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Potential splitting approach to multichannel Coulomb scattering: The driven Schrödinger
equation formulation
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In this paper we suggest an approach for the multichannel Coulomb scattering problem. The Schrödinger
equation for the problem is reformulated in the form of a set of inhomogeneous equations with a finite-range
driving term. The boundary conditions at infinity for this set of equations have been proven to be purely outgoing
waves. The formulation presented here is based on splitting the interaction potential into a finite-range core part
and a long-range tail part. The conventional matching procedure coupled with the integral Lippmann-Schwinger
equations technique is used in the formal theoretical basis of this approach. The reformulated scattering problem
is suitable for application in the exterior complex scaling technique: the practical advantage is that after complex
scaling, the problem is reduced to a boundary problem with zero boundary conditions. The Coulomb wave
functions are used only at a single point; if this point is chosen to be at a sufficiently large distance, on using
the asymptotic expansion of Coulomb functions, one may completely avoid the Coulomb functions in the
calculations. The theoretical results are illustrated with numerical calculations for two models.
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I. INTRODUCTION

The three-body Coulomb scattering problem remains both
a formally and computationally challenging problem [1]. An
understanding of three-body scattering has implications to
many fields of science, for example, combustion studies [2],
reactions in the interstellar medium [3], plasma chemistry
[4], muonic atom physics [5], scattering and annihilation
of positrons [6] and other types of gas-phase reactions [7].
Besides their fundamental interest, these applications have
also generated significant experimental efforts. The double
electrostatic storage ring (DESIREE) currently being con-
structed at Stockholm University [8] is designed to investigate
the gas-phase reactions of oppositely charged species, of which
three-body scattering reactions are the experimentally simplest
subset, so generating high-quality data which will challenge
theoretical studies as well as providing much-needed input to
models of interstellar and plasma reactions.

In Ref. [9] we initiated a set of studies with the aim
of obtaining a method for accurately computing state-
selective three-body multichannel scattering which also in-
cluded Coulomb interaction. Our method was inspired by the
mathematically sound approach of Nuttall and Cohen [10]
related to exponentially decreasing or finite-range potentials.
Rescigno et al. [11] modified this approach to scattering
by non-Coulombic but long-range potentials. The recent
formalism developed in [9] provides the mathematically solid
basis for application of the complex scaling method [10,11] to
the single-channel Coulomb scattering problem.

In Ref. [12] we outline how this formalism can be
extended to problems in three-body scattering which include
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Coulomb interactions. This extension is based on the same
formal and numerical technique as was used for computing
three-body resonances [13]. Furthermore, this extension can
also be combined with our three-body resonance methods
[13,14] into a technique by which one may quantitatively
identify the influence of resonances [15] on the three-
body scattering cross section. The purpose of the present
contribution is to study in detail the advantages and limi-
tations of the present formulation of two-body multichan-
nel Coulomb scattering. We are currently investigating the
possibility to extend this formulation to one that can be
generalized to accurate studies of three-body multichan-
nel scattering where collisions between charged fragments
occur [8].

Formally, the formalism is based on splitting the entire
potential into a sum of two sharply cutoff potentials: a core
potential, which is then of finite range, and a tail potential,
where all but the Coulomb interaction can be neglected. In
a recent contribution [16] we studied the structure of the
solutions of the three-dimensional Schrödinger equation for
sharply cutoff Coulomb potentials. The derived formulation
of the three-dimensional driven Schrödinger equation for
problems involving Coulomb interaction is shown to open the
way for the forthcoming applications in three-body systems as
outlined in Ref. [12].

The report is structured as follows. The main ideas behind
this work are described in Sec. II A. We begin by presenting
the two-body multichannel scattering problem in Sec. II B.
The analytically solvable equations for the diagonal part of the
potential tail are investigated in Sec. II C while the formulation
of the problem for the total potential tail is found in Sec. II D.
The complex scaling theory is combined with the scattering
theory in Sec. II E. The numerical implementation of our
theory is presented in Sec. III. Two different examples are
considered in Secs. III A and III B. Finally, Sec. IV presents a
summary of the report.
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II. THEORY

A. Theoretical background

The boundary conditions for a scattering problem are
conventionally specified as the superposition of an incident
wave and an outgoing wave. For two-body systems with central
interactions, the Schrödinger equation can be reduced to a
set of one-dimensional partial-wave equations. The boundary
conditions for a single one-dimensional equation can easily
be specified and numerically implemented. For the three-
body scattering problem the boundary conditions at infinite
distances between the particles are much more complicated.
As such it is difficult to implement these boundary conditions
in practical calculations.

One of the techniques commonly used to avoid the problems
arising from these boundary conditions is the complex scaling
transformation [17] method. In this method one maps the radial
coordinate r onto a path gα(r) in the upper half of the complex
coordinate plane,

r �−→ gα(r), 0 < α � π/2,
(1)

gα(r) ∼ const + r exp(iα), as r → ∞.

This method is widely and successfully used when calculating
resonance energies in problems where the boundary condition
at infinity is a purely outgoing wave. It is well known that
the transformation (1) converts a purely outgoing wave to
an exponentially decreasing function. Thus, if the scattering
problem is reformulated in such a way that the boundary
condition at infinity is a purely outgoing wave then, after a
complex scaling transformation, one obtains a problem with
zero boundary conditions at infinity.

This approach to scattering problems was first reported
by Nuttall and Cohen in 1969 [10]. These authors suggest
applying the Hamiltonian operator to the difference between
the scattering solution of the Schrödinger equation and an
incident wave to yield an inhomogeneous (driven) Schrödinger
equation. This difference between the functions apparently
behaves as a purely outgoing wave at infinity. Hence, this
equation is suitable for complex scaling, and Nuttall and Cohen
[10] used the uniform complex scaling approach

gα(r) = r exp(iα). (2)

However, it appears that this approach is limited to the cases
of finite-range and exponentially decreasing potentials for the
following reason. The inhomogeneous (driving) part of the
driven Schrödinger equation is the product of the potential
energy and the incident wave. The incident wave after the
complex scaling transformation becomes a superposition of
the increasing and decreasing exponential functions at infinity.
Hence, the entire inhomogeneous part diverges. The class of
finite-range and exponentially decreasing potentials forms an
exception where the method of Ref. [10] can be successfully
applied.

