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The present study deals with the collisional broadening of monatomic magnesium, evolving in a helium
buffer gas, in the wavelength and temperature ranges 260–310 nm and 100–3000 K, respectively. The computed
emission and absorption spectral profiles are based on the most recent potential-energy curves and transition dipole
moments. The required interatomic Mg(3s2) + He(1s2) and Mg(3s3p) + He(1s2) potentials are constructed from
two different sets. The purpose of this treatment is twofold. First, using the quantum-mechanical Baranger impact
approximation, the width and shift of the line-core spectra are determined and their variation law with temperature
is examined. Then, the satellite structures in the blue and red wings are analyzed quantum mechanically. The
calculations show especially that the free-free transitions contribute most to the MgHe photoabsorption spectra
and that a satellite structure is observable beyond the temperature 1800 K around the wavelengths 272 or 276 nm,

depending on the used potential set. Weak satellites have also been investigated and, for all cases, the obtained
results showed good agreement with those already published.

DOI: 10.1103/PhysRevA.83.032719 PACS number(s): 34.20.Cf, 32.30.Jc, 33.70.Jg, 51.20.+d

I. INTRODUCTION

The investigation of pressure broadening phenomena is
a recognized method commonly employed in molecular
spectroscopy to generate, identify, and assess interatomic
potentials. The spectroscopic analysis and measurements
realized up to now have, indeed, proved the sensitivity of
the spectral parameters to the potentials and transition dipole
moments (TDMs) and established the existence of strong
correlations with their microscopic details [1,2]. Moreover, the
absorption spectral investigations of atoms, including the alkali
metals [3,4] and the alkaline-earth metals [5,6], embedded in
large helium clusters are, in the last few years, among the
other methods usually used for probing the diatomic potentials
[7–9]. It is indeed demonstrated that the microstructure and
physical features of the atom-doped helium clusters rely
basically on pairwise additive models, in which the atom-
atom potential-energy curves are utilized [10]. Alternatively,
much attention has been devoted in recent decades to the
collisional shifts and broadening of the resonance line of
alkali-metal atoms perturbed by parent [11–17] or foreign
[18–25] gases. But fewer efforts have been undertaken to
study theoretically or experimentally the line broadening
of two-electron alkaline-earth-metal atoms in buffer gases
[26–29].

This work proposes to make use of two different po-
tential sets to treat theoretically the collisional broadening
of the alkaline-earth magnesium 3s2 − 3s3p transition line
perturbed by ground helium and examine their effects on the
line core and the far wings of the emission and absorption
spectra. Full, but simplified, quantum-mechanical calculations
are more specifically performed to look at the role the
potentials and temperature can have in the determination of
the spectral profile, shape, and position, and at the possible
occurrence of satellite structures in the wings.

We describe in this paper the construction of the poten-
tials involved in the interactions Mg(3s3p ← 3s2) + He(1s2)
from the most recent and reliable theoretical ground and

excited potential data points. The lack of Rydberg-Klein-Rees
potentials, which are based on spectroscopic observations,
requires from us to rather use for such systems ab initio
data, which thus constitutes, as stated in [30], a valuable
test of the theoretical methods and their outputs. Besides,
since the ground 3s2 1S0 and the first excited 3s3p 1P1

states of magnesium are connected with corresponding electric
transition dipole moments, a part of this work is devoted to their
construction in the long- and short-range distances. The quality
of the potentials as well as of the transition dipole moments and
the obtained numerical wave functions is verified by check-
ing the values of the rotational-vibrational states, the lifetime
of the excited level, and the temperature-dependant collision
integrals and diffusion coefficients. Once all the above is
done, the line-core broadening and shifting and the far-wing
spectra of the magnesium monatoms perturbed by helium are
extensively studied. The results are reported and analyzed in
order to interpret the potential and temperature effects and to
identify the spectral satellite positions and intensities. Unless
otherwise stated, atomic units (a.u.) are used throughout this
paper.

II. THEORY

It is well known from atomic and molecular spectroscopy
[1,2] that, when an absorbing or emitting atom is undergoing
interactions with the atoms of its surrounding environment,
the spectral profile experiences generally two important
phenomena: (i) the broadening, generally accompanied with
shifting, of the line-core spectra, and (ii) the appearance of
a satellite structure in the red and/or blue wings. These two
phenomena are well described theoretically and their quantal
results are summed up here below.

