is a better
fit to the relationship

C(�r ′) = �2
rmse

−γ1( �r′
w

)−γ2( �r′
w

)2
, (22)

with γ1 ≈ 1.144(4) and γ2 ≈ 0.993(6). The covariance falls off
faster with increasing separation in this model. Man et al. [19]
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2
]

 fit to exp[-γ(∆r'/w)]

FIG. 1. Monte Carlo simulation of the surface potential covari-
ance function and two least-squares-fit models. In the lower plot
a logarithmic vertical axis is used to illustrate the differences at
large �r ′/w.

compared experimentally measured covariance functions with
a model similar to Eq. (20) and also found that, although
exponential decay was exhibited for small separations, the
covariance falls off faster for increasing separations (see their
Fig. 2). However, a detailed comparison with our model is not
possible as their surface was not isotropic.

We have tested this model by analyzing a scanning electron
microscope (SEM) image of an evaporated gold structure on
a silicon substrate (see Fig. 2). The “watershed” segmentation
algorithm [21,22] was used to determine the location of the
grain boundaries. To calculate the covariance function we
assume that the potential measured at two points separated
by �r ′ is perfectly correlated if both points are on the same
grain and uncorrelated if the points are on different grains. As
Fig. 2(c) shows, the computed covariance is in good agreement
with the Monte Carlo simulation [and thus also with the fit of
Eq. (22)].

Unfortunately, a closed form for W̃ (k) does not appear to be
possible for the model of Eq. (22). Nonetheless, it is possible
to numerically compute the W̃ (i)(0) required in Eq. (19) for
any C̃ using [see Eq. (16)]:

W̃ (i)(0) = [D(i)J0(0)]
∫ ∞

0
dαC̃(α)α1+i . (23)

Performing these integrations for the model of Eq. (22), we
find W̃ (0) = W̃ (0)(0) ≈ 0.207 and W̃ (2)(0) ≈ −0.064.

V. FLUCTUATIONS IN THE ELECTRIC FIELD

The G(2,z/w) function determines the variance of the patch
electric fields: 〈F 2

z 〉C ≈ (3/8)(�2
rms/w

2)W̃ (0)(w/z)4. Using
Eq. (14), the variances of the x and y components of the
electric field can be calculated. We find that they are each 1/2
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FIG. 2. (a) SEM image of a gold surface obtained by thermal
evaporation (this is a portion of Fig. 4 of Ref. [23]). (b) Grain
boundaries (indicated by white lines) over a small region of the image
as determined by watershed segmentation. The average area of a patch
is w2 = (44 nm)2. (c) Computed covariance of the surface potential
based on segmentation of the SEM image. To calculate this from the
segmented image we assume constant surface potentials within grains
and completely uncorrelated potentials between grains. The Monte
Carlo simulation of Fig. 1 is also shown for comparison.
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 first non-zero term 

        in expansion
 first two non-zero terms 

         in expansion

FIG. 3. Comparison between numerical calculation of G(2,z/w)
for the model of Eq. (22) [using Eq. (15)], and the asymptotic series
expansion of Eq. (19c), with the W̃ (i)(0) coefficients calculated using
Eq. (23).

of the result for z. Thus, we can summarize; with the model of
Eq. (22) , the rms electric field for z � w is

Erms ≈ 0.39
�rms

w

(
w

z

)2

. (24)

This result is not especially sensitive to the particular patch
model. For example, we have performed numerical simulations
of the patch field over a large array of square patches (each w

by w) with random potentials at distances z � w and found
that the numerical prefactor in Eq. (24) is 0.33 instead of 0.39.
The model of Eq. (20) gives a numerical prefactor of 0.46. An
approximate estimate similar to Eq. (24) has been provided by
Sandoghdar et al. [24] and used by Mozley et al. [25].

It is worth asking when the higher-order terms of Eq. (19)
can be neglected. In Fig. 3, we calculate G(2,z/w) by direct
integration of Eq. (15). The results due to the first two terms
of Eq. (19c) are also shown. The figure indicates that keeping
only the first term is an excellent approximation for z � w

(a similar plot for the model of Eq. (20) is given in Fig. 1 of
Dubessy et al. [20]).