The formulation of Nuttall and Cohen was modified by
Rescigno et al. [11] for one-dimensional single-channel long-
range potentials (explicitly except Coulomb potentials). These
authors also start from the equation for the difference between
the scattering solution of the Schrödinger equation and an

incident wave. However, instead of the potential V (r) they use
the finite-range potential VR(r) defined as

VR(r) =
{

V (r), r � R,

0, r > R.
(3)

The driven Schrödinger equation with this potential does not
experience difficulties with divergence after applying complex
scaling since this potential is of finite range. Furthermore, the
solution of the unscaled problem with the truncated potential
VR(r) approaches the solution of the original problem with the
entire potential V (r) as R → ∞. As shown in [11] the same
is not true for the scaled equation. The solution of the scaled
equation with the potential VR(r) gives the incorrect scattering
amplitude since the function (3) is not analytic [17]. Therefore,
the authors of [11] suggested using exterior complex scaling
[18,19]. This transformation belongs to the more general type
given by Eq. (1). It is defined by the function gα,Q where Q

is the scaling point. The inner interval [0,Q] is mapped onto
itself

gα,Q(r) = r, r � Q. (4)

If Q � R, the solution of the scaled equation with the truncated
potential VR(r) approaches the solution of the scaled equation
with the entire potential V (r) as R → ∞. One can calculate
the scattering amplitude with the desired accuracy by choosing
a proper value of R.

This method is not applicable to the Coulomb scattering
problem directly since, as is well known, truncation of the
Coulomb potential leads to noticeable errors for any truncation
radius R. In the two-body scattering problem the Coulomb
potential can be implemented into the discussed approach
if it is included in the free-motion Hamiltonian, while V (r)
describes the short-range part of the interaction. In this
case the incident wave is represented by a Coulomb wave
function, which is known analytically. This approach has
been successfully used for calculations in atomic [20] and
nuclear [21] physics. Unlike the two-body case, an analytic
solution for the Coulomb problem does not exist if three or
more particles are involved in the scattering process.

In our recent report [9] we showed how the method of
exterior complex scaling can be generalized to the Coulomb
scattering problem. Instead of truncating the potential, we
represent the entire potential as V (r) = VR(r) + V R(r), where
VR(r) is the same as in Eq. (3) and the potential tail V R(r) is
given by

V R(r) =
{

0, r � R,

V (r), r > R.
(5)

The approach discussed in this recent report [9] is based on
solving the problem for the potential tail V R(r) at the first
step. The solution of the scattering problem for the potential
tail V R(r) plays the role of the incident wave. On subtracting
this incident wave from the scattering wave function we obtain
a function which asymptotically behaves as a purely outgoing
wave. After the transformation (1) with the function gα,Q

satisfying Eq. (4), the boundary problem for this function has
the trivial zero boundary conditions both at the origin and at
infinity.

032722-2



POTENTIAL SPLITTING APPROACH TO MULTICHANNEL . . . PHYSICAL REVIEW A 83, 032722 (2011)

In the present study we proceed with a formal as well
as numerical study of the two-body single-channel and
multichannel problems. All the potentials discussed in this
treatment that are denoted with a subscript or superscript R

are defined analogously to VR and V R in Eqs. (3) and (5),
respectively.

B. The two-body multichannel scattering problem

In the following discussion, consider the two-particle multi-
channel scattering problem with M channels. We assume that
the interaction between the particles Vnm (n,m = 1, . . . ,M)
depends only on the interparticle distance r and when r → ∞
can be asymptotically represented as

Vnm(∞) = δnmtn. (6)

The quantities tn = Vnn(∞) are called the thresholds. The total
interaction is given by the sum

Vnm(r) = δnm

Zn
1Zn

2

r
+ Vs

nm(r) + δnmtn. (7)

The first diagonal term corresponds to the Coulomb interaction
while Vs

nm(r) describes the short-range interaction which
is assumed to decrease faster than r−2 for large particle
separations. More precisely Vs

nm(r) should obey the condition∫ ∞

0
dr (1 + r)

∣∣Vs
nm(r)

∣∣ < ∞. (8)

The partial-wave multichannel Schrödinger equation for a
given angular momentum � (see, for example, [22–24]) has the
form of a set of equations for partial-wave functions ��

f i(r)[
− d2

dr2
+ �(� + 1)

r2
+ 2kf ηf

r
− k2

f

]
��

f i(r)

+
M∑

n=1

Vf n(r)��
ni(r) = 0. (9)

Here the coupling terms are of the form Vnm(r) =
(2µ/h̄2)V s

nm(r), while the momentum kn and the Sommerfeld
parameter ηn in the nth channel are defined through the
energy E by the expressions k2

n = 2µ(E − tn)/h̄2 and ηn =
Zn

1Zn
2 µ/(knh̄

2).
The partial-wave functions ��

f i(r) satisfy the regularity
condition at the origin

��
f i(0) = 0, (10)

while, as r → ∞, they have the asymptotics

��
f i(r) ∼ δf ie

iσ i
� F�(ηi,ki r) + u+

� (ηf ,kf r)As
f i . (11)

Here the functions

u±
� (ηn,knr) = e∓iσ n

� [G�(ηn,knr) ± iF�(ηn,knr)]

are defined by using the regular (irregular) Coulomb
wave function F� (G�), and σn

� = arg {�(1 + � + iηn)} is the
Coulomb phase shift in the nth channel [25]. If the Coulomb
interaction is not present in a channel then the Coulomb wave
functions in the asymptotics (11) should be replaced by the
Riccati-Bessel ĵ� and Riccati-Hankel ĥ±

� functions [25] since
F�(0,knr) = ĵ�(knr) and u±

� (0,knr) = ĥ±
� (knr).

Notice that scattering will only occur if the energy of the
system is above the lowest channel threshold, i.e., E > min

i
ti .

This implies that the channels i for which k2
i = 2µ(E − ti) >

0 are open, while others for which k2
i = 2µ(E − ti) < 0 are

closed. In the multichannel scattering formalism, presented
below, both cases are treated uniformly. The potential splitting
approach leads to a driven Schrödinger equation, the solution
of which behaves as a purely outgoing spherical wave in the
open channels while it, in the closed channels, is exponentially
decreasing. The exterior complex scaling transforms the purely
outgoing spherical waves into exponentially decreasing func-
tions while the closed-channel function remains exponentially
decreasing. Therefore, all channels in the so-reformulated
multichannel scattering problem are formally closed after
exterior complex scaling.