In this work, we are more precisely interested in the
pressure broadening which a magnesium 24Mg undergoes
while interacting with a ground helium He(1s2). We shall in
particular consider the effects on the line core of the spectra

032719-11050-2947/2011/83(3)/032719(10) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.032719


L. REGGAMI AND M. BOULEDROUA PHYSICAL REVIEW A 83, 032719 (2011)

when an excited Mg(3s3p 1P1) emits a photon and on their far
wings when a ground Mg(3s2 1S0) absorbs a photon.

A. Line-core broadening

In setting up his simplified quantum-mechanical theory of
pressure broadening, Baranger [31] made several important
assumptions, including (i) both atomic states involved in
emission are nondegenerate, (ii) the collisions between the
emitting atoms and the perturbers are elastic, and (iii) the
buffer gas mainly consisting of the perturbers is dilute, that is,
the collisions are typically binary and their duration is much
smaller than the duration between two successive collisions.
This latter presupposition constitutes the so-called impact
approximation under which the radiated line has a Lorentzian
shape.

So, within the frames of the simplified quantum-mechanical
impact approximation, the full width at half maximum w and
the shift of the line core d are given in terms of the cross
sections σw(E) and σd (E) effective, respectively, in width and
shift as [31]

w = +n〈vσw〉av, (1)

d = −n〈vσd〉av, (2)

where n is the number density, assumed very low, of the
perturbing gas and v is the relative velocity related to the energy
E = 1

2µv2, with µ being the reduced mass of the interacting
atomic pair. In both equations, the brackets 〈· · ·〉av denote
the average value calculated over the thermal Maxwellian
distribution. The width and shift cross sections are defined
by the sums [2,31]

σw = 4π

k2

∞∑
l=0

(2l + 1) sin2(η′
l − η′′

l ), (3)

σd = π

k2

∞∑
l=0

(2l + 1) sin[2(η′
l − η′′

l )], (4)

where k = √
2µE/h̄ is the magnitude of the wave-number

vector k and l is the angular momentum. The lower η′′
l (E) and

upper η′
l(E) phase shifts, both required for the computation of

the cross sections σw and σd, are determined by solving the
radial wave equation

d2

dR2
�l(R) +

[
k2 − 2µ

h̄2 V (R) − l(l + 1)

R2

]
�l(R) = 0, (5)

in which the radial wave functions �l(R) are forced to be
identified with the asymptotic form

�l(R) ∼ sin

(
kR − l

2
π + ηl

)
. (6)

In Eqs. (5) and (6), h̄ is the reduced Planck’s constant and
V (R) is the potential energy at the interatomic separation R.

It is noteworthy to mention here that more complete models
which deal accurately with pressure broadening and shifting
are available and have been essentially applied to special
systems [32–34].

B. Far-wing broadening

During any photoabsorption process, the absorber-
perturber system witnesses in general four possible transitions,
namely, bound-bound, bound-free, free-bound, and free-free,
from a lower electronic state, noted hereafter with a double
prime, to an upper electronic state, noted with a single prime.
According to the Beer-Lambert law, this process may be
characterized via the photoabsorption coefficient k(ν), with
ν being the frequency of the absorbed photon.

For the specific case of the MgHe system, the main
contribution to the global absorption coefficient comes almost
exclusively from the free-free transitions. This is mainly
because the ground and excited potential-energy curves, as
it will be seen in the next section, are very shallow. If we
denote by nMg and nHe the number densities of the absorber
Mg and perturber He in the gas mixture at temperature T ,

one may define the reduced photoabsorption coefficient as
kr (ν) = k(ν)/nMgnHe. Furthermore, let ν0 denote the unper-
turbed frequency of the Mg(3s3p ← 3s2) line. So, during
the absorption of a photon of energy hν = ε′ − ε′′ + hν0,

the absorber-perturber quasimolecule undergoes a transition
from the lower electronic state (ε′′,J ′′) to the upper electronic
state (ε′,J ′), both connected by the transition dipole moment
D(R). In such a case, the reduced free-free photoabsorption
coefficient is given by [12,35]

kr (ν) = 8π3ν

3c
�

(
2πh̄2

µkBT

)3/2∑
J

(2J + 1)