The rms patch field and the image field of an elementary
charge both scale in the same way with distance to the
surface, so it is interesting to compare their magnitudes. If
we assume a potential fluctuation of �2

rms = (90 mV)2 and
w = 50 nm, typical of thermally evaporated gold surfaces
[26,27], we find that the rms electric field due to patches is
approximately 5 times that of the elementary-charge image
field: | 
Ei | = qe/[4πε0(2z)2]. Seeing the influence of the image
field due to an elementary charge near such a surface would
be difficult.

Despite its simplicity and intrinsic importance, there does
not appear to be any clear experimental observations that
would support the validity of Eq. (24). Initial experiments
with Rydberg atoms using microtrap technology have observed
large dc fields due to the deposition of Rb on the surface [7]
(see also Ref. [28]), possibly masking the influence of patch
fields. Alkali adsorption has been recognized as a problem
since the very early days of Rydberg-atom–surface-interaction
experiments [29]. Some theoretical work on the influence
of adsorbates has been done in the context of ion-surface
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collisions [30]. To avoid the problem of adsorbates, Dunning’s
group switched to using xenon Rydberg atoms in their surface
studies [3].

Dunning’s group has recently studied Rydberg-atom image
field ionization using Au(111) samples [31]. The surfaces
consisted of multiple grains, typically 300–500 nm in size.
Possibly due to contamination, the surface potential was
inhomogeneous, with variations of up to 70 mV from the
average over length scales of 50–250 nm (shown in Fig. 1
of Ref. [31]). By using a scanning Kelvin probe to measure
surface potential, they computed the statistical properties of
the electric field above the surface and found that the field
is consistent with their observed image field ionization. For
z >∼ 60 nm, they found Erms ≈ (5 × 10−10 V m)/z2. Assuming
our polycrystalline model is applicable, with �rms ≈ 22 mV
(determined from our analysis of Fig. 1 of Ref. [31]) and w =
100 nm, Eq. (24) predicts slightly larger fields, with Erms ≈
(9 × 10−10 V m)/z2. Given the uncertainty in determining w

from the figure, this is reasonably consistent with the result in
Ref. [31].

It is possible that polar or polarizable contaminants at grain
boundaries could reduce the magnitude of the patch fields.
Darling [32] did extensive scanning Kelvin probe measure-
ments of the work function immediately above copper surfaces
with large grain sizes, found that fluctuations were significantly
less than one might expect, and attributed the reduction to ox-
idation of the surface and physisorbed molecules (e.g., water).

VI. PATCH FIELDS AND RYDBERG ATOMS—ESTIMATES
OF ENERGY-LEVEL SHIFTS

The statistical properties of the patch fields may now be
combined with the atomic properties to predict the variance in
the energy levels using Eq. (5). Writing this as a series in w/z:

〈(�E)2〉C ≈ (M1)2
〈
F 2

z

〉
C

+ 2M1M2〈Fz∂zFz〉C + · · ·

≈ (M1)2(3/8)W̃ (0)
(
�2

rms/w
2
)(w

z

)4

+ 2M1M2(−3/4)W̃ (0)
(
�2

rms/w
3
)(w

z

)5

+O

((
w

z

)6)
. (25)

The first term in this expansion is due to the rms z field
and the atom’s electric dipole and is expected to be dominant
at large z. However, the higher-order terms in Eq. (25) can
be enhanced relative to the lower-order terms by increasing n

(increasing the size of the atom). As the classical outer turning
point of the Rydberg electron is ≈n2 (in atomic units), the
multipole moments of order � scale with n like M� ≈ n2� (see,
for example, Ref. [33]). These higher-order multipoles sense
the field variations over the Rydberg orbit.

Under what conditions will variations in the patch fields
over the extent of individual atoms contribute to the inhomo-
geneous broadening? We may estimate this by equating the
first two terms written explicitly in Eq. (25). This tells us that
the size of the Rydberg atom, n2, has to be approximately
the distance of the atom to the surface before these would
be comparable. Due to the interaction of the Rydberg atom

with its image, this is a highly nonperturbative situation [2].
We conclude that it would be difficult to observe any effect
of the variation in patch fields over the orbits of individual
Rydberg atoms (at least when they have dipole moments of
order n2). An additional qualitative justification is given in the
Appendix.