The quantities As
f i that appeared in Eq. (11) are the

scattering amplitudes due to the short-range interaction V .
Their dependence on � and E is assumed implicitly. The total
scattering amplitudes are given by the sum

Af i = AC
f δf i + As

f i, (12)

where

AC
f = exp

(
2iσ

f

�

) − 1

2i
(13)

is the partial Coulomb scattering amplitude. The partial-wave
cross sections are then determined by the amplitude through
the standard expression

σ �
f i = kf

k3
i

4π (2� + 1)|Af i | 2. (14)

The total cross section corresponding to the reactive scattering
transition i → f is given by the sum over momenta

σ tot
f i =

∞∑
�=0

σ �
f i . (15)

In the following discussion matrix notation is used. Here,
the set of wave functions ��

f i(r) are considered as a square
matrix with the indices f and i running over all values from 1
to M . All matrices are denoted by bold typeface. In this matrix
notation, Eq. (9) takes the form

[H0 + L(r) + C(r) − k2]�(r) + V(r)�(r) = 0. (16)

Here k and H0 represent the diagonal matrices kn δnm and
−d2/dr2δnm , respectively. The centrifugal term L(r), the
Coulomb interaction term C(r), and the short-range potential
coupling matrix V(r) are defined by the following matrix ele-
ments �(� + 1)/r2 δnm, 2knηn/r δnm, and Vnm(r), respectively.
The total Hamiltonian matrix is given by

H = H0 + L(r) + C(r) + V(r).

The regularity condition (10) takes the matrix form

�(0) = 0. (17)

By introducing the diagonal matrix [u(r)]nm = u+
� (ηn,kn r)δnm

the boundary condition (11) can be rewritten as follows

�(r) ∼ F(r) + u(r)As , r → ∞, (18)
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where F(r) = [u(r)D − u∗(r)]/(2i) and [D]nm =
exp[2iσ n

� ]δnm. Due to the short-range interaction V, the
amplitude matrix As is constructed from the partial-wave
scattering amplitudes As

f i with all possible values of indices
f and i. The total scattering amplitude matrix is then given
by the sum

A = AC + As , (19)

where the Coulomb scattering amplitude matrix (13) is denoted
as AC .

Solving Eqs. (16)–(18) by the exterior complex scaling
technique requires a reformulation of the problem. In a similar
approach to that employed in the one-channel case [9,16] the
new incident wave which incorporates the long-range tail of
the interaction potential should be constructed on the first step.
This approach will be described in the next two subsections.

C. Solution to the problem of the long-range diagonal part of
the potential

Here we consider the diagonal part of Eq. (16) with the
interactions due to the long-range tail

[H0 + L(r) + CR(r) − k2]ψR(r) = 0, (20)

with the regularity boundary condition

ψR(0) = 0, (21)

and with the asymptotics as r → ∞
ψR(r) ∼ F(r) + u(r)AR. (22)

Solving the problem (20)–(22) is naturally reduced to the
construction of the solutions to the individual equations[

− d2

dr2
+ l(l + 1)

r2
+ 2knηn

r
θ (r − R) − k2

n

]
ψR

n (r) = 0,

(23)
where θ (t) is the Heaviside step function defined such that
θ (t) = 0, t � 0 and θ (t) = 1, t > 0. The diagonal Coulomb
tail potential CR

nn(r) is represented in Eq. (23) by its explicit
form 2knηn/r θ (r − R). The scattering solution to Eq. (23) can
be constructed using the matching procedure that is described
in detail in [9,16]. If r � R then ψR

n (r) takes the form

ψR
n (r) = ĵ�(knr)aR

n , (24)

or in matrix notation

ψR(r) = ĵ(r)aR, (25)

and if r > R then ψR
n (r) is given by

ψR
n (r) = eiσn

� F�(ηn,knr) + u+
� (ηn,knr)AR

n , (26)

or in matrix notation

ψR(r) = F(r) + u(r)AR. (27)

The matrices aR and AR in Eqs. (25) and (27) are diagonal.
The values of diagonal elements aR

n and AR
n follow from the

matching conditions at the point r = R and read

aR
n = kn

WR(u+
� ,ĵ�)

, (28)

AR
n = exp

[
2i arg

(
aR

n

)] − exp
[
2iσ n

�

]
2i

, (29)

where WR(f,g) denotes the Wronskian f (r)g′(r) − f ′(r)g(r)
calculated at r = R for the functions f = u+

� (ηn,knr) and g =
ĵ�(knr). Finally, the diagonal matrix ψR(r) is defined by

[ψR(r)]nm = ψR
n (r)δnm. (30)

Another kind of the solution to Eq. (20) is defined by the
asymptotic condition [9], as r → ∞,

uR(r) ∼ u(r). (31)

This solution can be constructed by the same matching
procedure just employed and this results in the following form
of the components of uR(r) :

uR
n (r) = u+

� (ηn,knr) (32)

for r > R, and

uR
n (r) = h−

� (knr) cR
n + h+

� (knr) dR
n (33)

for r � R. The coefficients cR
n and dR

n are given by

cR
n = WR(u+

� ,h+
� )/WR(h−

� ,h+
� ),

(34)
dR

n = WR(u+
� ,h−

� )/WR(h+
� ,h−

� ),

where the Wronskians are computed for the functions
u+

� (ηn,knr) and h±
� (knr) at the point r = R. The diagonal

matrix

[uR(r)]nm = uR
n (r)δnm (35)

provides the solution to Eq. (20).
The solutions ψR and uR allow us to construct Green’s

function gR by the standard formula

gR(r,r ′) = k−1ψR(r<)uR(r>), (36)

where r>(r<) = max(min)[r,r ′]. This is possible since the
diagonal matrices ψR and uR commute. By construction this
function obeys the equation

[H0 + L(r) + CR(r) − k2]gR(r,r ′) = Iδ(r − r ′), (37)

where I denotes the unit matrix.

D. Scattering problem for the entire potential tail

Let us now consider the scattering problem for the entire
tail potential matrix CR(r) + VR(r). The coupled Schrödinger
equation in this case reads

[H0 + L(r) + CR(r) − k2]�R(r) = −V R(r)�R(r). (38)

Regularity at r = 0 and asymptotic as r → ∞, the boundary
conditions take the form

�R(0) = 0, (39)

�R(r) ∼ F(r) + u(r)AR. (40)

The solution to Eqs. (38)–(40) are conveniently obtained from
the solution of the Lippmann-Schwinger integral equation

�R(r) = ψR(r) −
∫ ∞

R

dr ′ gR(r,r ′)VR(r ′)�R(r ′). (41)
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This equation uses both the solution ψR and Green’s function
gR that are constructed in the preceding section. Due to Eq.
(8) these types of equations have a unique solution [26]. From
this equation it follows that �R(r), similar to ψR(r), takes a
different functional form if r � R or r > R.