×
∫ ∞

0
|〈�ε′,J |D(R)|�ε′′,J 〉|2 exp(−ε′′/kBT ) dε′,

(7)

where J is the total angular momentum assumed here to be
very high, thus J = J ′ � J ′′, and ε is the positive energy
of the corresponding free state (ε,J ), associated with the
energy-normalized wave functions �ε,J (R). Strictly speaking,
the total electronic orbital angular momentum L and the
electron spin S are coupled but very weakly and the it can
be ignored [33,36]. Grycuk et al. [37] and Behmenburg et al.
[38] came to this conclusion when they stated that, over the
temperature range of interest, the spin-orbit coupling is very
weak and the electron spin contribution to the total angular
momentum J is neglected. Accordingly, J is equivalent to
a quantum number N in Hund’s case (b) [39]. The wave
functions �ε,J (R) can be determined by solving the radial
wave equation for the relative motion of the nuclei

d2

dR2
�ε,J (R)

+ 2µ

h̄2

[
ε − V (R) − h̄2

2µ

J (J + 1) − �2

R2

]
�ε,J (R) = 0,

(8)

with � being the component of L over the internuclear axis.
Numerically, � = 0 for the 	 states and � = 1 for the 


states. In Eq. (7) above, c and kB have their usual meaning and
� is the probability the absorber-perturber system possesses
in forming a molecule in the lower electronic state.
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TABLE I. Potential short- and long-range parameters in a.u. All the dispersion coefficients, Cn, are from Mitroy and Zhang [44].

A B Dispersion coefficients

Molecular state Set I Set II Set I Set II C6 C8 C10

X1	+ 4.32 3.87 1.28 1.38 21.45 884.00 3.933 × 104

A1
 0.87 28.2 1.24 2.37 43.41 995.30 4.200 × 104

B1	+ 0.30 3.53 0.61 1.45 77.75 10 520 1.445 × 106

III. MAGNESIUM-HELIUM SYSTEM

To perform the needed investigations, the MgHe potential-
energy curves V (R) and the transition dipole moments D(R)
are both required. The ground Mg(3s2) approaches He(1s2)
along the unique singlet potential-energy curve X 1	+. The
photoabsorption scheme

Mg(3s2) + He(1s2) + hν −→ Mg(3s3p) + He(1s2)

leads the excited Mg(3s3p) to interact with the ground helium
along two possible singlet potential-energy curves, A 1
 and
B 1	+, dismissing the triplet molecular states forbidden by
the quantal selection rules [39].

A. Potential-energy curves

We used, to construct each of the X, A, and B potential-
energy curves, two sets of newly computed data points,
designated hereafter as set I and set II.

1. Set I potentials

The MgHe potential-energy curves are based on the very
recent data points borrowed from Hinde [40] for the ground
state and from Mella et al. [41] and Reho et al. [42] for
the excited states. For the ground curve, we used the Hinde
data [40] for the distances 5.67 <∼ R <∼ 22.68. The construction
produced a value of De = 4.73 cm−1 for the dissociation
energy at the equilibrium separation Re = 9.7. For the excited
states, we have constructed the A 1
 symmetry upon the
data points ranging from R = 5.67 to R = 19.84 from Mella
et al. [41] which we extrapolated, in the short range, with
those of Reho et al. [42] for 3.8 � R � 5.3. A dissociation
energy De = 39.64 cm−1 and an equilibrium distance Re =
7.2 are found for this case. The B 1	+ state has been
constructed solely from the data of Mella et al. [41] in the
range 5.67 � R � 17.95. The construction yields the values
De = 0.77 cm−1 and Re = 16.3.

2. Set II potentials

All the potentials here have been entirely constructed from
the data points published in Paul-Kwiek and Czuchaj [27]
and provided to us by Paul-Kwiek. Adopting their potential
values for the internuclear distances ranging from 2.75 to 14,

the X 1	+ curve could produce a well with the depth De =
3.85 cm−1 located at the position Re = 10.5. For both A 1


and B 1	+ states, the constructions used the data points in
the range 2.75 � R � 18 which yielded the well depths 19.50
and 1.28 cm−1 corresponding to the equilibrium positions 8.1
and 16.5, respectively.