We now give a simple numerical estimate for the in-
homogeneous broadening of Rydberg energy levels due to
patch fields. When z is large compared to w and the atom
size, the first term in Eq. (25) dominates and the rms
broadening will be δE = M1

√〈F 2
z 〉C . For the extreme Stark

states of hydrogen we have M1 = µz = (3/2)n(n − 1), which
for n = 30 is 1.7 GHz/(V/cm) (this is also reasonable for
nonhydrogenic atoms, assuming a large enough dc field is
applied). For a typical thermally evaporated gold surface
[26,27], we assume �2

rms = (90 mV)2 and w = 50 nm, giving√〈F 2
z 〉C ≈ 0.13 V/cm. We find that δE ≈ 200 MHz—which

should be straightforward to observe in optical excitation. For
Rb atoms, a possible spectroscopic probe would be the last step
in the 5s → 5p → 5d5/2 → nk excitation sequence (where
the last transition is enabled by a dc field sufficient to mix f

character into the reddest nk states).
The extreme Stark states provide the largest broadening.

Broadening due to patch fields will be much lower than this
estimate if low angular momentum states are excited at fields
small enough so that the Stark effect is second order.

VII. SUMMARY AND OUTLOOK

Rydberg atoms with permanent electric dipole moments
have a high sensitivity to electric fields. We have shown
that the patch fields near a typical metal surface can be
large compared to the image field of an elementary charge
and should be expected to cause measurable inhomogeneous
broadening of Rydberg energy levels. The rms spatial variation
in the field strength has a distance dependence of 1/z2. Spatial
variations in the fields over the Rydberg-atom orbit do not
appear to be important. An experiment to verify the magnitude
of the rms field and the expected scaling with surface distance
[see Eq. (24)] would be useful in assessing the feasibility of
coherently manipulating Rydberg atoms near polycrystalline
surfaces and in planning future experiments.
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APPENDIX: POTENTIAL AND FIELD COVARIANCE
FUNCTIONS

There is a qualitative way to understand why the inho-
mogeneities in the patch fields over the extent of individual
Rydberg atoms would be difficult to observe. Equation (14)
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can be used to determine the covariance between the potential
and derivatives of the potential measured at different locations
in space. Using the result for the 2D Fourier transform of a
radially symmetric function we obtain

〈[
D�

zV (x,y,z)
][

D�′
z V (x + �x,y + �y,z + �z)

]〉
C

= (−1)�+�′ �2
rms

w�+�′

∫ ∞

0
duW̃ (u)u1+�+�′

× J0(u�r/w) exp[−u(2z + �z)/w], (A1)

where �r =
√

�x2 + �y2.
Again, like with Eq. (17), this integral can be approximated

for large z/w by writing the W̃ (u)u1+�+�′
part of the integrand

as a Taylor series and then integrating the individual terms.
For covariances in the potential, we obtain for the first nonzero
term

〈V (x,y,z)V (x + �x,y + �y,z + �z)〉C

≈ 1

4
W̃ (0)�2

rms

(
w

z

)2 1(
1 + �z

2z

)2

1[
1 + (

�r
2z+�z

)2]3/2 .

(A2)

For covariance in the z component of the electric field, we
obtain for the first nonzero term:〈[

D1
zV (x,y,z)

][
D1

zV (x + �x,y + �y,z + �z)
]〉

C

≈ 3

8

W̃ (0)�2
rms

w2

(
w

z

)4 1(
1 + �z

2z

)4

[
1 − 3

2

(
�r

2z+�z

)2]
[
1 + (

�r
2z+�z

)2]7/2 .

(A3)

Higher-order terms involve larger powers of w/z. These results
have been written in a way to emphasize the influence of
nonzero �r and �z as a correction factor to the �r = �z = 0
result. It is apparent that z, the distance to the surface, sets the
length scale for spatial variations in the potential and fields.
Thus, we can understand in a qualitative way the results of
the main text: A Rydberg atom should have a size comparable
to its distance from the surface for spatial variations to be
significant.

If an atom is moving near a surface, spatial variations in
the fields manifest themselves as time-dependent variations
experienced in the atom’s frame. In this case, we note that
the calculations of this section could be adapted to determine
the power spectral densities of these fluctuations (using the
Wiener-Khinchin theorem).
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