Using Eq. (24) for r � R and the relevant representation of
Green’s function gR(r,r ′), one arrives at the expression

�R(r) = ĵ(r)aR, (42)

where the matrix aR has the form

aR = aR

[
I − k−1

∫ ∞

R

dr ′ u(r ′)V(r ′)�R(r ′)
]

. (43)

For r > R, Eq. (41) reads

�R(r) = ψR(r) − k−1u(r)
∫ r

R

dr ′ ψR(r ′)V(r ′)�R(r ′)

− k−1ψR(r)
∫ ∞

r

dr ′ u(r ′)V(r ′)�R(r ′). (44)

The asymptotic form of �R(r) as r → ∞ can now easily
be evaluated from the right-hand side of this equation by
neglecting the last term, since it goes to zero, and extending to
infinity the upper limit of the integral in the second term. The
result from this is given by

�R(r) ∼ ψR(r) − k−1u(r)
∫ ∞

R

dr ′ ψR(r ′)V(r ′)�R(r ′).

(45)

From this formula the final asymptotic form (40) of �R(r)
as r → ∞ can be obtained by using Eq. (26). Therefore, the
scattering amplitude AR is given by

AR = AR − k−1
∫ ∞

R

dr ′ [F(r ′) + u(r ′)AR]V(r ′)�R(r ′).

(46)
Green’s function GR(r,r ′) which satisfies the equation

[H0 + L(r) + CR(r) − k2]GR(r,r ′)
+ VR(r)GR(r,r ′) = Iδ(r − r ′) (47)

can also be defined with the help of the Lippmann-Schwinger
equation

GR(r,r ′) = gR(r,r ′) −
∫ ∞

R

dr ′′ gR(r,r ′′)V(r ′′)GR(r ′′,r ′).

(48)
This equation is also well defined due to Eq. (8) and has a
unique solution. In the next section we use the asymptotics of
Green’s function GR(r,r ′) in the special cases where r ′ � R

and r � R. This asymptotics can again be evaluated from the
right-hand side of Eq. (48) when r > R and r ′ � R

GR(r,r ′) = k−1u(r)ψR(r ′)

− k−1u(r)
∫ r

R

dr ′′ ψR(r ′′)V(r′′)GR(r ′′,r ′)

− k−1ψR(r)
∫ ∞

r

dr ′′ u(r ′′)V(r′′)GR(r ′′,r ′)

(49)

by neglecting the last term, since it goes to zero as r → ∞,
and by extending the upper limit of integration to infinity in
the second term. This gives the expression

GR(r,r ′) ∼ k−1u(r)�̂
R

(r ′), (50)

where

�̂
R

(r ′) = ψR(r ′)

−
∫ ∞

R

dr ′′ ψR(r ′′)V(r ′′)GR(r ′′,r ′). (51)

By direct calculation, one can verify that the transposed

matrix �̂
R

(r) obeys the Lippmann-Schwinger equation (41)
for �R(r) and, therefore, due to the uniqueness of the solution
of this equation the following equality holds true:

�̂
R

(r) = �RT
(r), (52)

where T is the matrix transposition. The final form of the
desired asymptotics where r ′ � R and r → ∞ are obtained
by taking into account the representation (42) and reads

GR(r,r ′) ∼ k−1u(r)aRT
ĵ(r ′). (53)

E. Driven Schrödinger equation and exterior complex scaling.
The integral and the local representations for the

scattering amplitude.

The solution �R just obtained can now be considered as the
incoming wave. By its construction, the action of the operator
H − k2 on this incoming wave has the form

(H − k2)�R(r) = [CR(r) + VR(r)] �R(r). (54)

If the “scattered” wave �sc is introduced by the expression

�(r) = �R(r) + �sc(r), (55)

then Eq. (16) for �(r) transforms into the inhomogeneous
equation for �sc(r)

(H − k2)�sc(r) = − [CR(r) + VR(r)] �R(r). (56)

This equation has two key properties which are very important
for application of the exterior complex scaling, i.e., the
inhomogeneous term vanishes outside of the radius R and
the solution �sc has purely outgoing asymptotics. The final
form for the driven equation formulation can be obtained from
Eq. (56) by using the following observation. The right-hand
side term in Eq. (56) has the explicit form

[CR(r) + VR(r)] �R(r) = [CR(r) + VR(r)] ĵ (r)aR.

By multiplying Eq. (56) by the inverse matrix (aR)−1 from the
right and then introducing the matrix

�(r) = �sc(r)(aR)−1, (57)

the former equation transforms into

(H − k2)�(r) = − [CR(r) + VR(r)] ĵ (r). (58)

The boundary conditions follow from Eqs. (17) and (18) and
Eqs. (39) and (40):

�(0) = 0,
(59)

�(r) ∼ u(r)(As − AR)(aR)−1, r → ∞.
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Equations (58) and (59) provide us with the final formulation
for the driven Schrödinger equation.

The integral representation for the scattering amplitude
which results from the driven Schrödinger equation formu-
lation is the last feature discussed in this section. In order to
derive this representation Eq. (58) should be recast into

[H0 + L(r) + CR(r) + VR(r) − k2]�(r)

= − [CR(r) + VR(r)] [ĵ(r) + �(r)]. (60)

Using Green’s function GR(r,r ′) this equation can be rewritten
in the integral form

�(r) = −
∫ R

0
dr ′ GR(r,r ′)[CR(r ′) + VR(r ′)][ĵ(r ′) + �(r ′)].

(61)

The asymptotics of the solution �(r) follow now from Eq.
(61) by taking into account the asymptotics (53) of Green’s
function GR(r,r ′). This gives

�(r) ∼ u(r)aRT J(�), (62)

J(�) = −k−1
∫ R

0
dr ′ ĵ(r ′)[C(r ′) + V(r ′)][ĵ(r ′) + �(r ′)].

(63)

By comparing Eqs. (59) and (62) and using the definition
given in Eq. (19) we obtain the final representation for the
total scattering amplitude A

A = AC + AR + aRT
J(�)aR. (64)

Thus if the matrices AR and aR have been calculated then
the driven equation formulation provides an alternative to the
original formulation of Eqs. (16)–(18). The important
feature of this alternative formulation is that in order to
calculate the scattering amplitude A one needs to know �(r)
only in the finite interval (0 < r � R).