Finally, it is important to notice that the larger values of
De for the 1
 versus 1	+ states, found with both set I and
set II potentials, are likely attributed to the existence of a nodal
plane that contains the magnesium nucleus, thus permitting
closer approach of the closed-shell helium atom.

3. Potential constructions

In all cases, the potentials have been constructed by slightly
modifying and appropriately connecting all the data points to
match with the relationship

V (R) = −C6

R6
− C8

R8
− C10

R10
, (9)

in the long-range region, and with the Born-Mayer form

V (R) ∼ A exp(−BR), (10)

in the short-range region [43]. The constants C6, C8, and
C10 are the dispersion coefficients and A and B are two
constant parameters. The dispersion coefficients, adopted from
the recent calculations of Mitroy and Zhang [44], and our
computed values of A and B are reported for the X, A, and B

states in Table I.
The constructed MgHe, sets I and II, potential-energy

curves are shown in the upper line of Fig. 1, through which
one may notice they are all very shallow. We also present
in the lower line of the same figure the potential differences
�VA−X(R) and �VB−X(R). These differences, transformed
in terms of the wavelength λ, exhibit some extrema which
classically mean the possible appearance in the blue wing
of a satellite near 273 nm when the set I potentials are used
and near 268 nm with the set II potentials. Whereas, in the
red wing, the calculations foresee the exhibition of a satellite
structure around 413 nm when set II is used, but nothing is
expected with set I. At such extremum positions, the perturber
He applies the same force on the atomic absorber Mg, whether
the latter is in its ground or excited state, and the classi-
cal expression for the photoabsorption coefficient becomes
singular [2].

B. Transition dipole moments

The construction of the transition dipole moments D(R)
follows in general the same steps as the ones used for the
potential-energy curves. For this sake, we selected exclusively
the values of Paul-Kwiek and Czuchaj [27] over the intervals
3.0 � R � 12.0, for the X 1	+ → A 1
 transition, and 3.0 �
R � 20.0, for the X 1	+ → B 1	+ transition. All these data
are smoothly and suitably connected in the long-range regions
to the analytical form D(R) ∼ D∞ + γ /R6, where D∞ is the
asymptotic value of D(R), chosen here as D∞ = 2.343 [27].
For the short internuclear distances, we forced the transition
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FIG. 1. Potential-energy curves and difference potentials relative to the ground, X 1	+, and the two first excited, A 1
 and B 1	+, states
of the MgHe system. The upper graphs represent the set I and II potential-energy curves. The lower graphs are the plots representing the
potential differences �V	
 = �VA−X(R) and �V		 = �VB−X(R).

dipole moments to behave linearly like D(R) ∼ a + bR. The
adopted values of γ, a, and b are listed in Table II and
the curves of the constructed transition dipole moments are
displayed in Fig. 2, from which one can remark that both
moments get almost the same value D∞ beyond R � 8.

IV. POTENTIAL AND TDM ASSESSMENTS

To authenticate the quality of our constructed potentials,
we propose to compute with these potentials some physical
parameters, such as the rovibrational states and the radiative

TABLE II. Constant parameters adopted for the constructed tran-
sition dipole moments D(R) in both long- and short-range regions.

Transition γ a b

		 +1.31 × 104 +1.697 −0.123
	
 −613.473 +2.065 +0.047

lifetime of the atomic excited level, and to analyze the
temperature-dependant thermophysical properties, namely, the
collision integrals and the diffusion coefficients.

A. Rovibrational states

One of the best methods used to assess the quality of
the constructed potentials is to determine their rotational-
vibrational states and examine how they compare with the
published values. For this purpose, we adapted with some
alterations the subcode Automatic Level Finder (ALF) imple-
mented in the well-known Le Roy’s package LEVEL 7.4 [45].
Our computed values for the two ground and excited MgHe
states are listed in Table III.

Although the potential curves seem to be very shallow and
practically repulsive, the calculations revealed the existence
of a very limited number of rotationless vibrational levels.
Indeed, for the X curve, whether constructed upon the set I or
set II data, we could detect just one single level. This is also the
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FIG. 2. Electronic transition dipole moments that connect the
MgHe ground state X 1	+ to the excited states A 1
 and B 1	+.

The data points upon which these TDMs are constructed are from
Ref. [27].

case with the A curve, where we found three levels when set I
was employed and two levels when set II was employed. The
same number of the rotationless vibrational levels could also be
found by application of the semiclassical method developed
by Gribakin and Flambaum [46]. For the B state, no levels
were found. Table III displays also the energy in cm−1 of the
rovibrational levels, which we compare, for the ground state,
with those published in Lovallo and Klobukowski [30] and
Funk et al. [47]. From the data showed in this table, it comes
out that set II yields in general a lower number of rovibrational
levels than set I and that their corresponding energy values
are, for the X state, less accurate than the published ones.
Unfortunately, no published data could be found for the A

state.

TABLE III. Calculated rovibrational energy levels of the MgHe
ground X 1	+ and excited A 1
 states in cm−1. The results obtained
for both potential sets are compared with those of Refs. [30,47].

X 1	+ A 1


(v,J ) Set I Set II Ref. [30] Ref. [47] Set I Set II

(0,0) −0.795 −0.619 −0.769 −0.734
(0,1) −0.557 −0.408 −0.531 −0.503 −23.958 −10.259
(0,2) −0.111 −0.019 −0.088 −0.074 −22.763 −9.379
(0,3) −20.981 −8.074
(0,4) −18.624 −6.365
(0,5) −15.711 −4.283
(0,6) −12.267 −1.875
(0,7) −8.324 +0.781
(0,8) −3.926 +3.518
(0,9) +0.864
(1,1) −4.530 −1.152
(1,2) −3.751 −0.682
(1,3) −2.613 +0.038
(1,4) −1.164
(1,5) +0.494

B. Radiative lifetimes

Among the most commonly accepted and powerful tools
for the assessment of the adopted interatomic potentials,
transition dipole moments, and dispersion coefficients, and
of the computed energy levels and wave functions is perhaps
the determination of the level radiative lifetimes.

The purpose here is to determine the radiative lifetime of
the A 1
 state of MgHe. It is well known from molecular
spectra theory that the lifetime τ = 1/A(v′,J,�′) depends on
the total spontaneous emission rate [48]

A(v′,J,�′) = 64π4

3hc3

2 − δ0,�′+�′′

2 − δ0,�′

×
∫ ∞

0
ν3|〈�v′,J,�′ |D(R)|�ε′′,J,�′′ 〉|2dε′′ (11)

for the transition from the upper bound level (v′,J,�′) of the
excited state A 1
 to the lower continuum state (ε′′,J,�′′)
of the ground state X 1	+. In Eq. (11), δ is the Kronecker
symbol.

The lifetime of the closest rotationless vibrational level to
the dissociation limit of the MgHe A 1
 molecular state should
theoretically coincide with the lifetime of the excited 3s3p 1P1

state of the isolated Mg atom. Consequently, using the theory
described above, our theoretical calculations generated the
lifetimes τ = 2.096 ns with set I potentials and τ = 2.089 ns
with set II potentials. Both data agree very well with the
value τ = 2.037 ns recommended by NIST [49] and with the
experimental measurements 2.05 ± 0.05 ns of Reho et al. [42],
1.99 ± 0.08 ns of Lurio [50], or 2.2 ± 0.2 ns of Andersen
et al. [51]. However, some newer calculations predicted 2.14 ns
[52,53]. As mentioned by Morton [54], there are at least ten
lifetime measurements for the λ0 = 285.2 nm upper 3s3p 1P1

state, which range, according to this author, from 1.9 to 2.2 ns
and have a weighted mean of 2.00 ± 0.03 ns. For a few number
of rovibrational levels, our computed A 1
 lifetime values are
gathered in Table IV.

C. Collision integrals and diffusion coefficients

We have in addition selected for the evaluation of the
accuracy of the proposed potential curves to deal with the
thermophysical properties of the MgHe gas mixture. More
particularly, we suggest scrutinizing the diffusion phenomenon
of the ground and excited magnesium atoms in a helium
buffer gas and examining the variation law of the diffusion
coefficients with temperature. The diffusion of ground and
excited atoms is an important physical mechanism observed,

TABLE IV. Lifetimes (in ns) of some rovibrational levels of the
MgHe A 1
 molecular state. The first and second entries correspond
to the set I and set II potentials, respectively.