The complex scaling application is based on the following
arguments. The function �(r) has purely outgoing wave
asymptotics at infinity. When the complex scaling transforma-
tion is applied to the boundary problem given by Eqs. (58) and
(59), the scaled boundary problem will have the zero boundary
conditions both at the origin and at infinity. The driving term
in the driven Schrödinger equation (58) does not diverge at
large distances under the complex scaling transformation of
the coordinate if, in the exterior complex scaling, a proper
choice of the scaling point is made. Therefore, the necessary
conditions for application of the exterior complex scaling to the
boundary problem given by Eqs. (58) and (59) are fulfilled. The
formal scheme of this application is as follows. If we denote
the complex scaled function as �̃(r) = �(gα,Q(r)) then, for
this function, we obtain the boundary value problem

(H̃ − k2)�̃(r) = −[CR(r) + VR(r)] ĵ (r),

�̃(0) = 0, �̃(∞) = 0, (65)

where H̃ represents the complex scaled Hamiltonian. The
finite-range driving part remains unchanged after the complex
scaling if R < Q. Furthermore, if R < Q then the complex
scaling transformation does not change the value of the
function �(r) in the region r < R and, as such, J(�̃) = J(�).

Thus, provided that we have solved the scaled problem (65) for
�̃, the scattering amplitude matrix A can be computed from
the representation

A = AC + AR + aRT
J(�̃)aR. (66)

The matrices aR and AR defined by Eqs. (43) and (46)
have to be determined in order to use Eq. (66). According
to their definitions, these matrices can be calculated if we
know the function �R(r) in the region r > R. However, the
numerical integration of the differential equation (38) with an
arbitrary potential V(r) and the point R is a problem of similar
complexity to the initial scattering problem of Eqs. (16)–(18).
Therefore, in practical calculations, we choose point R to be
large enough in order to assume that VR(r) = 0. The validity
of this assumption should be checked for each potential under
investigation. The truncation of potentials decreasing faster
than r−2 at infinity does not lead to principal errors contrary to
the truncation of the Coulomb potential. In Sec. III B we will
analyze how the truncation of the potential V affects the total
cross section.

If we set VR = 0, then Eqs. (43) and (46) yield

aR = aR, (67)

AR = AR, (68)

where the matrices aR and AR are diagonal. The integral rep-
resentation for the scattering amplitude (66) then transforms
into

A = AC + AR + aR J(�̃)aR. (69)

Furthermore, the asymptotic relation (62) becomes exact for
r � R. Taking into account the fact that the function at
the point r = R is not complex scaled, �̃(R) = �(R), we
conclude that

A = AC + AR + u−1(R)�̃(R) aR. (70)

The last expression provides us with the local representation
for the scattering amplitude which is an alternative to the
integral representation (69).

III. NUMERICAL APPROACH, RESULTS,
AND DISCUSSIONS

The equation with zero boundary conditions, Eq. (65),
together with the two alternative representations for the
scattering amplitude, Eqs. (69) and (70), can be directly
implemented numerically. However, the derived equations can
be slightly modified in order to obtain a more numerically
stable implementation for large orbital momentum. Calcula-
tions with such momenta are necessary to achieve converged
results for the total cross sections, see Sec. III B. In Sec. II C
we described a method for constructing the solution to the
diagonal part of Eq. (16) which incorporates the long-range
Coulomb interaction for r > R. Another approach is obtained
through splitting the centrifugal term L(r) for each partial
wave,

L(r) = LR(r) + LR(r), (71)
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in the same way as is done for the Coulomb interaction.
Equation (20) in this case transforms into

[H0 + LR(r) + CR(r) − k2]ψR(r) = 0. (72)

Functions ĥ±
� (knr) should be replaced by the trigonometric

functions sin(knr) and e±iknr , respectively, in all the formulas
given in Sec. II C. Then the final equation (65) transforms into

(H̃ − k2)�̃(r) = − [CR(r) + LR(r) + VR(r)] sin(r),

�̃(0) = 0, �̃(∞) = 0, (73)

where [sin(r)]nm = δnm sin(knr). The scattering amplitude
matrix can then be calculated with the same local [Eq. (70)]
and integral [Eq. (69)] representations. However, the matrices
aR and AR must be calculated using the expressions (28) and
(29) with the above-stated modifications.

The boundary value problem of Eq. (73) rather than Eq. (65)
is used in all of the calculations reported in this section. For the
sake of completeness, it should be noted that there exists a third
possibility, where the unperturbed Hamiltonian also includes
the Coulomb potential. Then the solution of the scattering
problem with the long-range diagonal part of the potential
is explicitly given in terms of the Coulomb functions. This
version has been explored, e.g., in Refs. [20,21]. However, it
is not clear how this technique can be extended to systems
consisting of three or more particles. Therefore, we do not
focus on this option in this paper.

We use the derived equations in order to study two simple
models. We consider first the short-range one-channel Noro-
Taylor potential [27] supplied with the Coulomb interaction.
The second example is the more realistic two-channel model
for the N3+ + H → N2+ + H+ reaction [15,28]. This latter
model is composed of the Coulomb interaction and molecular
inverse-power potentials.

As the numerical method for the solution of Eq. (73), we
have chosen the finite-element method (FEM) and discrete-
variable representation (DVR) approach described in [29].
This approach can be considered as a FEM with a special
choice of the basis functions on each element, namely, the
polynomial Lobatto shape functions [29]. With this choice,
the matrix elements of local operators (i.e., potentials) are
approximately diagonal with respect to the basis functions. The
error introduced by such approximation does not influence the
convergence rate of the FEM. The parameters of the numerical
applications were chosen such that the numerical inaccuracies
were negligible.

Although the radius R and the exterior complex rotation
radius Q are allowed to be different in the scheme described
above, we have not found any advantages to keeping them
distinct. Hence, in our calculations we choose Q = R. The
preliminary calculations have also confirmed that the specific
choice of the exterior complex scaling defined by Eqs. (1) and
(4) does not affect the results. Therefore, we have used the
sharp exterior complex scaling [19] in the calculations.

gα,R(r) =
{

r for r � R,

R + (r − R)eiα for r > R.
(74)

In contrast to applications of the complex scaling method to
computing resonances, the choice of the scaling angle α is
not limited here by any additional restrictions. Therefore, the

angle has been chosen to be close to 90◦ to enable the fastest
decay of the wave function at infinity.

In order to employ the boundary conditions in Eq. (73)
into the numerical scheme, we introduce the maximal radius
Rmax > R, where the second boundary condition of Eq. (73) is
implemented. The radius Rmax should be considerably larger
than R, such that the wave function decays on the interval
[R,Rmax]. As soon as Rmax is sufficiently large, no noticeable
errors in the results are observed.

In the following sections we solve the scattering problem
for models in which the interaction contains a short-range part
and a Coulomb part. The partial-wave cross section is defined
in Eq. (14) and according to Eq. (12) includes contributions
from both parts of the interaction.

A. Specific aspects of the calculations with the
Coulomb potential

Consider the scattering problem on the one-channel Noro-
Taylor potential [27] in the presence of the repulsive Coulomb
interaction

V (r) = 15r2e−r , C(r) = 2/r. (75)

Channel indices are not used since the model contains only
one channel. The reduced mass was chosen to be µ = 1. The
total cross section for this potential with the Coulomb tail is
infinite but one can analyze the partial-wave cross sections.
In the computations, we have used 1000 finite elements with
Lobatto polynomials of sixth degree.

Let us first discuss the influence of the radius R on the
partial-wave cross sections. In Fig. 1 we plot the partial-wave
cross sections as a function of R. As the short-range part
of the potential [Eq. (75)] decreases very fast, an accurate
value for the cross section can be obtained already for rather
small R starting from R = 20 a.u. These values depend on the
energy E and on the short-range part of the potential such that
V s(R) 
 E. The accuracy is not influenced by the value of
the angular momentum �, at least for moderate values of �.

FIG. 1. Partial-wave cross sections σ 0, σ 5, and σ 10 (dotted,
dashed, and solid lines, respectively) as a function of the radius R for
the energy E = 3 a.u.
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The matrices aR and AR are defined through the explicit
expressions (28) and (29). The Coulomb wave functions are
used in Eq. (28) and in the local representation (70). Keeping
in mind the three-body generalization of our approach [12],
we can check here whether we can completely avoid using the
Coulomb functions in our calculations.

The standard approach for this check is to use the asymp-
totic expansion of the Coulomb functions for large R. One can
then show (see, for example, [25] for the one-channel case)
that the two first terms in the 1/R, R → ∞, expansion for
u(R) and aR are given by

[u(R)]mn ∼ δmn(1 + un) exp[iθn],
(76)

[aR]mn ∼ δmn(1 − ωn) exp[iηn ln(2knR)].

Here θn = knR − π�/2 − ηn ln(2knR), and

un = ηn + i
[
�(� + 1) + η2

n

]
2knR

,

(77)

ωn = iη2
n + ηn exp[2iknR − iπ�]

2knR
.

In the numerical scheme (73), the similar asymptotics are
modified to be equal to

[u(R)]mn ∼ δmn exp[iθn],
(78)

[aR]mn ∼ δmn exp{i[ηn ln(2knR) + π�/2]},
for the main terms of the asymptotics. The next order terms
are given by

[aR]mn ∼ δmn(1 − ωn) exp{i[ηn ln(2knR) + π�/2]},
(79)

ωn = iη2
n + ηn exp [2iknR] + i�(� + 1)

2knR
,

while u(R) coincides with that in Eq. (77). It is noted that the
expressions (78), (76), and (79) are only valid when |un| 
 1.
Let us check how the derived asymptotic representations in-
fluence the cross-section calculations. In Figs. 2 and 3 we plot
the partial-wave cross sections as a function of the scattering
energy E. We compare the cross sections obtained with three
different boundary conditions at the point r = R, namely,
the exact boundary condition (28), the asymptotic boundary
condition (78), and the asymptotic boundary condition with
the correction term, Eq. (79). For the chosen parameters and
energy regions, the results for the integral and local amplitude
representations are indistinguishable and, therefore, we only
plot the results for the integral representation. For zero angular
momentum, Fig. 2, all curves practically coincide. Some
differences appear only for small energies, where the value
for the asymptotic parameter u given by Eq. (77) approaches
|u| ≈ 0.25 from below for E = 0.03 a.u. and gets even bigger
for smaller energies. For the momentum � = 10, Fig. 3, the
difference between the boundary condition (28) and the two
other boundary conditions is more pronounced and clearly
increases with decreasing energy. Conversely, the results
for the exact boundary conditions (28) and the asymptotic
boundary condition with the correction term (79) agree quite
well, even starting from relatively small energies E � 0.2
a.u. On the contrary, the results for the simple asymptotics
(78) disagree with the correct results over the entire energy

FIG. 2. (Color online) Partial-wave cross section σ 0 as a function
of the scattering energy E. The results for the exact boundary
condition (28) (the solid line), asymptotic boundary condition (78)
(the dashed line), and the asymptotic boundary condition with
the correction term (79) (the dotted line) are shown. The radius
R = 100 a.u.

region shown. Thus, we conclude that the correction term
introduced in Eq. (79) improves the cross section essentially
when compared to the simple asymptotics (78). This also
means that with the correction term (79) we can, for a given
energy, use a smaller value of R in order to reach the same
accuracy.

The accuracy of the correction depends on the parameters
un defined in Eq. (77). If the angular momentum is fixed,
the accuracy is improved when kR increases. Conversely, for
chosen scattering energy and radius R, the accuracy gets worse
when the angular momentum increases.

With respect to the differences between the integral [Eq.
(69)] and local [Eq. (70)] representations of the scattering
amplitudes, they seem to depend on the chosen boundary
conditions. For the exact boundary condition (28) both these
representations give identical values, while they result in

FIG. 3. (Color online) As in Fig. 2, but for the partial-wave cross
section σ 10.
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different values for the asymptotic boundary conditions (78)
and (79). This difference grows when kR gets smaller, as
discussed in Ref. [9].

Our approach is rigorous in treating the Coulomb interac-
tion both in the one-channel case [9] and in the multichannel
case described in the present paper. The one-channel scattering
problem with a potential that decreases at large separations
faster than r−2 was treated in Ref. [11]. The driven equation
of the form (65) was used and then solved numerically. In the
notations of this paper, the scattering amplitude of Ref. [11] is
expressed as

A = J(�̃). (80)

Let us compare this representation with the exact one
[Eq. (69)]. First of all, if the Coulomb interaction is not
present in the system, then AC = 0 and aR = I, AR = 0.
Hence, the representations (69) and (80) are identical. If the
Coulomb interaction is present, we can use the fact that the
matrices aR and k are diagonal and so rewrite the exact matrix
representation (69) in terms of the matrix elements as

Af i = AC
f δf i + AR

f δf i + aR
f J (�)f i a

R
i . (81)

The diagonal elements AC
f and AR

f are equal to zero for the
channels without the Coulomb interaction. Therefore, for all
inelastic transitions and for elastic transitions within the non-
Coulomb channels, we obtain

Af i = aR
f J (�)f i a

R
i . (82)

If the Coulomb potential is absent in both the f and i

channels, then aR
f = aR

i = 1, and there is no difference
between the two representations. If it is present in one or both
of the inelastic channels, then, according to the asymptotic
representation (76), |aR

k | → 1 when R → ∞. This means that
the representation described in Eq. (80) gives the same cross
section as the exact representation (69) provided that R is
sufficiently large. However, it should be noted that, as opposed
to the cross section, the scattering amplitude is not calculated
correctly even in the R → ∞ limit.