(v,J ) J = 1 J = 3 J = 5 J = 7

v = 0 2.109 2.147 2.106 2.104
2.094 2.121 2.092 2.091

v = 1 2.096 2.094 2.091
2.089 2.088
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TABLE V. Collision integrals �1,1, in Å2, at some specific
temperatures. The values related to the X 1	+ state are compared
with data from Ref. [63].

Temperature X 1	+ A 1
 B 1	+

T (K) Set I Set II Ref. [63] Set I Set II Set I Set II

50 15.44 16.62 15.20 16.60 14.80 32.59 35.43
200 11.61 12.34 11.45 8.52 8.97 22.82 25.20
1000 7.68 8.10 7.51 4.85 4.91 12.73 14.56
3000 5.47 5.55 5.05 3.01 3.03 7.24 8.15
6000 4.30 4.08 3.67 2.11 2.37 4.37 4.96
10 000 3.47 3.11 2.83 1.57 2.03 2.76 3.34

for instance, in the light-induced drift phenomenon [55–60],
originally described by Gel’mukhanov and Shalagin [61].

According to the Chapman-Enskog approximation for
dilute gases, and assuming that Mg is interacting with He
along one specific potential curve, the temperature-dependent
diffusion coefficient D(T ) is expressed in terms of the
diffusion integrals �1,1(T ) like [62]

D(T ) = 3

8n

√
πkBT

2µ

1

�1,1(T )
, (12)

where n is the number density of the helium gas and �1,1(T )
is defined as

�1,1(T ) = 1

2(kBT )3

∫ ∞

0
E2σD(E) exp(−E/kBT ) dE, (13)

with σD(E) being the quantum-mechanical cross section
effective in diffusion

σD = 4π

k2

∞∑
l=0

(l + 1) sin2(ηl+1 − ηl). (14)

Since the Mg atoms interact, while they are excited to the 3s3p

state, with helium via the A 1
 or B 1	+ potential curves,
the total diffusion cross section must have then the statistically
weighted value [62]

σD(E) = 2
3σD(A) + 1

3σD(B). (15)

We present in Table V our results of the modified collision
integrals �1,1 = �1,1/π for some temperatures, and the Xdata
are compared with those of Partridge, Stallcop, and Levin [63].
The agreement between both results is quite satisfactory,
especially at lower temperatures when the set I potential is
used. Some values of the diffusion coefficient, calculated
at pressure p = nkBT = 1 torr with Eq. (12), are listed in
Table VI for a few temperatures lying in the interval 300–
1200 K. This table compares our results for the ground state
with the measurements of Redko et al. [64] and Aref’ev
et al. [65]. It arises that our data are in excellent agreement with
the published experimental values and the relative differences
do not exceed 9% with those calculated with set I and 4%
with set II. Moreover, the variation law of D with T can easily
be determined by fitting our generated MgHe diffusion data
with the analytical expression D(T ) ∼ αT β, with α and β

being two constant parameters listed in Table VII. Finally, one
should note that the absence in literature of the diffusion data

TABLE VI. Difffusion coefficients at 1-torr pressure in units of
102 cm2 s−1. The measurements are from Refs. [64,65].

Temperature Mg(3s2) + He Mg(3s3p) + He

T (K) Set I Set II Measurements Set I Set II

300 3.74 3.53 3.40 ± 0.27a 3.405 3.120
900 26.0 24.6 24.0b 26.37 24.21
1000 31.4 29.8 28.9b 32.24 29.65
1200 43.6 41.4 39.6b 45.74 42.24

aRef. [64].
bRef. [65].

of excited Mg atoms in helium deprived us from supporting
our generated results.

V. RESULTS AND DISCUSSION

From all the results presented in the previous section, one
may conclude that the chosen MgHe potentials as well as the
transition dipole moments are fully reliable and, therefore, can
be used for any further calculations. It is then the time to solve
numerically the radial wave equations (5) and (8), by using the
Numerov algorithm [66], to determine the elastic phase shifts
ηl(E) and the free normalized wave functions �ε,J (R).