In summary of this comparison, we can distinguish three
different combinations of channels f and i for the Coulomb
multichannel scattering problem. If the Coulomb interaction
is absent in both channels (non-Coulomb elastic and inelastic
channels), the results given by the representation shown in Eq.
(80) are identical with the exact values defined with Eq. (69).
If the Coulomb interaction is present in an inelastic channel,
the partial cross sections calculated with Eq. (80) approach the
correct values as R → ∞. For the Coulomb elastic channels,
the representation (80) fails to give the correct answer. In
order to illustrate the latter statement, we compare in Fig. 4
the s-wave cross section calculated with both the exact integral
representation (69) and the scattering amplitude (80) for the
potential (75). These cross sections completely disagree.

B. The N3+ + H → N2+ + H+ reaction

Here we study the two-channel charge transfer
N3+(1s22s2) + H(1s) → NH3+ → N2+(1s22s23s) + H+.

FIG. 4. The s-wave cross section σ 0 as a function of the scattering
energy E. The cross section is calculated using the exact integral
representation (69) (solid line) and the representation given in Eq.
(80) (dotted line).

The matrix potential describing this reaction is parametrized
as

V(r) = 2µ

(
4000r−8 − 20.25r−4 0.5r2e−r

0.5r2e−r −0.235

)
,

(83)

C(r) = 2µ

(
0 0

0 2r−1

)
.

The reduced mass was taken to be µ = 1713.5 a.u. These
parameters are taken from [28] while motivation for the
choice of the model and its parameters are found in [30].
In the numerical study of this system we have also used the
FEM-DVR with the sixth degree Lobatto polynomials. The
number of equidistant finite elements depends on the radius
R. Their density has been chosen to be 12 elements per atomic
unit.

In this discussion we will mainly concentrate on the
development of the method to determine an appropriate choice
of the only parameter in our approach, namely, the cutoff radius
R. In order to show the importance of this choice, we plot in
Fig. 5 the total elastic cross section, σ tot

11 [Eq. (15)], for different
values of R. Analysis of these results shows that although
the forms of the cross sections are similar, calculations with
relatively small values of R essentially underestimate the value
of the cross section compared to those calculated with the
largest value of R. Such a situation can easily result in large
absolute errors in the computation of the the total cross section.
The total rearrangement cross section, σ tot

12 , is plotted in Fig. 6.
In this channel, the total cross section converges already at the
relatively small value of the cutoff radius, R = 50 a.u. Hence
we expect that the R value which guarantees the convergence
depends on the behavior of the channel potentials at large
distances.

Let us therefore estimate the error which is introduced in
the total cross section [Eq. (15)] due to the choice of potential
cutoff. First of all, the cutoff results in a change of each partial
cross section. In order to estimate this change, we should refer
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FIG. 5. Total cross section σ tot
11 as a function of the energy E. The

values for the radii R = 100 a.u. (solid line), R = 70 a.u. (dashed
line), R = 50 a.u. (dash-dotted line) and R = 30 a.u. (dotted line) are
plotted.

to the representation of the scattering amplitude, Eq. (64), for
the uncut potential. Assuming that the change of amplitude
due to cutting the potential is much smaller than the amplitude
itself, we can see that the main change comes from the last
term in Eq. (64). Therefore, for large R, we have

δ A ≈ −WRT
aR J(�)aR − aR J(�)aRWR, (84)

where

WR = k−1
∫ ∞

R

dr ′ u(r ′)V(r ′)�R(r ′). (85)

Using the asymptotic expansions for the functions u(r) and
�R(r) for large r � R, for the matrix elements of the integral

FIG. 6. (Color online) Total cross section σ tot
12 as a function of

energy E. The values for the radii R = 50 a.u. (solid line) and R =
30 a.u. (dashed line) are plotted.

we obtain

WR
mn ≈

∫ ∞

R

dr ′ k−1
m ei(kmr ′−π�/2)Vmn(r ′) sin (knr

′ − π�/2).

(86)
Let us assume that dVmn(r)/dr 
 Vmn(r) for large r . For
example, such an assumption is valid for the important type
of potentials: inverse-power potentials. Integrating Eq. (86) by
parts, we find for the main term of the WR

mn asymptotics at
large R

WR
mn ≈ 1

2
k−1
m Vmn(R)

[
ei(km−kn)R

kn − km

+ ei(km+kn)R−iπ�

kn + km

]
(87)

for kn �= km, and

WR
mn ≈ 1

2
k−1
m Vmn(R)

[
iR

β − 1
+ e2ikmR−iπ�

2km

]
(88)

for kn = km, and where the potential Vmn(r) decreases as ∼
C/rβ at infinity. For the sake of simplicity, we omit here the
indexes mn for the parameter β. These expressions result in
the components of the amplitude change δ A

[δ A]f i ≈ −
∑

n

[
WR

nf Jni(�)aR
n aR

i + Jf n(�)aR
f aR

n WR
ni

]
.

(89)
The corresponding change in the partial cross section [Eq. (14)]
is given by

δσ �
f i �

√
σ �

f iki

√
ki

kf

1

π (2� + 1)
| [δ A]f i |. (90)

The representation (89) shows that, in general, the ampli-
tude error due to the potential cutoff depends on the amplitude
in the various channels. For a specific system, however,
some channel potentials can decrease much faster than others,
resulting in a simpler description. For example, in the system
(83) the off-diagonal potentials decrease exponentially and this
also means an exponential decrease in WR

12 and WR
21. Thus, for

the elastic non-Coulomb channel 1 → 1, we find that aR
1 = 1

and

[δ A]11 ≈ −2J11(�)WR
11. (91)

Taking into account the asymptotics (88), we obtain for the
relative error of the partial cross section

δσ �
11

σ �
11

� 1

3
√

π (2� + 1)
R|V11(R)| (92)

for large R. In this case, the relative error decreases as ∼R−3.
The absolute error of the total cross section is estimated as

δσ tot
11 =

∞∑
�=0

δσ �
11 � R|V11(R)|

∞∑
�=0

1

3
√

π (2� + 1)
σ �

11

� R|V11(R)|
3
√

π
σ tot

11 . (93)

The absolute error also decreases with the same rate ∼R−3

for large R and its value can be easily controlled in the
calculations.