A. Width and shift

As already stated before, we utilized the impact approx-
imation method to treat the width w and shift d of the
Mg(3s3p 1 P1 → 3s2 1S0) spectral line when the magnesium
atoms are perturbed by helium. After obtaining the elastic
phase shifts for each involved molecular symmetry, we have
calculated the linewidth and line-shift cross sections, σw and
σd, for energies E ranging from 10−6 to 10−1a.u. The total
cross sections effective in width and shift are the statistically
weighted sums [62]

σ tot
w,d (E) = 1

3σ		
w,d + 2

3σ	

w,d . (16)

Hence, the thermally averaged quantities 〈vσw,d〉av shown in
Eqs. (1) and (2) are given by

〈vσw,d〉av =
√

8

µπ

1

(kBT )3/2

×
∫ ∞

0
σ tot

w,d (E) exp(−E/kBT )E dE. (17)

The computed total width and shift cross sections are shown
in Fig. 3, from which one can notice the net difference,

TABLE VII. Fitting parameters, α and β (both in S.I. units),
for the temperature-dependant diffusion coefficients. The first entry
corresponds to set I, the second to set II.

System 108α β

Mg(3s2) + He 148.8 ± 2.3 1.775 ± 0.002
134.6 ± 2.5 1.781 ± 0.003

Mg(3s3p) + He 73.5 ± 1.6 1.880 ± 0.003
63.7 ± 2.0 1.889 ± 0.005
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FIG. 3. Variation with energy of the linewidth and line-shift cross sections. Both parameters are calculated with the use of the first and
second potential sets.

at smaller energies, between the cross sections calculated
from the potentials based on sets I and II. It is particularly
noticeable that the so-called resonance peaks do not occur
exactly at the same energies. For higher energies, though the
curves are smoother, they seem to have the same behavior.
Figure 4 illustrates the variation with temperature of the
spectral parameters, namely, the linewidth and line-shift
rate coefficients, w/n and d/n. It is worth mentioning that
set II leads to higher values of the spectral parameters w and d

than set I and that the discrepancy between the calculated
rates becomes more and more important with increasing
temperatures. The relative differences between the rates based

on both potential sets could reach 30%. Table VIII lists some
values of the width and shift rates at some temperatures where
our results are compared with the theoretical data of Bottcher
et al. [67]. It is finally important to point out that in the
temperature range 100 � T � 1500 K, the width-to-shift ratio
is found to be nearly 8 to 9.

B. Absorption coefficient

Now, far from the line core, the reduced free-free pho-
toabsorption coefficient kr (ν), described through Eq. (7),
characterizes the collisional broadening of the spectral line
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FIG. 4. Linewidth and line-shift rates as a function of temperature calculated from the set I and II potentials.
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TABLE VIII. Comparison of our results of linewidth and line-
shift rates, for some temperatures, with those of Ref. [67]. All the
data are given in units of 10−9 cm3 s−1.

Temperature w/n −d/n

T (K) Set I Set II Ref. [67] Set I Set II

100 1.956 1.958 0.327 0.364
500 3.496 3.679 3.628 0.386 0.568
1000 4.524 4.733 4.826 0.522 0.754
1500 5.186 5.415 4.884 0.651 0.937

shape in the wings. For the MgHe case, the probability � this
diatomic system possesses to form a molecule is given by [12]

� = ξ
2SMgHe + 1

(2SMg + 1)(2SHe + 1)
, (18)

where ξ = 1 for the B 1	+ state and ξ = 2 for A 1
 state, and
SMgHe = 1, SMg = 1, and SHe = 1 are the spin multiplicities
for the MgHe molecule and Mg and He atoms. The numerical
resolution of the radial wave equation (8) leads to the upper and
lower free energies, ε′ and ε′′, and to the corresponding wave
functions �ε,J (R), which allow the computation of the matrix
elements 〈�ε′,J |D(R)|�ε′′,J 〉. We used in these calculations a
maximum rotational number Jmax = 250 and a frequency step
�ν = 10 cm−1.