Comparing the results plotted in Fig. 5 and given by
the estimation (93), one can see that Eq. (93) essentially
underestimates the error. In order to clarify this difference,
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FIG. 7. Partial-wave cross section σ �
11 as the function of the

momentum � for the energy E = 2 × 10−5 a.u. is plotted for different
values of R: R = 500 a.u. (solid line), R = 100 a.u. (dashed line),
R = 75 a.u. (dash-dotted line), R = 50 a.u. (dotted line), and R = 30
a.u. (dot-dot-dashed line).

let us discuss the dependence of the partial-wave cross section
σ �

11 on the orbital momentum l. The corresponding values are
plotted in Fig. 7 for a few values of the cutoff radii. The
calculation for R = 500 a.u. can be considered, in the range
of the figure, as a reflection of the exact results. Analysis
of the results shows that there are three distinct regions of
� dependence. For small values of �, this dependence is not
regular. For medium values of � one can see a region of linear
dependence that results in the inverse-power behavior of the
cross section as a function �. Finally, for large values of �,
the partial-wave cross sections decrease very fast. So while
the results for the values of � in the medium region can
be considered as good approximations to the correct cross
sections, the calculation for the large � fails completely.

In order to analyze Fig. 7, we should recall the amplitude
definition (63). For a given cutoff radius R and large �, such
that knR � �, one can use the asymptotics of the Riccati-Bessel
function with respect to its index [25]:

ĵ�(r) ∼ 1√
2e

(
eknr

2�

)�+1

, r � R. (94)

This function decays extremely fast, so does the integral J(�).
However, the exact scattering amplitude for the uncut potential
has different behavior. In order to find its asymptotics, we
notice that the expression (84) does not describe the leading
asymptotic term, since the condition δ A 
 A is no longer
satisfied because of the fast decrease of J(�). Conversely,
the leading asymptotic term is now the integral term in the
representation (46) for AR:

AR
mn ≈ −

∫ ∞

R

dr ′ k−1
m ĵ�(kmr ′)Vmn(r ′)ĵ�(knr

′). (95)

For the 1 → 1 channel, the potential V11 consists of a
superposition of the inverse-power potentials 1/rβ [Eq. (83)].
The integral with 1/rβ standing instead of V11 can be evaluated
explicitly [31]. This leads to the following asymptotics of

the partial-wave cross section (14) at large values of the
momentum � in the case of the inverse-power potential:

σ �
11 ≈ Cβk

2β−6
1 �3−2β. (96)

The constant Cβ is known explicitly and depends only on the
potential. Because the V11 component of the potential (83)
decreases as ∼ 1/r4, this results in the σ �

11 ∼ 1/�5 asymptotic
behavior of the partial-wave cross section. This behavior
explains the linear intermediate region in the partial-wave cross
sections in Fig. 7, especially so for the semi-exact results with
R = 500 a.u.

The numerical results, however, are computed with the
cutoff potential so the amplitude of Eq. (95) is not taken
into account. So when � becomes sufficiently large that the
behavior of the function ĵ�(r) approaches the asymptotics (94),
the behavior of the calculated partial cross sections changes.
They vanish very fast when compared to the correct values, and
this can be seen in Fig. 7. When summing up the partial-wave
cross sections to obtain the total cross sections, this might give
rise to the erroneous impression that the total cross section is
already converged. This implies that such incorrect behavior
can influence the accuracy of the calculated total cross section.
Furthermore, we cannot improve the accuracy by increasing
the number of partial-wave cross sections taken into account,
since the higher partial-wave cross sections are not correctly
calculated.

Let us estimate the sum of discarded partial-wave cross
sections for the inverse-power potential 1/rβ . We denote by
�R ∼ ek1R/2 the value of � when the asymptotics (94) should
be taken into account. The correction to the total cross section
�σ tot

11 can then be estimated by using Eq. (96) as

�σ tot
11 =

∞∑
�=�R

σ �
11 ≈ Cβk

2β−6
1

∞∑
�=�R

�3−2β ≈ σ
�R

11

�R

2(β − 2)
.

(97)

For a given inaccuracy in the total cross section �σ tot
11 ,

the latter estimation can be considered as the equation for
the minimal value of R which guarantees the requested
accuracy. According to the representation (64), the amplitude
inaccuracies of Eqs. (89) and (95) are to be summed in order
to obtain the total estimation. This implies that the double sum
of partial-wave cross sections (92) and (96) gives the estimate
for the inaccuracy in the cross section.

We would like to stress that the estimates of Eqs. (93) and
(97) are not specific to our approach. Any numerical method
which cuts the potential in one way or another, experiences
these errors. This implies that estimates similar to Eqs. (93)
and (97) should be adopted in order to guarantee the accuracy
of the numerical calculations. Finally, we have compared our
two-body partial-wave and total cross section results with those
described in Ref. [15] using a log-derivative method. We find
an agreement within the accuracy discussed. We also find that
the needed computational resources are comparable.

IV. SUMMARY

Inspired by the work of Nuttall and Cohen [10] and
Rescigno et al. [11] we have developed a theory which enables
the calculation of two-body multichannel charged-particle
scattering. This theory is formulated with the aim of being able
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to generalize from two-body to three-body charged-particle
multichannel quantum scattering, as briefly outlined in [12].

The entire potential is split into a core and a tail potential.
The scattering problem in the first step is solved for the
diagonal, analytically solvable part of the tail potential.
The solutions of this problem are then used to construct the
corresponding Green’s function. These are then used to derive
the Lippmann-Schwinger equation, the solution of which is
the wave function corresponding to the entire tail potential,
including the off-diagonal elements. This resulting wave
function is then used as an incident wave when formulating a
driven Schrödinger equation, which has the desired scattering
function as a solution. Using exterior complex scaling, this
scattering wave function can be obtained from a boundary
value problem as in Eq. (65) with zero boundary conditions at
origin and at infinity. The scattering amplitude is then defined
by Eq. (66).

The theoretical results are supported by the numerical
realization using the FEM-DVR technique. The theory is
illustrated by application to both a one-channel and a two-
channel problem which both include Coulomb interaction.
Our formulation for the problem with the Coulomb interaction
is theoretically as well as numerically compared to the one
expired by Rescigno et al. [11]. For multichannel scattering our

analysis shows that the approach for the amplitude extraction
of Ref. [11] gives the correct results for the cross sections
in non-Coulomb channels and asymptotically correct results
for inelastic Coulomb channels. However, the representation
for both the cross section and the scattering amplitudes which
follows from the Rescigno et al. formulation cannot be directly
generalized for Coulomb elastic channels.

For the practical implementation of our approach, we have
introduced a cutoff radius for the short-range potentials. We
have therefore estimated errors in the total cross section due to
this cutoff. For the important class of inverse-power potentials,
we have found simple estimations for the minimal cutoff radius
which guarantees a desired accuracy.
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