Figure 5 illustrates, for wavelengths laying between 260 and
310 nm, the MgHe photoabsorption profiles at three distinct
temperatures: 1000, 2000, and 3000 K. The upper curves are
those obtained with set I potentials and the lower curves with
set II potentials. Both plots present similar shapes, which
consist of two wings around the unperturbed Mg(3s3p ← 3s2)
wavelength, λ0 = 285.2 nm. The calculations revealed that the
blue wing arises from the B 1	+ ← X 1	+ transitions and
the red wing from the A 1
 ← X 1	+ transitions. They also
brought to light that the red wings are particularly alike, that is,
with a smooth profile of the same magnitude and increasing in
intensity with temperature. Whereas, the blue side exhibits at
temperatures beyond approximately T ∼ 1800 K, an apparent
satellite structure, mixed with undulations and located around
different wavelengths, i.e., λ � 276 nm when the first data
set is used, and λ � 272 nm when the second data set is
used. At this point, one should note that both profiles are
remarkably sensitive to the temperature and that the satellite
based on set I seems to be more intense than the one based on
set II. The above satellite positions have already been predicted
classically, namely, 273 and 268 nm, respectively, and the
relative differences do not exceed in both cases 2%. Moreover,
we display in Fig. 6 the absorption spectra at the same
temperature T = 3000 K. The full and dotted lines correspond
to the set I and II calculations, respectively. It appears that both
sets yield in the red wing almost the same profile, but in the
opposite wing their sensitivity to the details of the potentials,
probably to their repulsive walls, is demonstrated.

In Figure 7, we represent, in arbitrary units, the modified
reduced absorption coefficient kr (�ω)(�ω)2, calculated at
800 K, as a function of the frequency detuning �ω = ω0 − ω

(in cm−1) from the Mg atomic resonance line. Since the
potential difference could predict the possible occurrence of
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FIG. 5. MgHe reduced photoabsorption coefficients kr (ν) at three
temperatures: T = 1000, 2000, and 3000 K, generated with set I and
II potentials.

a satellite close to the wavelength 413 nm, which is outside
the initial wavelength domain toward the visible spectrum, it
is reasonable to choose this modification, already suggested
by Lyyra, Sando, and Kleiber [68], to be able to highlight
the weak satellites and to enhance the representation of the
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FIG. 6. Comparison of the MgHe photoabsorption profiles at one
fixed temperature T = 3000 K when the calculations are based on the
set I and II potentials.
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FIG. 7. Modified reduced absorption coefficients kr (�ω)(�ω)2 at T = 800 K as a function of detuning �ω = |ω0 − ω|. The profiles
are based on the use of the two potential sets. The full and empty symbols represent, respectively, theoretical data [27] and experimental
measurements at 700 K [68].

profile. Indeed, there are sometimes broad low extrema in the
potential differences which may not be visible in the k(ν)
spectrum, especially if they are situated in the marginally
thermally accessible regions [69]. Whether the first or the
second interatomic potential set is utilized, our calculations
confirmed the occurrence of satellite peaks in both sides of the
profile. In the blue-wing spectra, the peaks are found close to
the detuning �ω ∼ 1000 cm−1, while, in the red wing, weaker
peaks are located in the vicinity of the value �ω ∼ 300 cm−1.

Furthermore, by applying at T = 800 K fully quantum-
mechanical close-coupling calculations, Paul-Kwiek and
Czuchaj [27] obtained the theoretical results which are plotted
in Fig. 7. We have also represented in the same figure the
experimental data measured at T ∼ 700 K by Lyyra et al. [68].
Note that our values of the far blue- and red-wing spectra have
been normalized so that they cope with the published data. The
concordance of all the results is quite satisfactory.

VI. CONCLUSION

In this work, we tried to analyze the effect of the inter-
atomic potentials on the line-core and far-wing emission and
absorption profiles of the Mg(3s3p ↔ 3s2) − He(1s2) system.
To test the accuracy of our constructed potentials, based
on two different sets, we have calculated the excited-level

lifetimes, collision integrals, and temperature-dependant dif-
fusion coefficients. The agreement between our results and
other published values is noticeable. We have then performed
quantum-mechanical calculations of the linewidth and line-
shift parameters as well as the absorption coefficient for tem-
peratures ranging from 100 to 3000 K. We could point out that
only the free-free transitions are dominant and that the profile
presents beyond approximately 1800 K a satellite structure in
the blue wing near the wavelengths 272 or 276 nm, depending
on the potential set used. Finally, the expected weak satellite in
the red wing near 413 nm has been discussed and all the results
are compared with previous calculations and measurements.
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